rocksdb/db/db_memtable_test.cc
Changyu Bi defd97bc9d Add an option to verify memtable key order during reads (#12889)
Summary:
add a new CF option `paranoid_memory_checks` that allows additional data integrity validations during read/scan. Currently, skiplist-based memtable will validate the order of keys visited. Further data validation can be added in different layers. The option will be opt-in due to performance overhead.

The motivation for this feature is for services where data correctness is critical and want to detect in-memory corruption earlier. For a corrupted memtable key, this feature can help to detect it during during reads instead of during flush with existing protections (OutputValidator that verifies key order or per kv checksum). See internally linked task for more context.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12889

Test Plan:
* new unit test added for paranoid_memory_checks=true.
* existing unit test for paranoid_memory_checks=false.
* enable in stress test.

Performance Benchmark: we check for performance regression in read path where data is in memtable only. For each benchmark, the script was run at the same time for main and this PR:
* Memtable-only randomread ops/sec:
```
(for I in $(seq 1 50);do ./db_bench --benchmarks=fillseq,readrandom --write_buffer_size=268435456 --writes=250000 --num=250000 --reads=500000  --seed=1723056275 2>&1 | grep "readrandom"; done;) | awk '{ t += $5; c++; print } END { print 1.0 * t / c }';

Main: 608146
PR with paranoid_memory_checks=false: 607727 (- %0.07)
PR with paranoid_memory_checks=true: 521889 (-%14.2)
```

* Memtable-only sequential scan ops/sec:
```
(for I in $(seq 1 50); do ./db_bench--benchmarks=fillseq,readseq[-X10] --write_buffer_size=268435456 --num=1000000  --seed=1723056275 2>1 | grep "\[AVG 10 runs\]"; done;) | awk '{ t += $6; c++; print; } END { printf "%.0f\n", 1.0 * t / c }';

Main: 9180077
PR with paranoid_memory_checks=false: 9536241 (+%3.8)
PR with paranoid_memory_checks=true: 7653934 (-%16.6)
```

* Memtable-only reverse scan ops/sec:
```
(for I in $(seq 1 20); do ./db_bench --benchmarks=fillseq,readreverse[-X10] --write_buffer_size=268435456 --num=1000000  --seed=1723056275 2>1 | grep "\[AVG 10 runs\]"; done;) | awk '{ t += $6; c++; print; } END { printf "%.0f\n", 1.0 * t / c }';

 Main: 1285719
 PR with integrity_checks=false: 1431626 (+%11.3)
 PR with integrity_checks=true: 811031 (-%36.9)
```

The `readrandom` benchmark shows no regression. The scanning benchmarks show improvement that I can't explain.

Reviewed By: pdillinger

Differential Revision: D60414267

Pulled By: cbi42

fbshipit-source-id: a70b0cbeea131f1a249a5f78f9dc3a62dacfaa91
2024-08-19 13:53:25 -07:00

434 lines
16 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <memory>
#include <string>
#include "db/db_test_util.h"
#include "db/memtable.h"
#include "db/range_del_aggregator.h"
#include "port/stack_trace.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/slice_transform.h"
namespace ROCKSDB_NAMESPACE {
class DBMemTableTest : public DBTestBase {
public:
DBMemTableTest() : DBTestBase("db_memtable_test", /*env_do_fsync=*/true) {}
};
class MockMemTableRep : public MemTableRep {
public:
explicit MockMemTableRep(Allocator* allocator, MemTableRep* rep)
: MemTableRep(allocator), rep_(rep), num_insert_with_hint_(0) {}
KeyHandle Allocate(const size_t len, char** buf) override {
return rep_->Allocate(len, buf);
}
void Insert(KeyHandle handle) override { rep_->Insert(handle); }
void InsertWithHint(KeyHandle handle, void** hint) override {
num_insert_with_hint_++;
EXPECT_NE(nullptr, hint);
last_hint_in_ = *hint;
rep_->InsertWithHint(handle, hint);
last_hint_out_ = *hint;
}
bool Contains(const char* key) const override { return rep_->Contains(key); }
void Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg, const char* entry)) override {
rep_->Get(k, callback_args, callback_func);
}
size_t ApproximateMemoryUsage() override {
return rep_->ApproximateMemoryUsage();
}
Iterator* GetIterator(Arena* arena) override {
return rep_->GetIterator(arena);
}
void* last_hint_in() { return last_hint_in_; }
void* last_hint_out() { return last_hint_out_; }
int num_insert_with_hint() { return num_insert_with_hint_; }
private:
std::unique_ptr<MemTableRep> rep_;
void* last_hint_in_;
void* last_hint_out_;
int num_insert_with_hint_;
};
class MockMemTableRepFactory : public MemTableRepFactory {
public:
MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator& cmp,
Allocator* allocator,
const SliceTransform* transform,
Logger* logger) override {
SkipListFactory factory;
MemTableRep* skiplist_rep =
factory.CreateMemTableRep(cmp, allocator, transform, logger);
mock_rep_ = new MockMemTableRep(allocator, skiplist_rep);
return mock_rep_;
}
MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator& cmp,
Allocator* allocator,
const SliceTransform* transform,
Logger* logger,
uint32_t column_family_id) override {
last_column_family_id_ = column_family_id;
return CreateMemTableRep(cmp, allocator, transform, logger);
}
const char* Name() const override { return "MockMemTableRepFactory"; }
MockMemTableRep* rep() { return mock_rep_; }
bool IsInsertConcurrentlySupported() const override { return false; }
uint32_t GetLastColumnFamilyId() { return last_column_family_id_; }
private:
MockMemTableRep* mock_rep_;
// workaround since there's no std::numeric_limits<uint32_t>::max() yet.
uint32_t last_column_family_id_ = static_cast<uint32_t>(-1);
};
class TestPrefixExtractor : public SliceTransform {
public:
const char* Name() const override { return "TestPrefixExtractor"; }
Slice Transform(const Slice& key) const override {
const char* p = separator(key);
if (p == nullptr) {
return Slice();
}
return Slice(key.data(), p - key.data() + 1);
}
bool InDomain(const Slice& key) const override {
return separator(key) != nullptr;
}
bool InRange(const Slice& /*key*/) const override { return false; }
private:
const char* separator(const Slice& key) const {
return static_cast<const char*>(memchr(key.data(), '_', key.size()));
}
};
// Test that ::Add properly returns false when inserting duplicate keys
TEST_F(DBMemTableTest, DuplicateSeq) {
SequenceNumber seq = 123;
std::string value;
MergeContext merge_context;
Options options;
InternalKeyComparator ikey_cmp(options.comparator);
ReadRangeDelAggregator range_del_agg(&ikey_cmp,
kMaxSequenceNumber /* upper_bound */);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Write some keys and make sure it returns false on duplicates
ASSERT_OK(
mem->Add(seq, kTypeValue, "key", "value2", nullptr /* kv_prot_info */));
ASSERT_TRUE(
mem->Add(seq, kTypeValue, "key", "value2", nullptr /* kv_prot_info */)
.IsTryAgain());
// Changing the type should still cause the duplicatae key
ASSERT_TRUE(
mem->Add(seq, kTypeMerge, "key", "value2", nullptr /* kv_prot_info */)
.IsTryAgain());
// Changing the seq number will make the key fresh
ASSERT_OK(mem->Add(seq + 1, kTypeMerge, "key", "value2",
nullptr /* kv_prot_info */));
// Test with different types for duplicate keys
ASSERT_TRUE(
mem->Add(seq, kTypeDeletion, "key", "", nullptr /* kv_prot_info */)
.IsTryAgain());
ASSERT_TRUE(
mem->Add(seq, kTypeSingleDeletion, "key", "", nullptr /* kv_prot_info */)
.IsTryAgain());
// Test the duplicate keys under stress
for (int i = 0; i < 10000; i++) {
bool insert_dup = i % 10 == 1;
if (!insert_dup) {
seq++;
}
Status s = mem->Add(seq, kTypeValue, "foo", "value" + std::to_string(seq),
nullptr /* kv_prot_info */);
if (insert_dup) {
ASSERT_TRUE(s.IsTryAgain());
} else {
ASSERT_OK(s);
}
}
delete mem;
// Test with InsertWithHint
options.memtable_insert_with_hint_prefix_extractor.reset(
new TestPrefixExtractor()); // which uses _ to extract the prefix
ioptions = ImmutableOptions(options);
mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Insert a duplicate key with _ in it
ASSERT_OK(
mem->Add(seq, kTypeValue, "key_1", "value", nullptr /* kv_prot_info */));
ASSERT_TRUE(
mem->Add(seq, kTypeValue, "key_1", "value", nullptr /* kv_prot_info */)
.IsTryAgain());
delete mem;
// Test when InsertConcurrently will be invoked
options.allow_concurrent_memtable_write = true;
ioptions = ImmutableOptions(options);
mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
MemTablePostProcessInfo post_process_info;
ASSERT_OK(mem->Add(seq, kTypeValue, "key", "value",
nullptr /* kv_prot_info */, true, &post_process_info));
ASSERT_TRUE(mem->Add(seq, kTypeValue, "key", "value",
nullptr /* kv_prot_info */, true, &post_process_info)
.IsTryAgain());
delete mem;
}
// A simple test to verify that the concurrent merge writes is functional
TEST_F(DBMemTableTest, ConcurrentMergeWrite) {
int num_ops = 1000;
std::string value;
MergeContext merge_context;
Options options;
// A merge operator that is not sensitive to concurrent writes since in this
// test we don't order the writes.
options.merge_operator = MergeOperators::CreateUInt64AddOperator();
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
options.allow_concurrent_memtable_write = true;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Put 0 as the base
PutFixed64(&value, static_cast<uint64_t>(0));
ASSERT_OK(mem->Add(0, kTypeValue, "key", value, nullptr /* kv_prot_info */));
value.clear();
// Write Merge concurrently
ROCKSDB_NAMESPACE::port::Thread write_thread1([&]() {
MemTablePostProcessInfo post_process_info1;
std::string v1;
for (int seq = 1; seq < num_ops / 2; seq++) {
PutFixed64(&v1, seq);
ASSERT_OK(mem->Add(seq, kTypeMerge, "key", v1, nullptr /* kv_prot_info */,
true, &post_process_info1));
v1.clear();
}
});
ROCKSDB_NAMESPACE::port::Thread write_thread2([&]() {
MemTablePostProcessInfo post_process_info2;
std::string v2;
for (int seq = num_ops / 2; seq < num_ops; seq++) {
PutFixed64(&v2, seq);
ASSERT_OK(mem->Add(seq, kTypeMerge, "key", v2, nullptr /* kv_prot_info */,
true, &post_process_info2));
v2.clear();
}
});
write_thread1.join();
write_thread2.join();
Status status;
ReadOptions roptions;
SequenceNumber max_covering_tombstone_seq = 0;
LookupKey lkey("key", kMaxSequenceNumber);
bool res = mem->Get(lkey, &value, /*columns=*/nullptr, /*timestamp=*/nullptr,
&status, &merge_context, &max_covering_tombstone_seq,
roptions, false /* immutable_memtable */);
ASSERT_OK(status);
ASSERT_TRUE(res);
uint64_t ivalue = DecodeFixed64(Slice(value).data());
uint64_t sum = 0;
for (int seq = 0; seq < num_ops; seq++) {
sum += seq;
}
ASSERT_EQ(ivalue, sum);
delete mem;
}
TEST_F(DBMemTableTest, InsertWithHint) {
Options options;
options.allow_concurrent_memtable_write = false;
options.create_if_missing = true;
options.memtable_factory.reset(new MockMemTableRepFactory());
options.memtable_insert_with_hint_prefix_extractor.reset(
new TestPrefixExtractor());
options.env = env_;
Reopen(options);
MockMemTableRep* rep =
static_cast<MockMemTableRepFactory*>(options.memtable_factory.get())
->rep();
ASSERT_OK(Put("foo_k1", "foo_v1"));
ASSERT_EQ(nullptr, rep->last_hint_in());
void* hint_foo = rep->last_hint_out();
ASSERT_OK(Put("foo_k2", "foo_v2"));
ASSERT_EQ(hint_foo, rep->last_hint_in());
ASSERT_EQ(hint_foo, rep->last_hint_out());
ASSERT_OK(Put("foo_k3", "foo_v3"));
ASSERT_EQ(hint_foo, rep->last_hint_in());
ASSERT_EQ(hint_foo, rep->last_hint_out());
ASSERT_OK(Put("bar_k1", "bar_v1"));
ASSERT_EQ(nullptr, rep->last_hint_in());
void* hint_bar = rep->last_hint_out();
ASSERT_NE(hint_foo, hint_bar);
ASSERT_OK(Put("bar_k2", "bar_v2"));
ASSERT_EQ(hint_bar, rep->last_hint_in());
ASSERT_EQ(hint_bar, rep->last_hint_out());
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_OK(Put("NotInPrefixDomain", "vvv"));
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_EQ("foo_v1", Get("foo_k1"));
ASSERT_EQ("foo_v2", Get("foo_k2"));
ASSERT_EQ("foo_v3", Get("foo_k3"));
ASSERT_EQ("bar_v1", Get("bar_k1"));
ASSERT_EQ("bar_v2", Get("bar_k2"));
ASSERT_OK(db_->DeleteRange(WriteOptions(), "foo_k1", "foo_k4"));
ASSERT_EQ(hint_bar, rep->last_hint_in());
ASSERT_EQ(hint_bar, rep->last_hint_out());
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_EQ("vvv", Get("NotInPrefixDomain"));
}
TEST_F(DBMemTableTest, ColumnFamilyId) {
// Verifies MemTableRepFactory is told the right column family id.
Options options;
options.env = CurrentOptions().env;
options.allow_concurrent_memtable_write = false;
options.create_if_missing = true;
options.memtable_factory.reset(new MockMemTableRepFactory());
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
for (uint32_t cf = 0; cf < 2; ++cf) {
ASSERT_OK(Put(cf, "key", "val"));
ASSERT_OK(Flush(cf));
ASSERT_EQ(
cf, static_cast<MockMemTableRepFactory*>(options.memtable_factory.get())
->GetLastColumnFamilyId());
}
}
TEST_F(DBMemTableTest, IntegrityChecks) {
// We insert keys key000000, key000001 and key000002 into skiplist at fixed
// height 1 (smallest height). Then we corrupt the second key to aey000001 to
// make it smaller. With `paranoid_memory_checks` set to true, if the
// skip list sees key000000 and then aey000001, then it will report out of
// order keys with corruption status. With `paranoid_memory_checks` set
// to false, read/scan may return wrong results.
for (bool allow_data_in_error : {false, true}) {
Options options = CurrentOptions();
options.allow_data_in_errors = allow_data_in_error;
options.paranoid_memory_checks = true;
DestroyAndReopen(options);
SyncPoint::GetInstance()->SetCallBack(
"InlineSkipList::RandomHeight::height", [](void* h) {
auto height_ptr = static_cast<int*>(h);
*height_ptr = 1;
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(0), "val0"));
ASSERT_OK(Put(Key(2), "val2"));
// p will point to the buffer for encoded key000001
char* p = nullptr;
SyncPoint::GetInstance()->SetCallBack(
"MemTable::Add:BeforeReturn:Encoded", [&](void* encoded) {
p = const_cast<char*>(static_cast<Slice*>(encoded)->data());
});
ASSERT_OK(Put(Key(1), "val1"));
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
ASSERT_TRUE(p);
// Offset 0 is key size, key bytes start at offset 1.
// "key000001 -> aey000001"
p[1] = 'a';
ReadOptions rops;
std::string val;
Status s = db_->Get(rops, Key(1), &val);
ASSERT_TRUE(s.IsCorruption());
std::string key0 = Slice(Key(0)).ToString(true);
ASSERT_EQ(s.ToString().find(key0) != std::string::npos,
allow_data_in_error);
// Without `paranoid_memory_checks`, NotFound will be returned.
// This would fail an assertion in InlineSkipList::FindGreaterOrEqual().
// If we remove the assertion, this passes.
// ASSERT_TRUE(db_->Get(ReadOptions(), Key(1), &val).IsNotFound());
std::vector<std::string> vals;
std::vector<Status> statuses = db_->MultiGet(
rops, {db_->DefaultColumnFamily()}, {Key(1)}, &vals, nullptr);
ASSERT_TRUE(statuses[0].IsCorruption());
ASSERT_EQ(statuses[0].ToString().find(key0) != std::string::npos,
allow_data_in_error);
std::unique_ptr<Iterator> iter{db_->NewIterator(rops)};
ASSERT_OK(iter->status());
iter->Seek(Key(1));
ASSERT_TRUE(iter->status().IsCorruption());
ASSERT_EQ(iter->status().ToString().find(key0) != std::string::npos,
allow_data_in_error);
iter->Seek(Key(0));
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
// iterating through skip list at height at 1 should catch out-of-order keys
iter->Next();
ASSERT_TRUE(iter->status().IsCorruption());
ASSERT_EQ(iter->status().ToString().find(key0) != std::string::npos,
allow_data_in_error);
ASSERT_FALSE(iter->Valid());
iter->SeekForPrev(Key(2));
ASSERT_TRUE(iter->status().IsCorruption());
ASSERT_EQ(iter->status().ToString().find(key0) != std::string::npos,
allow_data_in_error);
// Internally DB Iter will iterate backwards (call Prev()) after
// SeekToLast() to find the correct internal key with the last user key.
// Prev() will do integrity checks and catch corruption.
iter->SeekToLast();
ASSERT_TRUE(iter->status().IsCorruption());
ASSERT_EQ(iter->status().ToString().find(key0) != std::string::npos,
allow_data_in_error);
ASSERT_FALSE(iter->Valid());
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}