rocksdb/table/table_test.cc
Maysam Yabandeh d4ad32d7bd Refactor BlockIter (#4121)
Summary:
BlockIter is getting crowded including details that specific only to either index or data blocks. The patch moves down such details to DataBlockIter and IndexBlockIter, both inheriting from BlockIter.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4121

Differential Revision: D8816832

Pulled By: maysamyabandeh

fbshipit-source-id: d492e74155c11d8a0c1c85cd7ee33d24c7456197
2018-07-12 17:27:31 -07:00

3523 lines
126 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "cache/lru_cache.h"
#include "db/dbformat.h"
#include "db/memtable.h"
#include "db/write_batch_internal.h"
#include "memtable/stl_wrappers.h"
#include "monitoring/statistics.h"
#include "port/port.h"
#include "rocksdb/cache.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/iterator.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/block.h"
#include "table/block_based_table_builder.h"
#include "table/block_based_table_factory.h"
#include "table/block_based_table_reader.h"
#include "table/block_builder.h"
#include "table/block_fetcher.h"
#include "table/format.h"
#include "table/get_context.h"
#include "table/internal_iterator.h"
#include "table/meta_blocks.h"
#include "table/plain_table_factory.h"
#include "table/scoped_arena_iterator.h"
#include "table/sst_file_writer_collectors.h"
#include "util/compression.h"
#include "util/random.h"
#include "util/string_util.h"
#include "util/sync_point.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "utilities/merge_operators.h"
namespace rocksdb {
extern const uint64_t kLegacyBlockBasedTableMagicNumber;
extern const uint64_t kLegacyPlainTableMagicNumber;
extern const uint64_t kBlockBasedTableMagicNumber;
extern const uint64_t kPlainTableMagicNumber;
namespace {
// DummyPropertiesCollector used to test BlockBasedTableProperties
class DummyPropertiesCollector : public TablePropertiesCollector {
public:
const char* Name() const { return ""; }
Status Finish(UserCollectedProperties* /*properties*/) {
return Status::OK();
}
Status Add(const Slice& /*user_key*/, const Slice& /*value*/) {
return Status::OK();
}
virtual UserCollectedProperties GetReadableProperties() const {
return UserCollectedProperties{};
}
};
class DummyPropertiesCollectorFactory1
: public TablePropertiesCollectorFactory {
public:
virtual TablePropertiesCollector* CreateTablePropertiesCollector(
TablePropertiesCollectorFactory::Context /*context*/) {
return new DummyPropertiesCollector();
}
const char* Name() const { return "DummyPropertiesCollector1"; }
};
class DummyPropertiesCollectorFactory2
: public TablePropertiesCollectorFactory {
public:
virtual TablePropertiesCollector* CreateTablePropertiesCollector(
TablePropertiesCollectorFactory::Context /*context*/) {
return new DummyPropertiesCollector();
}
const char* Name() const { return "DummyPropertiesCollector2"; }
};
// Return reverse of "key".
// Used to test non-lexicographic comparators.
std::string Reverse(const Slice& key) {
auto rev = key.ToString();
std::reverse(rev.begin(), rev.end());
return rev;
}
class ReverseKeyComparator : public Comparator {
public:
virtual const char* Name() const override {
return "rocksdb.ReverseBytewiseComparator";
}
virtual int Compare(const Slice& a, const Slice& b) const override {
return BytewiseComparator()->Compare(Reverse(a), Reverse(b));
}
virtual void FindShortestSeparator(std::string* start,
const Slice& limit) const override {
std::string s = Reverse(*start);
std::string l = Reverse(limit);
BytewiseComparator()->FindShortestSeparator(&s, l);
*start = Reverse(s);
}
virtual void FindShortSuccessor(std::string* key) const override {
std::string s = Reverse(*key);
BytewiseComparator()->FindShortSuccessor(&s);
*key = Reverse(s);
}
};
ReverseKeyComparator reverse_key_comparator;
void Increment(const Comparator* cmp, std::string* key) {
if (cmp == BytewiseComparator()) {
key->push_back('\0');
} else {
assert(cmp == &reverse_key_comparator);
std::string rev = Reverse(*key);
rev.push_back('\0');
*key = Reverse(rev);
}
}
} // namespace
// Helper class for tests to unify the interface between
// BlockBuilder/TableBuilder and Block/Table.
class Constructor {
public:
explicit Constructor(const Comparator* cmp)
: data_(stl_wrappers::LessOfComparator(cmp)) {}
virtual ~Constructor() { }
void Add(const std::string& key, const Slice& value) {
data_[key] = value.ToString();
}
// Finish constructing the data structure with all the keys that have
// been added so far. Returns the keys in sorted order in "*keys"
// and stores the key/value pairs in "*kvmap"
void Finish(const Options& options, const ImmutableCFOptions& ioptions,
const MutableCFOptions& moptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
std::vector<std::string>* keys, stl_wrappers::KVMap* kvmap) {
last_internal_key_ = &internal_comparator;
*kvmap = data_;
keys->clear();
for (const auto& kv : data_) {
keys->push_back(kv.first);
}
data_.clear();
Status s = FinishImpl(options, ioptions, moptions, table_options,
internal_comparator, *kvmap);
ASSERT_TRUE(s.ok()) << s.ToString();
}
// Construct the data structure from the data in "data"
virtual Status FinishImpl(const Options& options,
const ImmutableCFOptions& ioptions,
const MutableCFOptions& moptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& data) = 0;
virtual InternalIterator* NewIterator(
const SliceTransform* prefix_extractor = nullptr) const = 0;
virtual const stl_wrappers::KVMap& data() { return data_; }
virtual bool IsArenaMode() const { return false; }
virtual DB* db() const { return nullptr; } // Overridden in DBConstructor
virtual bool AnywayDeleteIterator() const { return false; }
protected:
const InternalKeyComparator* last_internal_key_;
private:
stl_wrappers::KVMap data_;
};
class BlockConstructor: public Constructor {
public:
explicit BlockConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp),
block_(nullptr) { }
~BlockConstructor() {
delete block_;
}
virtual Status FinishImpl(
const Options& /*options*/, const ImmutableCFOptions& /*ioptions*/,
const MutableCFOptions& /*moptions*/,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& /*internal_comparator*/,
const stl_wrappers::KVMap& kv_map) override {
delete block_;
block_ = nullptr;
BlockBuilder builder(table_options.block_restart_interval);
for (const auto kv : kv_map) {
builder.Add(kv.first, kv.second);
}
// Open the block
data_ = builder.Finish().ToString();
BlockContents contents;
contents.data = data_;
contents.cachable = false;
block_ = new Block(std::move(contents), kDisableGlobalSequenceNumber);
return Status::OK();
}
virtual InternalIterator* NewIterator(
const SliceTransform* /*prefix_extractor*/) const override {
return block_->NewIterator<BlockIter>(comparator_, comparator_);
}
private:
const Comparator* comparator_;
std::string data_;
Block* block_;
BlockConstructor();
};
// A helper class that converts internal format keys into user keys
class KeyConvertingIterator : public InternalIterator {
public:
explicit KeyConvertingIterator(InternalIterator* iter,
bool arena_mode = false)
: iter_(iter), arena_mode_(arena_mode) {}
virtual ~KeyConvertingIterator() {
if (arena_mode_) {
iter_->~InternalIterator();
} else {
delete iter_;
}
}
virtual bool Valid() const override { return iter_->Valid() && status_.ok(); }
virtual void Seek(const Slice& target) override {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->Seek(encoded);
}
virtual void SeekForPrev(const Slice& target) override {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->SeekForPrev(encoded);
}
virtual void SeekToFirst() override { iter_->SeekToFirst(); }
virtual void SeekToLast() override { iter_->SeekToLast(); }
virtual void Next() override { iter_->Next(); }
virtual void Prev() override { iter_->Prev(); }
virtual Slice key() const override {
assert(Valid());
ParsedInternalKey parsed_key;
if (!ParseInternalKey(iter_->key(), &parsed_key)) {
status_ = Status::Corruption("malformed internal key");
return Slice("corrupted key");
}
return parsed_key.user_key;
}
virtual Slice value() const override { return iter_->value(); }
virtual Status status() const override {
return status_.ok() ? iter_->status() : status_;
}
private:
mutable Status status_;
InternalIterator* iter_;
bool arena_mode_;
// No copying allowed
KeyConvertingIterator(const KeyConvertingIterator&);
void operator=(const KeyConvertingIterator&);
};
class TableConstructor: public Constructor {
public:
explicit TableConstructor(const Comparator* cmp,
bool convert_to_internal_key = false,
int level = -1)
: Constructor(cmp),
convert_to_internal_key_(convert_to_internal_key),
level_(level) {}
~TableConstructor() { Reset(); }
virtual Status FinishImpl(const Options& options,
const ImmutableCFOptions& ioptions,
const MutableCFOptions& moptions,
const BlockBasedTableOptions& /*table_options*/,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& kv_map) override {
Reset();
soptions.use_mmap_reads = ioptions.allow_mmap_reads;
file_writer_.reset(test::GetWritableFileWriter(new test::StringSink()));
unique_ptr<TableBuilder> builder;
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
std::string column_family_name;
builder.reset(ioptions.table_factory->NewTableBuilder(
TableBuilderOptions(
ioptions, moptions, internal_comparator,
&int_tbl_prop_collector_factories, options.compression,
CompressionOptions(), nullptr /* compression_dict */,
false /* skip_filters */, column_family_name, level_),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer_.get()));
for (const auto kv : kv_map) {
if (convert_to_internal_key_) {
ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
builder->Add(encoded, kv.second);
} else {
builder->Add(kv.first, kv.second);
}
EXPECT_TRUE(builder->status().ok());
}
Status s = builder->Finish();
file_writer_->Flush();
EXPECT_TRUE(s.ok()) << s.ToString();
EXPECT_EQ(GetSink()->contents().size(), builder->FileSize());
// Open the table
uniq_id_ = cur_uniq_id_++;
file_reader_.reset(test::GetRandomAccessFileReader(new test::StringSource(
GetSink()->contents(), uniq_id_, ioptions.allow_mmap_reads)));
const bool kSkipFilters = true;
const bool kImmortal = true;
return ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions, moptions.prefix_extractor.get(), soptions,
internal_comparator, !kSkipFilters, !kImmortal,
level_),
std::move(file_reader_), GetSink()->contents().size(), &table_reader_);
}
virtual InternalIterator* NewIterator(
const SliceTransform* prefix_extractor) const override {
ReadOptions ro;
InternalIterator* iter = table_reader_->NewIterator(ro, prefix_extractor);
if (convert_to_internal_key_) {
return new KeyConvertingIterator(iter);
} else {
return iter;
}
}
uint64_t ApproximateOffsetOf(const Slice& key) const {
if (convert_to_internal_key_) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
const Slice skey = ikey.Encode();
return table_reader_->ApproximateOffsetOf(skey);
}
return table_reader_->ApproximateOffsetOf(key);
}
virtual Status Reopen(const ImmutableCFOptions& ioptions,
const MutableCFOptions& moptions) {
file_reader_.reset(test::GetRandomAccessFileReader(new test::StringSource(
GetSink()->contents(), uniq_id_, ioptions.allow_mmap_reads)));
return ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions, moptions.prefix_extractor.get(), soptions,
*last_internal_key_),
std::move(file_reader_), GetSink()->contents().size(), &table_reader_);
}
virtual TableReader* GetTableReader() {
return table_reader_.get();
}
virtual bool AnywayDeleteIterator() const override {
return convert_to_internal_key_;
}
void ResetTableReader() { table_reader_.reset(); }
bool ConvertToInternalKey() { return convert_to_internal_key_; }
private:
void Reset() {
uniq_id_ = 0;
table_reader_.reset();
file_writer_.reset();
file_reader_.reset();
}
test::StringSink* GetSink() {
return static_cast<test::StringSink*>(file_writer_->writable_file());
}
uint64_t uniq_id_;
unique_ptr<WritableFileWriter> file_writer_;
unique_ptr<RandomAccessFileReader> file_reader_;
unique_ptr<TableReader> table_reader_;
bool convert_to_internal_key_;
int level_;
TableConstructor();
static uint64_t cur_uniq_id_;
EnvOptions soptions;
};
uint64_t TableConstructor::cur_uniq_id_ = 1;
class MemTableConstructor: public Constructor {
public:
explicit MemTableConstructor(const Comparator* cmp, WriteBufferManager* wb)
: Constructor(cmp),
internal_comparator_(cmp),
write_buffer_manager_(wb),
table_factory_(new SkipListFactory) {
options_.memtable_factory = table_factory_;
ImmutableCFOptions ioptions(options_);
memtable_ =
new MemTable(internal_comparator_, ioptions, MutableCFOptions(options_),
wb, kMaxSequenceNumber, 0 /* column_family_id */);
memtable_->Ref();
}
~MemTableConstructor() {
delete memtable_->Unref();
}
virtual Status FinishImpl(
const Options&, const ImmutableCFOptions& ioptions,
const MutableCFOptions& /*moptions*/,
const BlockBasedTableOptions& /*table_options*/,
const InternalKeyComparator& /*internal_comparator*/,
const stl_wrappers::KVMap& kv_map) override {
delete memtable_->Unref();
ImmutableCFOptions mem_ioptions(ioptions);
memtable_ = new MemTable(internal_comparator_, mem_ioptions,
MutableCFOptions(options_), write_buffer_manager_,
kMaxSequenceNumber, 0 /* column_family_id */);
memtable_->Ref();
int seq = 1;
for (const auto kv : kv_map) {
memtable_->Add(seq, kTypeValue, kv.first, kv.second);
seq++;
}
return Status::OK();
}
virtual InternalIterator* NewIterator(
const SliceTransform* /*prefix_extractor*/) const override {
return new KeyConvertingIterator(
memtable_->NewIterator(ReadOptions(), &arena_), true);
}
virtual bool AnywayDeleteIterator() const override { return true; }
virtual bool IsArenaMode() const override { return true; }
private:
mutable Arena arena_;
InternalKeyComparator internal_comparator_;
Options options_;
WriteBufferManager* write_buffer_manager_;
MemTable* memtable_;
std::shared_ptr<SkipListFactory> table_factory_;
};
class InternalIteratorFromIterator : public InternalIterator {
public:
explicit InternalIteratorFromIterator(Iterator* it) : it_(it) {}
virtual bool Valid() const override { return it_->Valid(); }
virtual void Seek(const Slice& target) override { it_->Seek(target); }
virtual void SeekForPrev(const Slice& target) override {
it_->SeekForPrev(target);
}
virtual void SeekToFirst() override { it_->SeekToFirst(); }
virtual void SeekToLast() override { it_->SeekToLast(); }
virtual void Next() override { it_->Next(); }
virtual void Prev() override { it_->Prev(); }
Slice key() const override { return it_->key(); }
Slice value() const override { return it_->value(); }
virtual Status status() const override { return it_->status(); }
private:
unique_ptr<Iterator> it_;
};
class DBConstructor: public Constructor {
public:
explicit DBConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp) {
db_ = nullptr;
NewDB();
}
~DBConstructor() {
delete db_;
}
virtual Status FinishImpl(
const Options& /*options*/, const ImmutableCFOptions& /*ioptions*/,
const MutableCFOptions& /*moptions*/,
const BlockBasedTableOptions& /*table_options*/,
const InternalKeyComparator& /*internal_comparator*/,
const stl_wrappers::KVMap& kv_map) override {
delete db_;
db_ = nullptr;
NewDB();
for (const auto kv : kv_map) {
WriteBatch batch;
batch.Put(kv.first, kv.second);
EXPECT_TRUE(db_->Write(WriteOptions(), &batch).ok());
}
return Status::OK();
}
virtual InternalIterator* NewIterator(
const SliceTransform* /*prefix_extractor*/) const override {
return new InternalIteratorFromIterator(db_->NewIterator(ReadOptions()));
}
virtual DB* db() const override { return db_; }
private:
void NewDB() {
std::string name = test::TmpDir() + "/table_testdb";
Options options;
options.comparator = comparator_;
Status status = DestroyDB(name, options);
ASSERT_TRUE(status.ok()) << status.ToString();
options.create_if_missing = true;
options.error_if_exists = true;
options.write_buffer_size = 10000; // Something small to force merging
status = DB::Open(options, name, &db_);
ASSERT_TRUE(status.ok()) << status.ToString();
}
const Comparator* comparator_;
DB* db_;
};
enum TestType {
BLOCK_BASED_TABLE_TEST,
#ifndef ROCKSDB_LITE
PLAIN_TABLE_SEMI_FIXED_PREFIX,
PLAIN_TABLE_FULL_STR_PREFIX,
PLAIN_TABLE_TOTAL_ORDER,
#endif // !ROCKSDB_LITE
BLOCK_TEST,
MEMTABLE_TEST,
DB_TEST
};
struct TestArgs {
TestType type;
bool reverse_compare;
int restart_interval;
CompressionType compression;
uint32_t format_version;
bool use_mmap;
};
static std::vector<TestArgs> GenerateArgList() {
std::vector<TestArgs> test_args;
std::vector<TestType> test_types = {
BLOCK_BASED_TABLE_TEST,
#ifndef ROCKSDB_LITE
PLAIN_TABLE_SEMI_FIXED_PREFIX,
PLAIN_TABLE_FULL_STR_PREFIX,
PLAIN_TABLE_TOTAL_ORDER,
#endif // !ROCKSDB_LITE
BLOCK_TEST,
MEMTABLE_TEST, DB_TEST};
std::vector<bool> reverse_compare_types = {false, true};
std::vector<int> restart_intervals = {16, 1, 1024};
// Only add compression if it is supported
std::vector<std::pair<CompressionType, bool>> compression_types;
compression_types.emplace_back(kNoCompression, false);
if (Snappy_Supported()) {
compression_types.emplace_back(kSnappyCompression, false);
}
if (Zlib_Supported()) {
compression_types.emplace_back(kZlibCompression, false);
compression_types.emplace_back(kZlibCompression, true);
}
if (BZip2_Supported()) {
compression_types.emplace_back(kBZip2Compression, false);
compression_types.emplace_back(kBZip2Compression, true);
}
if (LZ4_Supported()) {
compression_types.emplace_back(kLZ4Compression, false);
compression_types.emplace_back(kLZ4Compression, true);
compression_types.emplace_back(kLZ4HCCompression, false);
compression_types.emplace_back(kLZ4HCCompression, true);
}
if (XPRESS_Supported()) {
compression_types.emplace_back(kXpressCompression, false);
compression_types.emplace_back(kXpressCompression, true);
}
if (ZSTD_Supported()) {
compression_types.emplace_back(kZSTD, false);
compression_types.emplace_back(kZSTD, true);
}
for (auto test_type : test_types) {
for (auto reverse_compare : reverse_compare_types) {
#ifndef ROCKSDB_LITE
if (test_type == PLAIN_TABLE_SEMI_FIXED_PREFIX ||
test_type == PLAIN_TABLE_FULL_STR_PREFIX ||
test_type == PLAIN_TABLE_TOTAL_ORDER) {
// Plain table doesn't use restart index or compression.
TestArgs one_arg;
one_arg.type = test_type;
one_arg.reverse_compare = reverse_compare;
one_arg.restart_interval = restart_intervals[0];
one_arg.compression = compression_types[0].first;
one_arg.use_mmap = true;
test_args.push_back(one_arg);
one_arg.use_mmap = false;
test_args.push_back(one_arg);
continue;
}
#endif // !ROCKSDB_LITE
for (auto restart_interval : restart_intervals) {
for (auto compression_type : compression_types) {
TestArgs one_arg;
one_arg.type = test_type;
one_arg.reverse_compare = reverse_compare;
one_arg.restart_interval = restart_interval;
one_arg.compression = compression_type.first;
one_arg.format_version = compression_type.second ? 2 : 1;
one_arg.use_mmap = false;
test_args.push_back(one_arg);
}
}
}
}
return test_args;
}
// In order to make all tests run for plain table format, including
// those operating on empty keys, create a new prefix transformer which
// return fixed prefix if the slice is not shorter than the prefix length,
// and the full slice if it is shorter.
class FixedOrLessPrefixTransform : public SliceTransform {
private:
const size_t prefix_len_;
public:
explicit FixedOrLessPrefixTransform(size_t prefix_len) :
prefix_len_(prefix_len) {
}
virtual const char* Name() const override { return "rocksdb.FixedPrefix"; }
virtual Slice Transform(const Slice& src) const override {
assert(InDomain(src));
if (src.size() < prefix_len_) {
return src;
}
return Slice(src.data(), prefix_len_);
}
virtual bool InDomain(const Slice& /*src*/) const override { return true; }
virtual bool InRange(const Slice& dst) const override {
return (dst.size() <= prefix_len_);
}
virtual bool FullLengthEnabled(size_t* /*len*/) const override {
return false;
}
};
class HarnessTest : public testing::Test {
public:
HarnessTest()
: ioptions_(options_),
moptions_(options_),
constructor_(nullptr),
write_buffer_(options_.db_write_buffer_size) {}
void Init(const TestArgs& args) {
delete constructor_;
constructor_ = nullptr;
options_ = Options();
options_.compression = args.compression;
// Use shorter block size for tests to exercise block boundary
// conditions more.
if (args.reverse_compare) {
options_.comparator = &reverse_key_comparator;
}
internal_comparator_.reset(
new test::PlainInternalKeyComparator(options_.comparator));
support_prev_ = true;
only_support_prefix_seek_ = false;
options_.allow_mmap_reads = args.use_mmap;
switch (args.type) {
case BLOCK_BASED_TABLE_TEST:
table_options_.flush_block_policy_factory.reset(
new FlushBlockBySizePolicyFactory());
table_options_.block_size = 256;
table_options_.block_restart_interval = args.restart_interval;
table_options_.index_block_restart_interval = args.restart_interval;
table_options_.format_version = args.format_version;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
case PLAIN_TABLE_SEMI_FIXED_PREFIX:
support_prev_ = false;
only_support_prefix_seek_ = true;
options_.prefix_extractor.reset(new FixedOrLessPrefixTransform(2));
options_.table_factory.reset(NewPlainTableFactory());
constructor_ = new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
case PLAIN_TABLE_FULL_STR_PREFIX:
support_prev_ = false;
only_support_prefix_seek_ = true;
options_.prefix_extractor.reset(NewNoopTransform());
options_.table_factory.reset(NewPlainTableFactory());
constructor_ = new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
case PLAIN_TABLE_TOTAL_ORDER:
support_prev_ = false;
only_support_prefix_seek_ = false;
options_.prefix_extractor = nullptr;
{
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = kPlainTableVariableLength;
plain_table_options.bloom_bits_per_key = 0;
plain_table_options.hash_table_ratio = 0;
options_.table_factory.reset(
NewPlainTableFactory(plain_table_options));
}
constructor_ = new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
#endif // !ROCKSDB_LITE
case BLOCK_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new BlockConstructor(options_.comparator);
break;
case MEMTABLE_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new MemTableConstructor(options_.comparator,
&write_buffer_);
break;
case DB_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new DBConstructor(options_.comparator);
break;
}
ioptions_ = ImmutableCFOptions(options_);
moptions_ = MutableCFOptions(options_);
}
~HarnessTest() { delete constructor_; }
void Add(const std::string& key, const std::string& value) {
constructor_->Add(key, value);
}
void Test(Random* rnd) {
std::vector<std::string> keys;
stl_wrappers::KVMap data;
constructor_->Finish(options_, ioptions_, moptions_, table_options_,
*internal_comparator_, &keys, &data);
TestForwardScan(keys, data);
if (support_prev_) {
TestBackwardScan(keys, data);
}
TestRandomAccess(rnd, keys, data);
}
void TestForwardScan(const std::vector<std::string>& /*keys*/,
const stl_wrappers::KVMap& data) {
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToFirst();
for (stl_wrappers::KVMap::const_iterator model_iter = data.begin();
model_iter != data.end(); ++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Next();
}
ASSERT_TRUE(!iter->Valid());
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
void TestBackwardScan(const std::vector<std::string>& /*keys*/,
const stl_wrappers::KVMap& data) {
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToLast();
for (stl_wrappers::KVMap::const_reverse_iterator model_iter = data.rbegin();
model_iter != data.rend(); ++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Prev();
}
ASSERT_TRUE(!iter->Valid());
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
void TestRandomAccess(Random* rnd, const std::vector<std::string>& keys,
const stl_wrappers::KVMap& data) {
static const bool kVerbose = false;
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
stl_wrappers::KVMap::const_iterator model_iter = data.begin();
if (kVerbose) fprintf(stderr, "---\n");
for (int i = 0; i < 200; i++) {
const int toss = rnd->Uniform(support_prev_ ? 5 : 3);
switch (toss) {
case 0: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Next\n");
iter->Next();
++model_iter;
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 1: {
if (kVerbose) fprintf(stderr, "SeekToFirst\n");
iter->SeekToFirst();
model_iter = data.begin();
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 2: {
std::string key = PickRandomKey(rnd, keys);
model_iter = data.lower_bound(key);
if (kVerbose) fprintf(stderr, "Seek '%s'\n",
EscapeString(key).c_str());
iter->Seek(Slice(key));
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 3: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Prev\n");
iter->Prev();
if (model_iter == data.begin()) {
model_iter = data.end(); // Wrap around to invalid value
} else {
--model_iter;
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 4: {
if (kVerbose) fprintf(stderr, "SeekToLast\n");
iter->SeekToLast();
if (keys.empty()) {
model_iter = data.end();
} else {
std::string last = data.rbegin()->first;
model_iter = data.lower_bound(last);
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
}
}
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
std::string ToString(const stl_wrappers::KVMap& data,
const stl_wrappers::KVMap::const_iterator& it) {
if (it == data.end()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const stl_wrappers::KVMap& data,
const stl_wrappers::KVMap::const_reverse_iterator& it) {
if (it == data.rend()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const InternalIterator* it) {
if (!it->Valid()) {
return "END";
} else {
return "'" + it->key().ToString() + "->" + it->value().ToString() + "'";
}
}
std::string PickRandomKey(Random* rnd, const std::vector<std::string>& keys) {
if (keys.empty()) {
return "foo";
} else {
const int index = rnd->Uniform(static_cast<int>(keys.size()));
std::string result = keys[index];
switch (rnd->Uniform(support_prev_ ? 3 : 1)) {
case 0:
// Return an existing key
break;
case 1: {
// Attempt to return something smaller than an existing key
if (result.size() > 0 && result[result.size() - 1] > '\0'
&& (!only_support_prefix_seek_
|| options_.prefix_extractor->Transform(result).size()
< result.size())) {
result[result.size() - 1]--;
}
break;
}
case 2: {
// Return something larger than an existing key
Increment(options_.comparator, &result);
break;
}
}
return result;
}
}
// Returns nullptr if not running against a DB
DB* db() const { return constructor_->db(); }
void RandomizedHarnessTest(size_t part, size_t total) {
std::vector<TestArgs> args = GenerateArgList();
assert(part);
assert(part <= total);
for (unsigned int i = 0; i < args.size(); i++) {
if ((i % total) + 1 != part) {
continue;
}
Init(args[i]);
Random rnd(test::RandomSeed() + 5);
for (int num_entries = 0; num_entries < 2000;
num_entries += (num_entries < 50 ? 1 : 200)) {
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
}
}
}
private:
Options options_ = Options();
ImmutableCFOptions ioptions_;
MutableCFOptions moptions_;
BlockBasedTableOptions table_options_ = BlockBasedTableOptions();
Constructor* constructor_;
WriteBufferManager write_buffer_;
bool support_prev_;
bool only_support_prefix_seek_;
shared_ptr<InternalKeyComparator> internal_comparator_;
};
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
// Tests against all kinds of tables
class TableTest : public testing::Test {
public:
const InternalKeyComparator& GetPlainInternalComparator(
const Comparator* comp) {
if (!plain_internal_comparator) {
plain_internal_comparator.reset(
new test::PlainInternalKeyComparator(comp));
}
return *plain_internal_comparator;
}
void IndexTest(BlockBasedTableOptions table_options);
private:
std::unique_ptr<InternalKeyComparator> plain_internal_comparator;
};
class GeneralTableTest : public TableTest {};
class BlockBasedTableTest
: public TableTest,
virtual public ::testing::WithParamInterface<uint32_t> {
public:
BlockBasedTableTest() : format_(GetParam()) {}
BlockBasedTableOptions GetBlockBasedTableOptions() {
BlockBasedTableOptions options;
options.format_version = format_;
return options;
}
protected:
uint64_t IndexUncompressedHelper(bool indexCompress);
private:
uint32_t format_;
};
class PlainTableTest : public TableTest {};
class TablePropertyTest : public testing::Test {};
INSTANTIATE_TEST_CASE_P(FormatDef, BlockBasedTableTest,
testing::Values(test::kDefaultFormatVersion));
INSTANTIATE_TEST_CASE_P(FormatLatest, BlockBasedTableTest,
testing::Values(test::kLatestFormatVersion));
// This test serves as the living tutorial for the prefix scan of user collected
// properties.
TEST_F(TablePropertyTest, PrefixScanTest) {
UserCollectedProperties props{{"num.111.1", "1"},
{"num.111.2", "2"},
{"num.111.3", "3"},
{"num.333.1", "1"},
{"num.333.2", "2"},
{"num.333.3", "3"},
{"num.555.1", "1"},
{"num.555.2", "2"},
{"num.555.3", "3"}, };
// prefixes that exist
for (const std::string& prefix : {"num.111", "num.333", "num.555"}) {
int num = 0;
for (auto pos = props.lower_bound(prefix);
pos != props.end() &&
pos->first.compare(0, prefix.size(), prefix) == 0;
++pos) {
++num;
auto key = prefix + "." + ToString(num);
ASSERT_EQ(key, pos->first);
ASSERT_EQ(ToString(num), pos->second);
}
ASSERT_EQ(3, num);
}
// prefixes that don't exist
for (const std::string& prefix :
{"num.000", "num.222", "num.444", "num.666"}) {
auto pos = props.lower_bound(prefix);
ASSERT_TRUE(pos == props.end() ||
pos->first.compare(0, prefix.size(), prefix) != 0);
}
}
// This test include all the basic checks except those for index size and block
// size, which will be conducted in separated unit tests.
TEST_P(BlockBasedTableTest, BasicBlockBasedTableProperties) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("a1", "val1");
c.Add("b2", "val2");
c.Add("c3", "val3");
c.Add("d4", "val4");
c.Add("e5", "val5");
c.Add("f6", "val6");
c.Add("g7", "val7");
c.Add("h8", "val8");
c.Add("j9", "val9");
uint64_t diff_internal_user_bytes = 9 * 8; // 8 is seq size, 9 k-v totally
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
options.statistics = CreateDBStatistics();
options.statistics->stats_level_ = StatsLevel::kAll;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ImmutableCFOptions ioptions(options);
MutableCFOptions moptions(options);
ioptions.statistics = options.statistics.get();
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
ASSERT_EQ(options.statistics->getTickerCount(NUMBER_BLOCK_NOT_COMPRESSED), 0);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ(kvmap.size(), props.num_entries);
auto raw_key_size = kvmap.size() * 2ul;
auto raw_value_size = kvmap.size() * 4ul;
ASSERT_EQ(raw_key_size + diff_internal_user_bytes, props.raw_key_size);
ASSERT_EQ(raw_value_size, props.raw_value_size);
ASSERT_EQ(1ul, props.num_data_blocks);
ASSERT_EQ("", props.filter_policy_name); // no filter policy is used
// Verify data size.
BlockBuilder block_builder(1);
for (const auto& item : kvmap) {
block_builder.Add(item.first, item.second);
}
Slice content = block_builder.Finish();
ASSERT_EQ(content.size() + kBlockTrailerSize + diff_internal_user_bytes,
props.data_size);
c.ResetTableReader();
}
#ifdef SNAPPY
uint64_t BlockBasedTableTest::IndexUncompressedHelper(bool compressed) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
constexpr size_t kNumKeys = 10000;
for (size_t k = 0; k < kNumKeys; ++k) {
c.Add("key" + ToString(k), "val" + ToString(k));
}
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kSnappyCompression;
options.statistics = CreateDBStatistics();
options.statistics->stats_level_ = StatsLevel::kAll;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
table_options.enable_index_compression = compressed;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ImmutableCFOptions ioptions(options);
MutableCFOptions moptions(options);
ioptions.statistics = options.statistics.get();
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
c.ResetTableReader();
return options.statistics->getTickerCount(NUMBER_BLOCK_COMPRESSED);
}
TEST_P(BlockBasedTableTest, IndexUncompressed) {
uint64_t tbl1_compressed_cnt = IndexUncompressedHelper(true);
uint64_t tbl2_compressed_cnt = IndexUncompressedHelper(false);
// tbl1_compressed_cnt should include 1 index block
EXPECT_EQ(tbl2_compressed_cnt + 1, tbl1_compressed_cnt);
}
#endif // SNAPPY
TEST_P(BlockBasedTableTest, BlockBasedTableProperties2) {
TableConstructor c(&reverse_key_comparator);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
{
Options options;
options.compression = CompressionType::kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
// Default comparator
ASSERT_EQ("leveldb.BytewiseComparator", props.comparator_name);
// No merge operator
ASSERT_EQ("nullptr", props.merge_operator_name);
// No prefix extractor
ASSERT_EQ("nullptr", props.prefix_extractor_name);
// No property collectors
ASSERT_EQ("[]", props.property_collectors_names);
// No filter policy is used
ASSERT_EQ("", props.filter_policy_name);
// Compression type == that set:
ASSERT_EQ("NoCompression", props.compression_name);
c.ResetTableReader();
}
{
Options options;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.comparator = &reverse_key_comparator;
options.merge_operator = MergeOperators::CreateUInt64AddOperator();
options.prefix_extractor.reset(NewNoopTransform());
options.table_properties_collector_factories.emplace_back(
new DummyPropertiesCollectorFactory1());
options.table_properties_collector_factories.emplace_back(
new DummyPropertiesCollectorFactory2());
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ("rocksdb.ReverseBytewiseComparator", props.comparator_name);
ASSERT_EQ("UInt64AddOperator", props.merge_operator_name);
ASSERT_EQ("rocksdb.Noop", props.prefix_extractor_name);
ASSERT_EQ("[DummyPropertiesCollector1,DummyPropertiesCollector2]",
props.property_collectors_names);
ASSERT_EQ("", props.filter_policy_name); // no filter policy is used
c.ResetTableReader();
}
}
TEST_P(BlockBasedTableTest, RangeDelBlock) {
TableConstructor c(BytewiseComparator());
std::vector<std::string> keys = {"1pika", "2chu"};
std::vector<std::string> vals = {"p", "c"};
for (int i = 0; i < 2; i++) {
RangeTombstone t(keys[i], vals[i], i);
std::pair<InternalKey, Slice> p = t.Serialize();
c.Add(p.first.Encode().ToString(), p.second);
}
std::vector<std::string> sorted_keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
std::unique_ptr<InternalKeyComparator> internal_cmp(
new InternalKeyComparator(options.comparator));
c.Finish(options, ioptions, moptions, table_options, *internal_cmp,
&sorted_keys, &kvmap);
for (int j = 0; j < 2; ++j) {
std::unique_ptr<InternalIterator> iter(
c.GetTableReader()->NewRangeTombstoneIterator(ReadOptions()));
if (j > 0) {
// For second iteration, delete the table reader object and verify the
// iterator can still access its metablock's range tombstones.
c.ResetTableReader();
}
ASSERT_FALSE(iter->Valid());
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
for (int i = 0; i < 2; i++) {
ASSERT_TRUE(iter->Valid());
ParsedInternalKey parsed_key;
ASSERT_TRUE(ParseInternalKey(iter->key(), &parsed_key));
RangeTombstone t(parsed_key, iter->value());
ASSERT_EQ(t.start_key_, keys[i]);
ASSERT_EQ(t.end_key_, vals[i]);
ASSERT_EQ(t.seq_, i);
iter->Next();
}
ASSERT_TRUE(!iter->Valid());
}
}
TEST_P(BlockBasedTableTest, FilterPolicyNameProperties) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("a1", "val1");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ("rocksdb.BuiltinBloomFilter", props.filter_policy_name);
c.ResetTableReader();
}
//
// BlockBasedTableTest::PrefetchTest
//
void AssertKeysInCache(BlockBasedTable* table_reader,
const std::vector<std::string>& keys_in_cache,
const std::vector<std::string>& keys_not_in_cache,
bool convert = false) {
if (convert) {
for (auto key : keys_in_cache) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
for (auto key : keys_not_in_cache) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
} else {
for (auto key : keys_in_cache) {
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), key));
}
for (auto key : keys_not_in_cache) {
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), key));
}
}
}
void PrefetchRange(TableConstructor* c, Options* opt,
BlockBasedTableOptions* table_options, const char* key_begin,
const char* key_end,
const std::vector<std::string>& keys_in_cache,
const std::vector<std::string>& keys_not_in_cache,
const Status expected_status = Status::OK()) {
// reset the cache and reopen the table
table_options->block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt->table_factory.reset(NewBlockBasedTableFactory(*table_options));
const ImmutableCFOptions ioptions2(*opt);
const MutableCFOptions moptions(*opt);
ASSERT_OK(c->Reopen(ioptions2, moptions));
// prefetch
auto* table_reader = dynamic_cast<BlockBasedTable*>(c->GetTableReader());
Status s;
unique_ptr<Slice> begin, end;
unique_ptr<InternalKey> i_begin, i_end;
if (key_begin != nullptr) {
if (c->ConvertToInternalKey()) {
i_begin.reset(new InternalKey(key_begin, kMaxSequenceNumber, kTypeValue));
begin.reset(new Slice(i_begin->Encode()));
} else {
begin.reset(new Slice(key_begin));
}
}
if (key_end != nullptr) {
if (c->ConvertToInternalKey()) {
i_end.reset(new InternalKey(key_end, kMaxSequenceNumber, kTypeValue));
end.reset(new Slice(i_end->Encode()));
} else {
end.reset(new Slice(key_end));
}
}
s = table_reader->Prefetch(begin.get(), end.get());
ASSERT_TRUE(s.code() == expected_status.code());
// assert our expectation in cache warmup
AssertKeysInCache(table_reader, keys_in_cache, keys_not_in_cache,
c->ConvertToInternalKey());
c->ResetTableReader();
}
TEST_P(BlockBasedTableTest, PrefetchTest) {
// The purpose of this test is to test the prefetching operation built into
// BlockBasedTable.
Options opt;
unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_size = 1024;
// big enough so we don't ever lose cached values.
table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(opt);
const MutableCFOptions moptions(opt);
c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap);
c.ResetTableReader();
// We get the following data spread :
//
// Data block Index
// ========================
// [ k01 k02 k03 ] k03
// [ k04 ] k04
// [ k05 ] k05
// [ k06 k07 ] k07
// Simple
PrefetchRange(&c, &opt, &table_options,
/*key_range=*/"k01", "k05",
/*keys_in_cache=*/{"k01", "k02", "k03", "k04", "k05"},
/*keys_not_in_cache=*/{"k06", "k07"});
PrefetchRange(&c, &opt, &table_options, "k01", "k01", {"k01", "k02", "k03"},
{"k04", "k05", "k06", "k07"});
// odd
PrefetchRange(&c, &opt, &table_options, "a", "z",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
PrefetchRange(&c, &opt, &table_options, "k00", "k00", {"k01", "k02", "k03"},
{"k04", "k05", "k06", "k07"});
// Edge cases
PrefetchRange(&c, &opt, &table_options, "k00", "k06",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
PrefetchRange(&c, &opt, &table_options, "k00", "zzz",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
// null keys
PrefetchRange(&c, &opt, &table_options, nullptr, nullptr,
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
PrefetchRange(&c, &opt, &table_options, "k04", nullptr,
{"k04", "k05", "k06", "k07"}, {"k01", "k02", "k03"});
PrefetchRange(&c, &opt, &table_options, nullptr, "k05",
{"k01", "k02", "k03", "k04", "k05"}, {"k06", "k07"});
// invalid
PrefetchRange(&c, &opt, &table_options, "k06", "k00", {}, {},
Status::InvalidArgument(Slice("k06 "), Slice("k07")));
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, TotalOrderSeekOnHashIndex) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
for (int i = 0; i < 4; ++i) {
Options options;
// Make each key/value an individual block
table_options.block_size = 64;
switch (i) {
case 0:
// Binary search index
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
break;
case 1:
// Hash search index
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 2:
// Hash search index with hash_index_allow_collision
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.hash_index_allow_collision = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 3:
// Hash search index with filter policy
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 4:
default:
// Binary search index
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
break;
}
TableConstructor c(BytewiseComparator(),
true /* convert_to_internal_key_ */);
c.Add("aaaa1", std::string('a', 56));
c.Add("bbaa1", std::string('a', 56));
c.Add("cccc1", std::string('a', 56));
c.Add("bbbb1", std::string('a', 56));
c.Add("baaa1", std::string('a', 56));
c.Add("abbb1", std::string('a', 56));
c.Add("cccc2", std::string('a', 56));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto props = c.GetTableReader()->GetTableProperties();
ASSERT_EQ(7u, props->num_data_blocks);
auto* reader = c.GetTableReader();
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<InternalIterator> iter(
reader->NewIterator(ro, moptions.prefix_extractor.get()));
iter->Seek(InternalKey("b", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("baaa1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString());
iter->Seek(InternalKey("bb", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString());
iter->Seek(InternalKey("bbb", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("cccc1", ExtractUserKey(iter->key()).ToString());
}
}
TEST_P(BlockBasedTableTest, NoopTransformSeek) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options;
options.comparator = BytewiseComparator();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewNoopTransform());
TableConstructor c(options.comparator);
// To tickle the PrefixMayMatch bug it is important that the
// user-key is a single byte so that the index key exactly matches
// the user-key.
InternalKey key("a", 1, kTypeValue);
c.Add(key.Encode().ToString(), "b");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
const InternalKeyComparator internal_comparator(options.comparator);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
auto* reader = c.GetTableReader();
for (int i = 0; i < 2; ++i) {
ReadOptions ro;
ro.total_order_seek = (i == 0);
std::unique_ptr<InternalIterator> iter(
reader->NewIterator(ro, moptions.prefix_extractor.get()));
iter->Seek(key.Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", ExtractUserKey(iter->key()).ToString());
}
}
TEST_P(BlockBasedTableTest, SkipPrefixBloomFilter) {
// if DB is opened with a prefix extractor of a different name,
// prefix bloom is skipped when read the file
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(2));
table_options.whole_key_filtering = false;
Options options;
options.comparator = BytewiseComparator();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
TableConstructor c(options.comparator);
InternalKey key("abcdefghijk", 1, kTypeValue);
c.Add(key.Encode().ToString(), "test");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
const InternalKeyComparator internal_comparator(options.comparator);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
// TODO(Zhongyi): update test to use MutableCFOptions
options.prefix_extractor.reset(NewFixedPrefixTransform(9));
const ImmutableCFOptions new_ioptions(options);
const MutableCFOptions new_moptions(options);
c.Reopen(new_ioptions, new_moptions);
auto reader = c.GetTableReader();
std::unique_ptr<InternalIterator> db_iter(
reader->NewIterator(ReadOptions(), new_moptions.prefix_extractor.get()));
// Test point lookup
// only one kv
for (auto& kv : kvmap) {
db_iter->Seek(kv.first);
ASSERT_TRUE(db_iter->Valid());
ASSERT_OK(db_iter->status());
ASSERT_EQ(db_iter->key(), kv.first);
ASSERT_EQ(db_iter->value(), kv.second);
}
}
static std::string RandomString(Random* rnd, int len) {
std::string r;
test::RandomString(rnd, len, &r);
return r;
}
void AddInternalKey(TableConstructor* c, const std::string& prefix,
int /*suffix_len*/ = 800) {
static Random rnd(1023);
InternalKey k(prefix + RandomString(&rnd, 800), 0, kTypeValue);
c->Add(k.Encode().ToString(), "v");
}
void TableTest::IndexTest(BlockBasedTableOptions table_options) {
TableConstructor c(BytewiseComparator());
// keys with prefix length 3, make sure the key/value is big enough to fill
// one block
AddInternalKey(&c, "0015");
AddInternalKey(&c, "0035");
AddInternalKey(&c, "0054");
AddInternalKey(&c, "0055");
AddInternalKey(&c, "0056");
AddInternalKey(&c, "0057");
AddInternalKey(&c, "0058");
AddInternalKey(&c, "0075");
AddInternalKey(&c, "0076");
AddInternalKey(&c, "0095");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
table_options.block_size = 1700;
table_options.block_cache = NewLRUCache(1024, 4);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
auto reader = c.GetTableReader();
auto props = reader->GetTableProperties();
ASSERT_EQ(5u, props->num_data_blocks);
// TODO(Zhongyi): update test to use MutableCFOptions
std::unique_ptr<InternalIterator> index_iter(
reader->NewIterator(ReadOptions(), moptions.prefix_extractor.get()));
// -- Find keys do not exist, but have common prefix.
std::vector<std::string> prefixes = {"001", "003", "005", "007", "009"};
std::vector<std::string> lower_bound = {keys[0], keys[1], keys[2],
keys[7], keys[9], };
// find the lower bound of the prefix
for (size_t i = 0; i < prefixes.size(); ++i) {
index_iter->Seek(InternalKey(prefixes[i], 0, kTypeValue).Encode());
ASSERT_OK(index_iter->status());
ASSERT_TRUE(index_iter->Valid());
// seek the first element in the block
ASSERT_EQ(lower_bound[i], index_iter->key().ToString());
ASSERT_EQ("v", index_iter->value().ToString());
}
// find the upper bound of prefixes
std::vector<std::string> upper_bound = {keys[1], keys[2], keys[7], keys[9], };
// find existing keys
for (const auto& item : kvmap) {
auto ukey = ExtractUserKey(item.first).ToString();
index_iter->Seek(ukey);
// ASSERT_OK(regular_iter->status());
ASSERT_OK(index_iter->status());
// ASSERT_TRUE(regular_iter->Valid());
ASSERT_TRUE(index_iter->Valid());
ASSERT_EQ(item.first, index_iter->key().ToString());
ASSERT_EQ(item.second, index_iter->value().ToString());
}
for (size_t i = 0; i < prefixes.size(); ++i) {
// the key is greater than any existing keys.
auto key = prefixes[i] + "9";
index_iter->Seek(InternalKey(key, 0, kTypeValue).Encode());
ASSERT_OK(index_iter->status());
if (i == prefixes.size() - 1) {
// last key
ASSERT_TRUE(!index_iter->Valid());
} else {
ASSERT_TRUE(index_iter->Valid());
// seek the first element in the block
ASSERT_EQ(upper_bound[i], index_iter->key().ToString());
ASSERT_EQ("v", index_iter->value().ToString());
}
}
// find keys with prefix that don't match any of the existing prefixes.
std::vector<std::string> non_exist_prefixes = {"002", "004", "006", "008"};
for (const auto& prefix : non_exist_prefixes) {
index_iter->Seek(InternalKey(prefix, 0, kTypeValue).Encode());
// regular_iter->Seek(prefix);
ASSERT_OK(index_iter->status());
// Seek to non-existing prefixes should yield either invalid, or a
// key with prefix greater than the target.
if (index_iter->Valid()) {
Slice ukey = ExtractUserKey(index_iter->key());
Slice ukey_prefix = options.prefix_extractor->Transform(ukey);
ASSERT_TRUE(BytewiseComparator()->Compare(prefix, ukey_prefix) < 0);
}
}
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, BinaryIndexTest) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
IndexTest(table_options);
}
TEST_P(BlockBasedTableTest, HashIndexTest) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kHashSearch;
IndexTest(table_options);
}
TEST_P(BlockBasedTableTest, PartitionIndexTest) {
const int max_index_keys = 5;
const int est_max_index_key_value_size = 32;
const int est_max_index_size = max_index_keys * est_max_index_key_value_size;
for (int i = 1; i <= est_max_index_size + 1; i++) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
table_options.metadata_block_size = i;
IndexTest(table_options);
}
}
// It's very hard to figure out the index block size of a block accurately.
// To make sure we get the index size, we just make sure as key number
// grows, the filter block size also grows.
TEST_P(BlockBasedTableTest, IndexSizeStat) {
uint64_t last_index_size = 0;
// we need to use random keys since the pure human readable texts
// may be well compressed, resulting insignifcant change of index
// block size.
Random rnd(test::RandomSeed());
std::vector<std::string> keys;
for (int i = 0; i < 100; ++i) {
keys.push_back(RandomString(&rnd, 10000));
}
// Each time we load one more key to the table. the table index block
// size is expected to be larger than last time's.
for (size_t i = 1; i < keys.size(); ++i) {
TableConstructor c(BytewiseComparator(),
true /* convert_to_internal_key_ */);
for (size_t j = 0; j < i; ++j) {
c.Add(keys[j], "val");
}
std::vector<std::string> ks;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &ks, &kvmap);
auto index_size = c.GetTableReader()->GetTableProperties()->index_size;
ASSERT_GT(index_size, last_index_size);
last_index_size = index_size;
c.ResetTableReader();
}
}
TEST_P(BlockBasedTableTest, NumBlockStat) {
Random rnd(test::RandomSeed());
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
table_options.block_size = 1000;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
for (int i = 0; i < 10; ++i) {
// the key/val are slightly smaller than block size, so that each block
// holds roughly one key/value pair.
c.Add(RandomString(&rnd, 900), "val");
}
std::vector<std::string> ks;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &ks, &kvmap);
ASSERT_EQ(kvmap.size(),
c.GetTableReader()->GetTableProperties()->num_data_blocks);
c.ResetTableReader();
}
// A simple tool that takes the snapshot of block cache statistics.
class BlockCachePropertiesSnapshot {
public:
explicit BlockCachePropertiesSnapshot(Statistics* statistics) {
block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_MISS);
block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_HIT);
index_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_INDEX_MISS);
index_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_INDEX_HIT);
data_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_DATA_MISS);
data_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_DATA_HIT);
filter_block_cache_miss =
statistics->getTickerCount(BLOCK_CACHE_FILTER_MISS);
filter_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_FILTER_HIT);
block_cache_bytes_read = statistics->getTickerCount(BLOCK_CACHE_BYTES_READ);
block_cache_bytes_write =
statistics->getTickerCount(BLOCK_CACHE_BYTES_WRITE);
}
void AssertIndexBlockStat(int64_t expected_index_block_cache_miss,
int64_t expected_index_block_cache_hit) {
ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit);
}
void AssertFilterBlockStat(int64_t expected_filter_block_cache_miss,
int64_t expected_filter_block_cache_hit) {
ASSERT_EQ(expected_filter_block_cache_miss, filter_block_cache_miss);
ASSERT_EQ(expected_filter_block_cache_hit, filter_block_cache_hit);
}
// Check if the fetched props matches the expected ones.
// TODO(kailiu) Use this only when you disabled filter policy!
void AssertEqual(int64_t expected_index_block_cache_miss,
int64_t expected_index_block_cache_hit,
int64_t expected_data_block_cache_miss,
int64_t expected_data_block_cache_hit) const {
ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit);
ASSERT_EQ(expected_data_block_cache_miss, data_block_cache_miss);
ASSERT_EQ(expected_data_block_cache_hit, data_block_cache_hit);
ASSERT_EQ(expected_index_block_cache_miss + expected_data_block_cache_miss,
block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit + expected_data_block_cache_hit,
block_cache_hit);
}
int64_t GetCacheBytesRead() { return block_cache_bytes_read; }
int64_t GetCacheBytesWrite() { return block_cache_bytes_write; }
private:
int64_t block_cache_miss = 0;
int64_t block_cache_hit = 0;
int64_t index_block_cache_miss = 0;
int64_t index_block_cache_hit = 0;
int64_t data_block_cache_miss = 0;
int64_t data_block_cache_hit = 0;
int64_t filter_block_cache_miss = 0;
int64_t filter_block_cache_hit = 0;
int64_t block_cache_bytes_read = 0;
int64_t block_cache_bytes_write = 0;
};
// Make sure, by default, index/filter blocks were pre-loaded (meaning we won't
// use block cache to store them).
TEST_P(BlockBasedTableTest, BlockCacheDisabledTest) {
Options options;
options.create_if_missing = true;
options.statistics = CreateDBStatistics();
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_cache = NewLRUCache(1024, 4);
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("key", "value");
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// preloading filter/index blocks is enabled.
auto reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
ASSERT_TRUE(reader->TEST_filter_block_preloaded());
ASSERT_TRUE(reader->TEST_index_reader_preloaded());
{
// nothing happens in the beginning
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertIndexBlockStat(0, 0);
props.AssertFilterBlockStat(0, 0);
}
{
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(), nullptr, nullptr,
nullptr, nullptr, nullptr);
// a hack that just to trigger BlockBasedTable::GetFilter.
reader->Get(ReadOptions(), "non-exist-key", &get_context,
moptions.prefix_extractor.get());
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertIndexBlockStat(0, 0);
props.AssertFilterBlockStat(0, 0);
}
}
// Due to the difficulities of the intersaction between statistics, this test
// only tests the case when "index block is put to block cache"
TEST_P(BlockBasedTableTest, FilterBlockInBlockCache) {
// -- Table construction
Options options;
options.create_if_missing = true;
options.statistics = CreateDBStatistics();
// Enable the cache for index/filter blocks
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_cache = NewLRUCache(2048, 2);
table_options.cache_index_and_filter_blocks = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("key", "value");
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// preloading filter/index blocks is prohibited.
auto* reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
ASSERT_TRUE(!reader->TEST_filter_block_preloaded());
ASSERT_TRUE(!reader->TEST_index_reader_preloaded());
// -- PART 1: Open with regular block cache.
// Since block_cache is disabled, no cache activities will be involved.
unique_ptr<InternalIterator> iter;
int64_t last_cache_bytes_read = 0;
// At first, no block will be accessed.
{
BlockCachePropertiesSnapshot props(options.statistics.get());
// index will be added to block cache.
props.AssertEqual(1, // index block miss
0, 0, 0);
ASSERT_EQ(props.GetCacheBytesRead(), 0);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Only index block will be accessed
{
iter.reset(c.NewIterator(moptions.prefix_extractor.get()));
BlockCachePropertiesSnapshot props(options.statistics.get());
// NOTE: to help better highlight the "detla" of each ticker, I use
// <last_value> + <added_value> to indicate the increment of changed
// value; other numbers remain the same.
props.AssertEqual(1, 0 + 1, // index block hit
0, 0);
// Cache hit, bytes read from cache should increase
ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Only data block will be accessed
{
iter->SeekToFirst();
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, 1, 0 + 1, // data block miss
0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Data block will be in cache
{
iter.reset(c.NewIterator(moptions.prefix_extractor.get()));
iter->SeekToFirst();
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, 1 + 1, /* index block hit */
1, 0 + 1 /* data block hit */);
// Cache hit, bytes read from cache should increase
ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
}
// release the iterator so that the block cache can reset correctly.
iter.reset();
c.ResetTableReader();
// -- PART 2: Open with very small block cache
// In this test, no block will ever get hit since the block cache is
// too small to fit even one entry.
table_options.block_cache = NewLRUCache(1, 4);
options.statistics = CreateDBStatistics();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions2(options);
const MutableCFOptions moptions2(options);
c.Reopen(ioptions2, moptions2);
{
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, // index block miss
0, 0, 0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
{
// Both index and data block get accessed.
// It first cache index block then data block. But since the cache size
// is only 1, index block will be purged after data block is inserted.
iter.reset(c.NewIterator(moptions2.prefix_extractor.get()));
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1 + 1, // index block miss
0, 0, // data block miss
0);
// Cache hit, bytes read from cache should increase
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
{
// SeekToFirst() accesses data block. With similar reason, we expect data
// block's cache miss.
iter->SeekToFirst();
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(2, 0, 0 + 1, // data block miss
0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
iter.reset();
c.ResetTableReader();
// -- PART 3: Open table with bloom filter enabled but not in SST file
table_options.block_cache = NewLRUCache(4096, 4);
table_options.cache_index_and_filter_blocks = false;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c3(BytewiseComparator());
std::string user_key = "k01";
InternalKey internal_key(user_key, 0, kTypeValue);
c3.Add(internal_key.Encode().ToString(), "hello");
ImmutableCFOptions ioptions3(options);
MutableCFOptions moptions3(options);
// Generate table without filter policy
c3.Finish(options, ioptions3, moptions3, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
c3.ResetTableReader();
// Open table with filter policy
table_options.filter_policy.reset(NewBloomFilterPolicy(1));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.statistics = CreateDBStatistics();
ImmutableCFOptions ioptions4(options);
MutableCFOptions moptions4(options);
ASSERT_OK(c3.Reopen(ioptions4, moptions4));
reader = dynamic_cast<BlockBasedTable*>(c3.GetTableReader());
ASSERT_TRUE(!reader->TEST_filter_block_preloaded());
PinnableSlice value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, nullptr, nullptr);
ASSERT_OK(reader->Get(ReadOptions(), internal_key.Encode(), &get_context,
moptions4.prefix_extractor.get()));
ASSERT_STREQ(value.data(), "hello");
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertFilterBlockStat(0, 0);
c3.ResetTableReader();
}
void ValidateBlockSizeDeviation(int value, int expected) {
BlockBasedTableOptions table_options;
table_options.block_size_deviation = value;
BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options);
const BlockBasedTableOptions* normalized_table_options =
(const BlockBasedTableOptions*)factory->GetOptions();
ASSERT_EQ(normalized_table_options->block_size_deviation, expected);
delete factory;
}
void ValidateBlockRestartInterval(int value, int expected) {
BlockBasedTableOptions table_options;
table_options.block_restart_interval = value;
BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options);
const BlockBasedTableOptions* normalized_table_options =
(const BlockBasedTableOptions*)factory->GetOptions();
ASSERT_EQ(normalized_table_options->block_restart_interval, expected);
delete factory;
}
TEST_P(BlockBasedTableTest, InvalidOptions) {
// invalid values for block_size_deviation (<0 or >100) are silently set to 0
ValidateBlockSizeDeviation(-10, 0);
ValidateBlockSizeDeviation(-1, 0);
ValidateBlockSizeDeviation(0, 0);
ValidateBlockSizeDeviation(1, 1);
ValidateBlockSizeDeviation(99, 99);
ValidateBlockSizeDeviation(100, 100);
ValidateBlockSizeDeviation(101, 0);
ValidateBlockSizeDeviation(1000, 0);
// invalid values for block_restart_interval (<1) are silently set to 1
ValidateBlockRestartInterval(-10, 1);
ValidateBlockRestartInterval(-1, 1);
ValidateBlockRestartInterval(0, 1);
ValidateBlockRestartInterval(1, 1);
ValidateBlockRestartInterval(2, 2);
ValidateBlockRestartInterval(1000, 1000);
}
TEST_P(BlockBasedTableTest, BlockReadCountTest) {
// bloom_filter_type = 0 -- block-based filter
// bloom_filter_type = 0 -- full filter
for (int bloom_filter_type = 0; bloom_filter_type < 2; ++bloom_filter_type) {
for (int index_and_filter_in_cache = 0; index_and_filter_in_cache < 2;
++index_and_filter_in_cache) {
Options options;
options.create_if_missing = true;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_cache = NewLRUCache(1, 0);
table_options.cache_index_and_filter_blocks = index_and_filter_in_cache;
table_options.filter_policy.reset(
NewBloomFilterPolicy(10, bloom_filter_type == 0));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator());
std::string user_key = "k04";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
c.Add(encoded_key, "hello");
ImmutableCFOptions ioptions(options);
MutableCFOptions moptions(options);
// Generate table with filter policy
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto reader = c.GetTableReader();
PinnableSlice value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, nullptr, nullptr);
get_perf_context()->Reset();
ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context,
moptions.prefix_extractor.get()));
if (index_and_filter_in_cache) {
// data, index and filter block
ASSERT_EQ(get_perf_context()->block_read_count, 3);
} else {
// just the data block
ASSERT_EQ(get_perf_context()->block_read_count, 1);
}
ASSERT_EQ(get_context.State(), GetContext::kFound);
ASSERT_STREQ(value.data(), "hello");
// Get non-existing key
user_key = "does-not-exist";
internal_key = InternalKey(user_key, 0, kTypeValue);
encoded_key = internal_key.Encode().ToString();
value.Reset();
get_context = GetContext(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, nullptr, nullptr);
get_perf_context()->Reset();
ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context,
moptions.prefix_extractor.get()));
ASSERT_EQ(get_context.State(), GetContext::kNotFound);
if (index_and_filter_in_cache) {
if (bloom_filter_type == 0) {
// with block-based, we read index and then the filter
ASSERT_EQ(get_perf_context()->block_read_count, 2);
} else {
// with full-filter, we read filter first and then we stop
ASSERT_EQ(get_perf_context()->block_read_count, 1);
}
} else {
// filter is already in memory and it figures out that the key doesn't
// exist
ASSERT_EQ(get_perf_context()->block_read_count, 0);
}
}
}
}
// A wrapper around LRICache that also keeps track of data blocks (in contrast
// with the objects) in the cache. The class is very simple and can be used only
// for trivial tests.
class MockCache : public LRUCache {
public:
MockCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit,
double high_pri_pool_ratio)
: LRUCache(capacity, num_shard_bits, strict_capacity_limit,
high_pri_pool_ratio) {}
virtual Status Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value),
Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
// Replace the deleter with our own so that we keep track of data blocks
// erased from the cache
deleters_[key.ToString()] = deleter;
return ShardedCache::Insert(key, value, charge, &MockDeleter, handle,
priority);
}
// This is called by the application right after inserting a data block
virtual void TEST_mark_as_data_block(const Slice& key,
size_t charge) override {
marked_data_in_cache_[key.ToString()] = charge;
marked_size_ += charge;
}
using DeleterFunc = void (*)(const Slice& key, void* value);
static std::map<std::string, DeleterFunc> deleters_;
static std::map<std::string, size_t> marked_data_in_cache_;
static size_t marked_size_;
static void MockDeleter(const Slice& key, void* value) {
// If the item was marked for being data block, decrease its usage from the
// total data block usage of the cache
if (marked_data_in_cache_.find(key.ToString()) !=
marked_data_in_cache_.end()) {
marked_size_ -= marked_data_in_cache_[key.ToString()];
}
// Then call the origianl deleter
assert(deleters_.find(key.ToString()) != deleters_.end());
auto deleter = deleters_[key.ToString()];
deleter(key, value);
}
};
size_t MockCache::marked_size_ = 0;
std::map<std::string, MockCache::DeleterFunc> MockCache::deleters_;
std::map<std::string, size_t> MockCache::marked_data_in_cache_;
// Block cache can contain raw data blocks as well as general objects. If an
// object depends on the table to be live, it then must be destructed before the
// table is closed. This test makes sure that the only items remains in the
// cache after the table is closed are raw data blocks.
TEST_P(BlockBasedTableTest, NoObjectInCacheAfterTableClose) {
for (int level: {-1, 0, 1, 10}) {
for (auto index_type :
{BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch}) {
for (bool block_based_filter : {true, false}) {
for (bool partition_filter : {true, false}) {
if (partition_filter &&
(block_based_filter ||
index_type !=
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch)) {
continue;
}
for (bool index_and_filter_in_cache : {true, false}) {
for (bool pin_l0 : {true, false}) {
for (bool pin_top_level : {true, false}) {
if (pin_l0 && !index_and_filter_in_cache) {
continue;
}
// Create a table
Options opt;
unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options =
GetBlockBasedTableOptions();
table_options.block_size = 1024;
table_options.index_type =
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
table_options.pin_l0_filter_and_index_blocks_in_cache = pin_l0;
table_options.pin_top_level_index_and_filter = pin_top_level;
table_options.partition_filters = partition_filter;
table_options.cache_index_and_filter_blocks =
index_and_filter_in_cache;
// big enough so we don't ever lose cached values.
table_options.block_cache = std::shared_ptr<rocksdb::Cache>(
new MockCache(16 * 1024 * 1024, 4, false, 0.0));
table_options.filter_policy.reset(
rocksdb::NewBloomFilterPolicy(10, block_based_filter));
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
bool convert_to_internal_key = false;
TableConstructor c(BytewiseComparator(), convert_to_internal_key,
level);
std::string user_key = "k01";
std::string key =
InternalKey(user_key, 0, kTypeValue).Encode().ToString();
c.Add(key, "hello");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(opt);
const MutableCFOptions moptions(opt);
c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys,
&kvmap);
// Doing a read to make index/filter loaded into the cache
auto table_reader =
dynamic_cast<BlockBasedTable*>(c.GetTableReader());
PinnableSlice value;
GetContext get_context(opt.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value,
nullptr, nullptr, nullptr, nullptr);
InternalKey ikey(user_key, 0, kTypeValue);
auto s = table_reader->Get(ReadOptions(), key, &get_context,
moptions.prefix_extractor.get());
ASSERT_EQ(get_context.State(), GetContext::kFound);
ASSERT_STREQ(value.data(), "hello");
// Close the table
c.ResetTableReader();
auto usage = table_options.block_cache->GetUsage();
auto pinned_usage = table_options.block_cache->GetPinnedUsage();
// The only usage must be for marked data blocks
ASSERT_EQ(usage, MockCache::marked_size_);
// There must be some pinned data since PinnableSlice has not
// released them yet
ASSERT_GT(pinned_usage, 0);
// Release pinnable slice reousrces
value.Reset();
pinned_usage = table_options.block_cache->GetPinnedUsage();
ASSERT_EQ(pinned_usage, 0);
}
}
}
}
}
}
} // level
}
TEST_P(BlockBasedTableTest, BlockCacheLeak) {
// Check that when we reopen a table we don't lose access to blocks already
// in the cache. This test checks whether the Table actually makes use of the
// unique ID from the file.
Options opt;
unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_size = 1024;
// big enough so we don't ever lose cached values.
table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(opt);
const MutableCFOptions moptions(opt);
c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap);
unique_ptr<InternalIterator> iter(
c.NewIterator(moptions.prefix_extractor.get()));
iter->SeekToFirst();
while (iter->Valid()) {
iter->key();
iter->value();
iter->Next();
}
ASSERT_OK(iter->status());
iter.reset();
const ImmutableCFOptions ioptions1(opt);
const MutableCFOptions moptions1(opt);
ASSERT_OK(c.Reopen(ioptions1, moptions1));
auto table_reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
for (const std::string& key : keys) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
c.ResetTableReader();
// rerun with different block cache
table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions2(opt);
const MutableCFOptions moptions2(opt);
ASSERT_OK(c.Reopen(ioptions2, moptions2));
table_reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
for (const std::string& key : keys) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, NewIndexIteratorLeak) {
// A regression test to avoid data race described in
// https://github.com/facebook/rocksdb/issues/1267
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
c.Add("a1", "val1");
Options options;
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.cache_index_and_filter_blocks = true;
table_options.block_cache = NewLRUCache(0);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
rocksdb::SyncPoint::GetInstance()->LoadDependencyAndMarkers(
{
{"BlockBasedTable::NewIndexIterator::thread1:1",
"BlockBasedTable::NewIndexIterator::thread2:2"},
{"BlockBasedTable::NewIndexIterator::thread2:3",
"BlockBasedTable::NewIndexIterator::thread1:4"},
},
{
{"BlockBasedTableTest::NewIndexIteratorLeak:Thread1Marker",
"BlockBasedTable::NewIndexIterator::thread1:1"},
{"BlockBasedTableTest::NewIndexIteratorLeak:Thread1Marker",
"BlockBasedTable::NewIndexIterator::thread1:4"},
{"BlockBasedTableTest::NewIndexIteratorLeak:Thread2Marker",
"BlockBasedTable::NewIndexIterator::thread2:2"},
{"BlockBasedTableTest::NewIndexIteratorLeak:Thread2Marker",
"BlockBasedTable::NewIndexIterator::thread2:3"},
});
rocksdb::SyncPoint::GetInstance()->EnableProcessing();
ReadOptions ro;
auto* reader = c.GetTableReader();
std::function<void()> func1 = [&]() {
TEST_SYNC_POINT("BlockBasedTableTest::NewIndexIteratorLeak:Thread1Marker");
// TODO(Zhongyi): update test to use MutableCFOptions
std::unique_ptr<InternalIterator> iter(
reader->NewIterator(ro, moptions.prefix_extractor.get()));
iter->Seek(InternalKey("a1", 0, kTypeValue).Encode());
};
std::function<void()> func2 = [&]() {
TEST_SYNC_POINT("BlockBasedTableTest::NewIndexIteratorLeak:Thread2Marker");
std::unique_ptr<InternalIterator> iter(
reader->NewIterator(ro, moptions.prefix_extractor.get()));
};
auto thread1 = port::Thread(func1);
auto thread2 = port::Thread(func2);
thread1.join();
thread2.join();
rocksdb::SyncPoint::GetInstance()->DisableProcessing();
c.ResetTableReader();
}
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
TEST_F(PlainTableTest, BasicPlainTableProperties) {
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = 8;
plain_table_options.bloom_bits_per_key = 8;
plain_table_options.hash_table_ratio = 0;
PlainTableFactory factory(plain_table_options);
test::StringSink sink;
unique_ptr<WritableFileWriter> file_writer(
test::GetWritableFileWriter(new test::StringSink()));
Options options;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
std::string column_family_name;
int unknown_level = -1;
std::unique_ptr<TableBuilder> builder(factory.NewTableBuilder(
TableBuilderOptions(
ioptions, moptions, ikc, &int_tbl_prop_collector_factories,
kNoCompression, CompressionOptions(), nullptr /* compression_dict */,
false /* skip_filters */, column_family_name, unknown_level),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer.get()));
for (char c = 'a'; c <= 'z'; ++c) {
std::string key(8, c);
key.append("\1 "); // PlainTable expects internal key structure
std::string value(28, c + 42);
builder->Add(key, value);
}
ASSERT_OK(builder->Finish());
file_writer->Flush();
test::StringSink* ss =
static_cast<test::StringSink*>(file_writer->writable_file());
unique_ptr<RandomAccessFileReader> file_reader(
test::GetRandomAccessFileReader(
new test::StringSource(ss->contents(), 72242, true)));
TableProperties* props = nullptr;
auto s = ReadTableProperties(file_reader.get(), ss->contents().size(),
kPlainTableMagicNumber, ioptions,
&props, true /* compression_type_missing */);
std::unique_ptr<TableProperties> props_guard(props);
ASSERT_OK(s);
ASSERT_EQ(0ul, props->index_size);
ASSERT_EQ(0ul, props->filter_size);
ASSERT_EQ(16ul * 26, props->raw_key_size);
ASSERT_EQ(28ul * 26, props->raw_value_size);
ASSERT_EQ(26ul, props->num_entries);
ASSERT_EQ(1ul, props->num_data_blocks);
}
#endif // !ROCKSDB_LITE
TEST_F(GeneralTableTest, ApproximateOffsetOfPlain) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
test::PlainInternalKeyComparator internal_comparator(options.comparator);
options.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000));
// k04 and k05 will be in two consecutive blocks, the index is
// an arbitrary slice between k04 and k05, either before or after k04a
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 10000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000));
c.ResetTableReader();
}
static void DoCompressionTest(CompressionType comp) {
Random rnd(301);
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
std::string tmp;
c.Add("k01", "hello");
c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
c.Add("k03", "hello3");
c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
test::PlainInternalKeyComparator ikc(options.comparator);
options.compression = comp;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, ikc, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 6100));
c.ResetTableReader();
}
TEST_F(GeneralTableTest, ApproximateOffsetOfCompressed) {
std::vector<CompressionType> compression_state;
if (!Snappy_Supported()) {
fprintf(stderr, "skipping snappy compression tests\n");
} else {
compression_state.push_back(kSnappyCompression);
}
if (!Zlib_Supported()) {
fprintf(stderr, "skipping zlib compression tests\n");
} else {
compression_state.push_back(kZlibCompression);
}
// TODO(kailiu) DoCompressionTest() doesn't work with BZip2.
/*
if (!BZip2_Supported()) {
fprintf(stderr, "skipping bzip2 compression tests\n");
} else {
compression_state.push_back(kBZip2Compression);
}
*/
if (!LZ4_Supported()) {
fprintf(stderr, "skipping lz4 and lz4hc compression tests\n");
} else {
compression_state.push_back(kLZ4Compression);
compression_state.push_back(kLZ4HCCompression);
}
if (!XPRESS_Supported()) {
fprintf(stderr, "skipping xpress and xpress compression tests\n");
}
else {
compression_state.push_back(kXpressCompression);
}
for (auto state : compression_state) {
DoCompressionTest(state);
}
}
// RandomizedHarnessTest is very slow for certain combination of arguments
// Split into 8 pieces to reduce the time individual tests take.
TEST_F(HarnessTest, Randomized1) {
// part 1 out of 8
const size_t part = 1;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized2) {
// part 2 out of 8
const size_t part = 2;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized3) {
// part 3 out of 8
const size_t part = 3;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized4) {
// part 4 out of 8
const size_t part = 4;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized5) {
// part 5 out of 8
const size_t part = 5;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized6) {
// part 6 out of 8
const size_t part = 6;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized7) {
// part 7 out of 8
const size_t part = 7;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
TEST_F(HarnessTest, Randomized8) {
// part 8 out of 8
const size_t part = 8;
const size_t total = 8;
RandomizedHarnessTest(part, total);
}
#ifndef ROCKSDB_LITE
TEST_F(HarnessTest, RandomizedLongDB) {
Random rnd(test::RandomSeed());
TestArgs args = {DB_TEST, false, 16, kNoCompression, 0, false};
Init(args);
int num_entries = 100000;
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
// We must have created enough data to force merging
int files = 0;
for (int level = 0; level < db()->NumberLevels(); level++) {
std::string value;
char name[100];
snprintf(name, sizeof(name), "rocksdb.num-files-at-level%d", level);
ASSERT_TRUE(db()->GetProperty(name, &value));
files += atoi(value.c_str());
}
ASSERT_GT(files, 0);
}
#endif // ROCKSDB_LITE
class MemTableTest : public testing::Test {};
TEST_F(MemTableTest, Simple) {
InternalKeyComparator cmp(BytewiseComparator());
auto table_factory = std::make_shared<SkipListFactory>();
Options options;
options.memtable_factory = table_factory;
ImmutableCFOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* memtable =
new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
memtable->Ref();
WriteBatch batch;
WriteBatchInternal::SetSequence(&batch, 100);
batch.Put(std::string("k1"), std::string("v1"));
batch.Put(std::string("k2"), std::string("v2"));
batch.Put(std::string("k3"), std::string("v3"));
batch.Put(std::string("largekey"), std::string("vlarge"));
batch.DeleteRange(std::string("chi"), std::string("xigua"));
batch.DeleteRange(std::string("begin"), std::string("end"));
ColumnFamilyMemTablesDefault cf_mems_default(memtable);
ASSERT_TRUE(
WriteBatchInternal::InsertInto(&batch, &cf_mems_default, nullptr).ok());
for (int i = 0; i < 2; ++i) {
Arena arena;
ScopedArenaIterator arena_iter_guard;
std::unique_ptr<InternalIterator> iter_guard;
InternalIterator* iter;
if (i == 0) {
iter = memtable->NewIterator(ReadOptions(), &arena);
arena_iter_guard.set(iter);
} else {
iter = memtable->NewRangeTombstoneIterator(ReadOptions());
iter_guard.reset(iter);
}
if (iter == nullptr) {
continue;
}
iter->SeekToFirst();
while (iter->Valid()) {
fprintf(stderr, "key: '%s' -> '%s'\n", iter->key().ToString().c_str(),
iter->value().ToString().c_str());
iter->Next();
}
}
delete memtable->Unref();
}
// Test the empty key
TEST_F(HarnessTest, SimpleEmptyKey) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 1);
Add("", "v");
Test(&rnd);
}
}
TEST_F(HarnessTest, SimpleSingle) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 2);
Add("abc", "v");
Test(&rnd);
}
}
TEST_F(HarnessTest, SimpleMulti) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 3);
Add("abc", "v");
Add("abcd", "v");
Add("ac", "v2");
Test(&rnd);
}
}
TEST_F(HarnessTest, SimpleSpecialKey) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 4);
Add("\xff\xff", "v3");
Test(&rnd);
}
}
TEST_F(HarnessTest, FooterTests) {
{
// upconvert legacy block based
std::string encoded;
Footer footer(kLegacyBlockBasedTableMagicNumber, 0);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 0U);
}
{
// xxhash block based
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
{
// upconvert legacy plain table
std::string encoded;
Footer footer(kLegacyPlainTableMagicNumber, 0);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 0U);
}
{
// xxhash block based
std::string encoded;
Footer footer(kPlainTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
#endif // !ROCKSDB_LITE
{
// version == 2
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 2);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 2U);
}
}
class IndexBlockRestartIntervalTest
: public TableTest,
public ::testing::WithParamInterface<int> {
public:
static std::vector<int> GetRestartValues() { return {-1, 0, 1, 8, 16, 32}; }
};
INSTANTIATE_TEST_CASE_P(
IndexBlockRestartIntervalTest, IndexBlockRestartIntervalTest,
::testing::ValuesIn(IndexBlockRestartIntervalTest::GetRestartValues()));
TEST_P(IndexBlockRestartIntervalTest, IndexBlockRestartInterval) {
const int kKeysInTable = 10000;
const int kKeySize = 100;
const int kValSize = 500;
int index_block_restart_interval = GetParam();
Options options;
BlockBasedTableOptions table_options;
table_options.block_size = 64; // small block size to get big index block
table_options.index_block_restart_interval = index_block_restart_interval;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator());
static Random rnd(301);
for (int i = 0; i < kKeysInTable; i++) {
InternalKey k(RandomString(&rnd, kKeySize), 0, kTypeValue);
c.Add(k.Encode().ToString(), RandomString(&rnd, kValSize));
}
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
auto reader = c.GetTableReader();
std::unique_ptr<InternalIterator> db_iter(
reader->NewIterator(ReadOptions(), moptions.prefix_extractor.get()));
// Test point lookup
for (auto& kv : kvmap) {
db_iter->Seek(kv.first);
ASSERT_TRUE(db_iter->Valid());
ASSERT_OK(db_iter->status());
ASSERT_EQ(db_iter->key(), kv.first);
ASSERT_EQ(db_iter->value(), kv.second);
}
// Test iterating
auto kv_iter = kvmap.begin();
for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) {
ASSERT_EQ(db_iter->key(), kv_iter->first);
ASSERT_EQ(db_iter->value(), kv_iter->second);
kv_iter++;
}
ASSERT_EQ(kv_iter, kvmap.end());
c.ResetTableReader();
}
class PrefixTest : public testing::Test {
public:
PrefixTest() : testing::Test() {}
~PrefixTest() {}
};
namespace {
// A simple PrefixExtractor that only works for test PrefixAndWholeKeyTest
class TestPrefixExtractor : public rocksdb::SliceTransform {
public:
~TestPrefixExtractor() override{};
const char* Name() const override { return "TestPrefixExtractor"; }
rocksdb::Slice Transform(const rocksdb::Slice& src) const override {
assert(IsValid(src));
return rocksdb::Slice(src.data(), 3);
}
bool InDomain(const rocksdb::Slice& src) const override {
assert(IsValid(src));
return true;
}
bool InRange(const rocksdb::Slice& /*dst*/) const override { return true; }
bool IsValid(const rocksdb::Slice& src) const {
if (src.size() != 4) {
return false;
}
if (src[0] != '[') {
return false;
}
if (src[1] < '0' || src[1] > '9') {
return false;
}
if (src[2] != ']') {
return false;
}
if (src[3] < '0' || src[3] > '9') {
return false;
}
return true;
}
};
} // namespace
TEST_F(PrefixTest, PrefixAndWholeKeyTest) {
rocksdb::Options options;
options.compaction_style = rocksdb::kCompactionStyleUniversal;
options.num_levels = 20;
options.create_if_missing = true;
options.optimize_filters_for_hits = false;
options.target_file_size_base = 268435456;
options.prefix_extractor = std::make_shared<TestPrefixExtractor>();
rocksdb::BlockBasedTableOptions bbto;
bbto.filter_policy.reset(rocksdb::NewBloomFilterPolicy(10));
bbto.block_size = 262144;
bbto.whole_key_filtering = true;
const std::string kDBPath = test::TmpDir() + "/table_prefix_test";
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyDB(kDBPath, options);
rocksdb::DB* db;
ASSERT_OK(rocksdb::DB::Open(options, kDBPath, &db));
// Create a bunch of keys with 10 filters.
for (int i = 0; i < 10; i++) {
std::string prefix = "[" + std::to_string(i) + "]";
for (int j = 0; j < 10; j++) {
std::string key = prefix + std::to_string(j);
db->Put(rocksdb::WriteOptions(), key, "1");
}
}
// Trigger compaction.
db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
delete db;
// In the second round, turn whole_key_filtering off and expect
// rocksdb still works.
}
TEST_P(BlockBasedTableTest, TableWithGlobalSeqno) {
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
test::StringSink* sink = new test::StringSink();
unique_ptr<WritableFileWriter> file_writer(test::GetWritableFileWriter(sink));
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
int_tbl_prop_collector_factories.emplace_back(
new SstFileWriterPropertiesCollectorFactory(2 /* version */,
0 /* global_seqno*/));
std::string column_family_name;
std::unique_ptr<TableBuilder> builder(options.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), nullptr /* compression_dict */,
false /* skip_filters */, column_family_name, -1),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer.get()));
for (char c = 'a'; c <= 'z'; ++c) {
std::string key(8, c);
std::string value = key;
InternalKey ik(key, 0, kTypeValue);
builder->Add(ik.Encode(), value);
}
ASSERT_OK(builder->Finish());
file_writer->Flush();
test::RandomRWStringSink ss_rw(sink);
uint32_t version;
uint64_t global_seqno;
uint64_t global_seqno_offset;
// Helper function to get version, global_seqno, global_seqno_offset
std::function<void()> GetVersionAndGlobalSeqno = [&]() {
unique_ptr<RandomAccessFileReader> file_reader(
test::GetRandomAccessFileReader(
new test::StringSource(ss_rw.contents(), 73342, true)));
TableProperties* props = nullptr;
ASSERT_OK(ReadTableProperties(file_reader.get(), ss_rw.contents().size(),
kBlockBasedTableMagicNumber, ioptions,
&props, true /* compression_type_missing */));
UserCollectedProperties user_props = props->user_collected_properties;
version = DecodeFixed32(
user_props[ExternalSstFilePropertyNames::kVersion].c_str());
global_seqno = DecodeFixed64(
user_props[ExternalSstFilePropertyNames::kGlobalSeqno].c_str());
global_seqno_offset =
props->properties_offsets[ExternalSstFilePropertyNames::kGlobalSeqno];
delete props;
};
// Helper function to update the value of the global seqno in the file
std::function<void(uint64_t)> SetGlobalSeqno = [&](uint64_t val) {
std::string new_global_seqno;
PutFixed64(&new_global_seqno, val);
ASSERT_OK(ss_rw.Write(global_seqno_offset, new_global_seqno));
};
// Helper function to get the contents of the table InternalIterator
unique_ptr<TableReader> table_reader;
std::function<InternalIterator*()> GetTableInternalIter = [&]() {
unique_ptr<RandomAccessFileReader> file_reader(
test::GetRandomAccessFileReader(
new test::StringSource(ss_rw.contents(), 73342, true)));
options.table_factory->NewTableReader(
TableReaderOptions(ioptions, moptions.prefix_extractor.get(),
EnvOptions(), ikc),
std::move(file_reader), ss_rw.contents().size(), &table_reader);
return table_reader->NewIterator(ReadOptions(),
moptions.prefix_extractor.get());
};
GetVersionAndGlobalSeqno();
ASSERT_EQ(2, version);
ASSERT_EQ(0, global_seqno);
InternalIterator* iter = GetTableInternalIter();
char current_c = 'a';
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey pik;
ASSERT_TRUE(ParseInternalKey(iter->key(), &pik));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 0);
ASSERT_EQ(pik.user_key, iter->value());
ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c));
current_c++;
}
ASSERT_EQ(current_c, 'z' + 1);
delete iter;
// Update global sequence number to 10
SetGlobalSeqno(10);
GetVersionAndGlobalSeqno();
ASSERT_EQ(2, version);
ASSERT_EQ(10, global_seqno);
iter = GetTableInternalIter();
current_c = 'a';
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey pik;
ASSERT_TRUE(ParseInternalKey(iter->key(), &pik));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 10);
ASSERT_EQ(pik.user_key, iter->value());
ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c));
current_c++;
}
ASSERT_EQ(current_c, 'z' + 1);
// Verify Seek
for (char c = 'a'; c <= 'z'; c++) {
std::string k = std::string(8, c);
InternalKey ik(k, 10, kValueTypeForSeek);
iter->Seek(ik.Encode());
ASSERT_TRUE(iter->Valid());
ParsedInternalKey pik;
ASSERT_TRUE(ParseInternalKey(iter->key(), &pik));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 10);
ASSERT_EQ(pik.user_key.ToString(), k);
ASSERT_EQ(iter->value().ToString(), k);
}
delete iter;
// Update global sequence number to 3
SetGlobalSeqno(3);
GetVersionAndGlobalSeqno();
ASSERT_EQ(2, version);
ASSERT_EQ(3, global_seqno);
iter = GetTableInternalIter();
current_c = 'a';
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey pik;
ASSERT_TRUE(ParseInternalKey(iter->key(), &pik));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 3);
ASSERT_EQ(pik.user_key, iter->value());
ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c));
current_c++;
}
ASSERT_EQ(current_c, 'z' + 1);
// Verify Seek
for (char c = 'a'; c <= 'z'; c++) {
std::string k = std::string(8, c);
// seqno=4 is less than 3 so we still should get our key
InternalKey ik(k, 4, kValueTypeForSeek);
iter->Seek(ik.Encode());
ASSERT_TRUE(iter->Valid());
ParsedInternalKey pik;
ASSERT_TRUE(ParseInternalKey(iter->key(), &pik));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 3);
ASSERT_EQ(pik.user_key.ToString(), k);
ASSERT_EQ(iter->value().ToString(), k);
}
delete iter;
}
TEST_P(BlockBasedTableTest, BlockAlignTest) {
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
bbto.block_align = true;
test::StringSink* sink = new test::StringSink();
unique_ptr<WritableFileWriter> file_writer(test::GetWritableFileWriter(sink));
Options options;
options.compression = kNoCompression;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
std::string column_family_name;
std::unique_ptr<TableBuilder> builder(options.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), nullptr /* compression_dict */,
false /* skip_filters */, column_family_name, -1),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer.get()));
for (int i = 1; i <= 10000; ++i) {
std::ostringstream ostr;
ostr << std::setfill('0') << std::setw(5) << i;
std::string key = ostr.str();
std::string value = "val";
InternalKey ik(key, 0, kTypeValue);
builder->Add(ik.Encode(), value);
}
ASSERT_OK(builder->Finish());
file_writer->Flush();
test::RandomRWStringSink ss_rw(sink);
unique_ptr<RandomAccessFileReader> file_reader(
test::GetRandomAccessFileReader(
new test::StringSource(ss_rw.contents(), 73342, true)));
// Helper function to get version, global_seqno, global_seqno_offset
std::function<void()> VerifyBlockAlignment = [&]() {
TableProperties* props = nullptr;
ASSERT_OK(ReadTableProperties(file_reader.get(), ss_rw.contents().size(),
kBlockBasedTableMagicNumber, ioptions,
&props, true /* compression_type_missing */));
uint64_t data_block_size = props->data_size / props->num_data_blocks;
ASSERT_EQ(data_block_size, 4096);
ASSERT_EQ(props->data_size, data_block_size * props->num_data_blocks);
delete props;
};
VerifyBlockAlignment();
// The below block of code verifies that we can read back the keys. Set
// block_align to false when creating the reader to ensure we can flip between
// the two modes without any issues
std::unique_ptr<TableReader> table_reader;
bbto.block_align = false;
Options options2;
options2.table_factory.reset(NewBlockBasedTableFactory(bbto));
ImmutableCFOptions ioptions2(options2);
const MutableCFOptions moptions2(options2);
ASSERT_OK(ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions2, moptions2.prefix_extractor.get(),
EnvOptions(),
GetPlainInternalComparator(options2.comparator)),
std::move(file_reader), ss_rw.contents().size(), &table_reader));
std::unique_ptr<InternalIterator> db_iter(table_reader->NewIterator(
ReadOptions(), moptions2.prefix_extractor.get()));
int expected_key = 1;
for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) {
std::ostringstream ostr;
ostr << std::setfill('0') << std::setw(5) << expected_key++;
std::string key = ostr.str();
std::string value = "val";
ASSERT_OK(db_iter->status());
ASSERT_EQ(ExtractUserKey(db_iter->key()).ToString(), key);
ASSERT_EQ(db_iter->value().ToString(), value);
}
expected_key--;
ASSERT_EQ(expected_key, 10000);
table_reader.reset();
}
TEST_P(BlockBasedTableTest, PropertiesBlockRestartPointTest) {
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
bbto.block_align = true;
test::StringSink* sink = new test::StringSink();
unique_ptr<WritableFileWriter> file_writer(test::GetWritableFileWriter(sink));
Options options;
options.compression = kNoCompression;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const ImmutableCFOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
std::string column_family_name;
std::unique_ptr<TableBuilder> builder(options.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), nullptr /* compression_dict */,
false /* skip_filters */, column_family_name, -1),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer.get()));
for (int i = 1; i <= 10000; ++i) {
std::ostringstream ostr;
ostr << std::setfill('0') << std::setw(5) << i;
std::string key = ostr.str();
std::string value = "val";
InternalKey ik(key, 0, kTypeValue);
builder->Add(ik.Encode(), value);
}
ASSERT_OK(builder->Finish());
file_writer->Flush();
test::RandomRWStringSink ss_rw(sink);
unique_ptr<RandomAccessFileReader> file_reader(
test::GetRandomAccessFileReader(
new test::StringSource(ss_rw.contents(), 73342, true)));
{
RandomAccessFileReader* file = file_reader.get();
uint64_t file_size = ss_rw.contents().size();
Footer footer;
ASSERT_OK(ReadFooterFromFile(file, nullptr /* prefetch_buffer */, file_size,
&footer, kBlockBasedTableMagicNumber));
auto BlockFetchHelper = [&](const BlockHandle& handle,
BlockContents* contents) {
ReadOptions read_options;
read_options.verify_checksums = false;
Slice compression_dict;
PersistentCacheOptions cache_options;
BlockFetcher block_fetcher(file, nullptr /* prefetch_buffer */, footer,
read_options, handle, contents, ioptions,
false /* decompress */, compression_dict,
cache_options);
ASSERT_OK(block_fetcher.ReadBlockContents());
};
// -- Read metaindex block
auto metaindex_handle = footer.metaindex_handle();
BlockContents metaindex_contents;
BlockFetchHelper(metaindex_handle, &metaindex_contents);
Block metaindex_block(std::move(metaindex_contents),
kDisableGlobalSequenceNumber);
std::unique_ptr<InternalIterator> meta_iter(
metaindex_block.NewIterator<BlockIter>(BytewiseComparator(),
BytewiseComparator()));
bool found_properties_block = true;
ASSERT_OK(SeekToPropertiesBlock(meta_iter.get(), &found_properties_block));
ASSERT_TRUE(found_properties_block);
// -- Read properties block
Slice v = meta_iter->value();
BlockHandle properties_handle;
ASSERT_OK(properties_handle.DecodeFrom(&v));
BlockContents properties_contents;
BlockFetchHelper(properties_handle, &properties_contents);
Block properties_block(std::move(properties_contents),
kDisableGlobalSequenceNumber);
ASSERT_EQ(properties_block.NumRestarts(), 1);
}
}
TEST_P(BlockBasedTableTest, BadOptions) {
rocksdb::Options options;
options.compression = kNoCompression;
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
bbto.block_size = 4000;
bbto.block_align = true;
const std::string kDBPath =
test::TmpDir() + "/block_based_table_bad_options_test";
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyDB(kDBPath, options);
rocksdb::DB* db;
ASSERT_NOK(rocksdb::DB::Open(options, kDBPath, &db));
bbto.block_size = 4096;
options.compression = kSnappyCompression;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
ASSERT_NOK(rocksdb::DB::Open(options, kDBPath, &db));
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}