rocksdb/port/port_posix.cc

301 lines
7.6 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#if !defined(OS_WIN)
#include "port/port_posix.h"
#include <assert.h>
#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#endif
#include <errno.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <cstdlib>
#include <fstream>
#include <string>
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
// We want to give users opportunity to default all the mutexes to adaptive if
// not specified otherwise. This enables a quick way to conduct various
// performance related experiements.
//
// NB! Support for adaptive mutexes is turned on by definining
// ROCKSDB_PTHREAD_ADAPTIVE_MUTEX during the compilation. If you use RocksDB
// build environment then this happens automatically; otherwise it's up to the
// consumer to define the identifier.
#ifdef ROCKSDB_DEFAULT_TO_ADAPTIVE_MUTEX
extern const bool kDefaultToAdaptiveMutex = true;
#else
extern const bool kDefaultToAdaptiveMutex = false;
#endif
namespace port {
static int PthreadCall(const char* label, int result) {
if (result != 0 && result != ETIMEDOUT && result != EBUSY) {
fprintf(stderr, "pthread %s: %s\n", label, errnoStr(result).c_str());
abort();
}
return result;
}
Mutex::Mutex(bool adaptive) {
(void)adaptive;
#ifdef ROCKSDB_PTHREAD_ADAPTIVE_MUTEX
if (!adaptive) {
PthreadCall("init mutex", pthread_mutex_init(&mu_, nullptr));
} else {
pthread_mutexattr_t mutex_attr;
PthreadCall("init mutex attr", pthread_mutexattr_init(&mutex_attr));
PthreadCall("set mutex attr", pthread_mutexattr_settype(
&mutex_attr, PTHREAD_MUTEX_ADAPTIVE_NP));
PthreadCall("init mutex", pthread_mutex_init(&mu_, &mutex_attr));
PthreadCall("destroy mutex attr", pthread_mutexattr_destroy(&mutex_attr));
}
#else
PthreadCall("init mutex", pthread_mutex_init(&mu_, nullptr));
#endif // ROCKSDB_PTHREAD_ADAPTIVE_MUTEX
}
Mutex::~Mutex() { PthreadCall("destroy mutex", pthread_mutex_destroy(&mu_)); }
void Mutex::Lock() {
PthreadCall("lock", pthread_mutex_lock(&mu_));
#ifndef NDEBUG
locked_ = true;
#endif
}
void Mutex::Unlock() {
#ifndef NDEBUG
locked_ = false;
#endif
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}
bool Mutex::TryLock() {
bool ret = PthreadCall("trylock", pthread_mutex_trylock(&mu_)) == 0;
#ifndef NDEBUG
if (ret) {
locked_ = true;
}
#endif
return ret;
}
void Mutex::AssertHeld() const {
#ifndef NDEBUG
assert(locked_);
#endif
}
CondVar::CondVar(Mutex* mu) : mu_(mu) {
PthreadCall("init cv", pthread_cond_init(&cv_, nullptr));
}
CondVar::~CondVar() { PthreadCall("destroy cv", pthread_cond_destroy(&cv_)); }
void CondVar::Wait() {
#ifndef NDEBUG
mu_->locked_ = false;
#endif
PthreadCall("wait", pthread_cond_wait(&cv_, &mu_->mu_));
#ifndef NDEBUG
mu_->locked_ = true;
#endif
}
bool CondVar::TimedWait(uint64_t abs_time_us) {
struct timespec ts;
ts.tv_sec = static_cast<time_t>(abs_time_us / 1000000);
ts.tv_nsec = static_cast<suseconds_t>((abs_time_us % 1000000) * 1000);
#ifndef NDEBUG
mu_->locked_ = false;
#endif
int err = pthread_cond_timedwait(&cv_, &mu_->mu_, &ts);
#ifndef NDEBUG
mu_->locked_ = true;
#endif
if (err == ETIMEDOUT) {
return true;
}
if (err != 0) {
PthreadCall("timedwait", err);
}
return false;
}
void CondVar::Signal() { PthreadCall("signal", pthread_cond_signal(&cv_)); }
void CondVar::SignalAll() {
PthreadCall("broadcast", pthread_cond_broadcast(&cv_));
}
RWMutex::RWMutex() {
PthreadCall("init mutex", pthread_rwlock_init(&mu_, nullptr));
}
RWMutex::~RWMutex() {
PthreadCall("destroy mutex", pthread_rwlock_destroy(&mu_));
}
void RWMutex::ReadLock() {
PthreadCall("read lock", pthread_rwlock_rdlock(&mu_));
}
void RWMutex::WriteLock() {
PthreadCall("write lock", pthread_rwlock_wrlock(&mu_));
}
void RWMutex::ReadUnlock() {
PthreadCall("read unlock", pthread_rwlock_unlock(&mu_));
}
void RWMutex::WriteUnlock() {
PthreadCall("write unlock", pthread_rwlock_unlock(&mu_));
}
int PhysicalCoreID() {
#if defined(ROCKSDB_SCHED_GETCPU_PRESENT) && defined(__x86_64__) && \
(__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 22))
// sched_getcpu uses VDSO getcpu() syscall since 2.22. I believe Linux offers
// VDSO support only on x86_64. This is the fastest/preferred method if
// available.
int cpuno = sched_getcpu();
if (cpuno < 0) {
return -1;
}
return cpuno;
#elif defined(__x86_64__) || defined(__i386__)
// clang/gcc both provide cpuid.h, which defines __get_cpuid(), for x86_64 and
// i386.
unsigned eax, ebx = 0, ecx, edx;
if (!__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
return -1;
}
return ebx >> 24;
#else
// give up, the caller can generate a random number or something.
return -1;
#endif
}
void InitOnce(OnceType* once, void (*initializer)()) {
PthreadCall("once", pthread_once(once, initializer));
}
void Crash(const std::string& srcfile, int srcline) {
fprintf(stdout, "Crashing at %s:%d\n", srcfile.c_str(), srcline);
fflush(stdout);
kill(getpid(), SIGTERM);
}
int GetMaxOpenFiles() {
#if defined(RLIMIT_NOFILE)
struct rlimit no_files_limit;
if (getrlimit(RLIMIT_NOFILE, &no_files_limit) != 0) {
return -1;
}
// protect against overflow
if (static_cast<uintmax_t>(no_files_limit.rlim_cur) >=
static_cast<uintmax_t>(std::numeric_limits<int>::max())) {
return std::numeric_limits<int>::max();
}
return static_cast<int>(no_files_limit.rlim_cur);
#endif
return -1;
}
void* cacheline_aligned_alloc(size_t size) {
#if __GNUC__ < 5 && defined(__SANITIZE_ADDRESS__)
return malloc(size);
#elif (_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600 || defined(__APPLE__))
void* m;
errno = posix_memalign(&m, CACHE_LINE_SIZE, size);
return errno ? nullptr : m;
#else
return malloc(size);
#endif
}
void cacheline_aligned_free(void* memblock) { free(memblock); }
static size_t GetPageSize() {
#if defined(OS_LINUX) || defined(_SC_PAGESIZE)
long v = sysconf(_SC_PAGESIZE);
if (v >= 1024) {
return static_cast<size_t>(v);
}
#endif
// Default assume 4KB
return 4U * 1024U;
}
const size_t kPageSize = GetPageSize();
void SetCpuPriority(ThreadId id, CpuPriority priority) {
#ifdef OS_LINUX
sched_param param;
param.sched_priority = 0;
switch (priority) {
case CpuPriority::kHigh:
sched_setscheduler(id, SCHED_OTHER, &param);
setpriority(PRIO_PROCESS, id, -20);
break;
case CpuPriority::kNormal:
sched_setscheduler(id, SCHED_OTHER, &param);
setpriority(PRIO_PROCESS, id, 0);
break;
case CpuPriority::kLow:
sched_setscheduler(id, SCHED_OTHER, &param);
setpriority(PRIO_PROCESS, id, 19);
break;
case CpuPriority::kIdle:
sched_setscheduler(id, SCHED_IDLE, &param);
break;
default:
assert(false);
}
#else
(void)id;
(void)priority;
#endif
}
int64_t GetProcessID() { return getpid(); }
bool GenerateRfcUuid(std::string* output) {
output->clear();
std::ifstream f("/proc/sys/kernel/random/uuid");
std::getline(f, /*&*/ *output);
if (output->size() == 36) {
return true;
} else {
output->clear();
return false;
}
}
} // namespace port
} // namespace ROCKSDB_NAMESPACE
#endif