rocksdb/cache/sharded_cache.h

308 lines
11 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <atomic>
#include <cstdint>
#include <string>
#include "port/lang.h"
#include "port/port.h"
#include "rocksdb/advanced_cache.h"
#include "util/hash.h"
#include "util/mutexlock.h"
namespace ROCKSDB_NAMESPACE {
// Optional base class for classes implementing the CacheShard concept
class CacheShardBase {
public:
explicit CacheShardBase(CacheMetadataChargePolicy metadata_charge_policy)
: metadata_charge_policy_(metadata_charge_policy) {}
using DeleterFn = Cache::DeleterFn;
// Expected by concept CacheShard (TODO with C++20 support)
// Some Defaults
std::string GetPrintableOptions() const { return ""; }
using HashVal = uint64_t;
using HashCref = uint64_t;
static inline HashVal ComputeHash(const Slice& key) {
return GetSliceNPHash64(key);
}
static inline uint32_t HashPieceForSharding(HashCref hash) {
return Lower32of64(hash);
}
void AppendPrintableOptions(std::string& /*str*/) const {}
// Must be provided for concept CacheShard (TODO with C++20 support)
/*
struct HandleImpl { // for concept HandleImpl
HashVal hash;
HashCref GetHash() const;
...
};
Status Insert(const Slice& key, HashCref hash, Cache::ObjectPtr value,
const Cache::CacheItemHelper* helper, size_t charge,
HandleImpl** handle, Cache::Priority priority) = 0;
HandleImpl* Lookup(const Slice& key, HashCref hash,
const Cache::CacheItemHelper* helper,
Cache::CreateContext* create_context,
Cache::Priority priority, bool wait,
Statistics* stats) = 0;
bool Release(HandleImpl* handle, bool useful, bool erase_if_last_ref) = 0;
bool IsReady(HandleImpl* handle) = 0;
void Wait(HandleImpl* handle) = 0;
bool Ref(HandleImpl* handle) = 0;
void Erase(const Slice& key, HashCref hash) = 0;
void SetCapacity(size_t capacity) = 0;
void SetStrictCapacityLimit(bool strict_capacity_limit) = 0;
size_t GetUsage() const = 0;
size_t GetPinnedUsage() const = 0;
size_t GetOccupancyCount() const = 0;
size_t GetTableAddressCount() const = 0;
// Handles iterating over roughly `average_entries_per_lock` entries, using
// `state` to somehow record where it last ended up. Caller initially uses
// *state == 0 and implementation sets *state = SIZE_MAX to indicate
// completion.
void ApplyToSomeEntries(
const std::function<void(const Slice& key, ObjectPtr value,
size_t charge,
const Cache::CacheItemHelper* helper)>& callback,
size_t average_entries_per_lock, size_t* state) = 0;
void EraseUnRefEntries() = 0;
*/
protected:
const CacheMetadataChargePolicy metadata_charge_policy_;
};
// Portions of ShardedCache that do not depend on the template parameter
class ShardedCacheBase : public Cache {
public:
ShardedCacheBase(size_t capacity, int num_shard_bits,
bool strict_capacity_limit,
std::shared_ptr<MemoryAllocator> memory_allocator);
virtual ~ShardedCacheBase() = default;
int GetNumShardBits() const;
uint32_t GetNumShards() const;
uint64_t NewId() override;
bool HasStrictCapacityLimit() const override;
size_t GetCapacity() const override;
using Cache::GetUsage;
size_t GetUsage(Handle* handle) const override;
std::string GetPrintableOptions() const override;
protected: // fns
virtual void AppendPrintableOptions(std::string& str) const = 0;
size_t GetPerShardCapacity() const;
size_t ComputePerShardCapacity(size_t capacity) const;
protected: // data
std::atomic<uint64_t> last_id_; // For NewId
const uint32_t shard_mask_;
// Dynamic configuration parameters, guarded by config_mutex_
bool strict_capacity_limit_;
size_t capacity_;
mutable port::Mutex config_mutex_;
};
// Generic cache interface that shards cache by hash of keys. 2^num_shard_bits
// shards will be created, with capacity split evenly to each of the shards.
// Keys are typically sharded by the lowest num_shard_bits bits of hash value
// so that the upper bits of the hash value can keep a stable ordering of
// table entries even as the table grows (using more upper hash bits).
// See CacheShardBase above for what is expected of the CacheShard parameter.
template <class CacheShard>
class ShardedCache : public ShardedCacheBase {
public:
using HashVal = typename CacheShard::HashVal;
using HashCref = typename CacheShard::HashCref;
using HandleImpl = typename CacheShard::HandleImpl;
ShardedCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit,
std::shared_ptr<MemoryAllocator> allocator)
: ShardedCacheBase(capacity, num_shard_bits, strict_capacity_limit,
allocator),
shards_(reinterpret_cast<CacheShard*>(port::cacheline_aligned_alloc(
sizeof(CacheShard) * GetNumShards()))),
destroy_shards_in_dtor_(false) {}
virtual ~ShardedCache() {
if (destroy_shards_in_dtor_) {
ForEachShard([](CacheShard* cs) { cs->~CacheShard(); });
}
port::cacheline_aligned_free(shards_);
}
CacheShard& GetShard(HashCref hash) {
return shards_[CacheShard::HashPieceForSharding(hash) & shard_mask_];
}
const CacheShard& GetShard(HashCref hash) const {
return shards_[CacheShard::HashPieceForSharding(hash) & shard_mask_];
}
void SetCapacity(size_t capacity) override {
MutexLock l(&config_mutex_);
capacity_ = capacity;
auto per_shard = ComputePerShardCapacity(capacity);
ForEachShard([=](CacheShard* cs) { cs->SetCapacity(per_shard); });
}
void SetStrictCapacityLimit(bool s_c_l) override {
MutexLock l(&config_mutex_);
strict_capacity_limit_ = s_c_l;
ForEachShard(
[s_c_l](CacheShard* cs) { cs->SetStrictCapacityLimit(s_c_l); });
}
Status Insert(const Slice& key, ObjectPtr value,
const CacheItemHelper* helper, size_t charge,
Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
assert(helper);
HashVal hash = CacheShard::ComputeHash(key);
auto h_out = reinterpret_cast<HandleImpl**>(handle);
return GetShard(hash).Insert(key, hash, value, helper, charge, h_out,
priority);
}
Handle* Lookup(const Slice& key, const CacheItemHelper* helper = nullptr,
CreateContext* create_context = nullptr,
Priority priority = Priority::LOW, bool wait = true,
Statistics* stats = nullptr) override {
HashVal hash = CacheShard::ComputeHash(key);
HandleImpl* result = GetShard(hash).Lookup(
key, hash, helper, create_context, priority, wait, stats);
return reinterpret_cast<Handle*>(result);
}
void Erase(const Slice& key) override {
HashVal hash = CacheShard::ComputeHash(key);
GetShard(hash).Erase(key, hash);
}
bool Release(Handle* handle, bool useful,
bool erase_if_last_ref = false) override {
auto h = reinterpret_cast<HandleImpl*>(handle);
return GetShard(h->GetHash()).Release(h, useful, erase_if_last_ref);
}
bool IsReady(Handle* handle) override {
auto h = reinterpret_cast<HandleImpl*>(handle);
return GetShard(h->GetHash()).IsReady(h);
}
void Wait(Handle* handle) override {
auto h = reinterpret_cast<HandleImpl*>(handle);
GetShard(h->GetHash()).Wait(h);
}
bool Ref(Handle* handle) override {
auto h = reinterpret_cast<HandleImpl*>(handle);
return GetShard(h->GetHash()).Ref(h);
}
bool Release(Handle* handle, bool erase_if_last_ref = false) override {
return Release(handle, true /*useful*/, erase_if_last_ref);
}
using ShardedCacheBase::GetUsage;
size_t GetUsage() const override {
return SumOverShards2(&CacheShard::GetUsage);
}
size_t GetPinnedUsage() const override {
return SumOverShards2(&CacheShard::GetPinnedUsage);
}
size_t GetOccupancyCount() const override {
return SumOverShards2(&CacheShard::GetPinnedUsage);
}
size_t GetTableAddressCount() const override {
return SumOverShards2(&CacheShard::GetTableAddressCount);
}
void ApplyToAllEntries(
const std::function<void(const Slice& key, ObjectPtr value, size_t charge,
const CacheItemHelper* helper)>& callback,
const ApplyToAllEntriesOptions& opts) override {
uint32_t num_shards = GetNumShards();
// Iterate over part of each shard, rotating between shards, to
// minimize impact on latency of concurrent operations.
std::unique_ptr<size_t[]> states(new size_t[num_shards]{});
size_t aepl = opts.average_entries_per_lock;
aepl = std::min(aepl, size_t{1});
bool remaining_work;
do {
remaining_work = false;
for (uint32_t i = 0; i < num_shards; i++) {
if (states[i] != SIZE_MAX) {
shards_[i].ApplyToSomeEntries(callback, aepl, &states[i]);
remaining_work |= states[i] != SIZE_MAX;
}
}
} while (remaining_work);
}
virtual void EraseUnRefEntries() override {
ForEachShard([](CacheShard* cs) { cs->EraseUnRefEntries(); });
}
void DisownData() override {
// Leak data only if that won't generate an ASAN/valgrind warning.
if (!kMustFreeHeapAllocations) {
destroy_shards_in_dtor_ = false;
}
}
protected:
inline void ForEachShard(const std::function<void(CacheShard*)>& fn) {
uint32_t num_shards = GetNumShards();
for (uint32_t i = 0; i < num_shards; i++) {
fn(shards_ + i);
}
}
inline size_t SumOverShards(
const std::function<size_t(CacheShard&)>& fn) const {
uint32_t num_shards = GetNumShards();
size_t result = 0;
for (uint32_t i = 0; i < num_shards; i++) {
result += fn(shards_[i]);
}
return result;
}
inline size_t SumOverShards2(size_t (CacheShard::*fn)() const) const {
return SumOverShards([fn](CacheShard& cs) { return (cs.*fn)(); });
}
// Must be called exactly once by derived class constructor
void InitShards(const std::function<void(CacheShard*)>& placement_new) {
ForEachShard(placement_new);
destroy_shards_in_dtor_ = true;
}
void AppendPrintableOptions(std::string& str) const override {
shards_[0].AppendPrintableOptions(str);
}
private:
CacheShard* const shards_;
bool destroy_shards_in_dtor_;
};
// 512KB is traditional minimum shard size.
int GetDefaultCacheShardBits(size_t capacity,
size_t min_shard_size = 512U * 1024U);
} // namespace ROCKSDB_NAMESPACE