rocksdb/db_stress_tool/expected_state.cc
Levi Tamasi 9078fcccee Add the PutEntity API to the stress/crash tests (#10760)
Summary:
The patch adds the `PutEntity` API to the non-batched, batched, and
CF consistency stress tests. Namely, when the new `db_stress` command
line parameter `use_put_entity_one_in` is greater than zero, one in
N writes on average is performed using `PutEntity` rather than `Put`.
The wide-column entity written has the generated value in its default
column; in addition, it contains up to three additional columns where
the original generated value is divided up between the column name and the
column value (with the column name containing the first k characters of
the generated value, and the column value containing the rest). Whether
`PutEntity` is used (and if so, how many columns the entity has) is completely
determined by the "value base" used to generate the value (that is, there is
no randomness involved). Assuming the same `use_put_entity_one_in` setting
is used across `db_stress` invocations, this enables us to reconstruct and
validate the entity during subsequent `db_stress` runs.

Note that `PutEntity` is currently incompatible with `Merge`, transactions, and
user-defined timestamps; these combinations are currently disabled/disallowed.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10760

Test Plan: Ran some batched, non-batched, and CF consistency stress tests using the script.

Reviewed By: riversand963

Differential Revision: D39939032

Pulled By: ltamasi

fbshipit-source-id: eafdf124e95993fb7d73158e3b006d11819f7fa9
2022-09-30 11:11:07 -07:00

762 lines
28 KiB
C++

// Copyright (c) 2021-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifdef GFLAGS
#include "db_stress_tool/expected_state.h"
#include "db/wide/wide_column_serialization.h"
#include "db_stress_tool/db_stress_common.h"
#include "db_stress_tool/db_stress_shared_state.h"
#include "rocksdb/trace_reader_writer.h"
#include "rocksdb/trace_record_result.h"
namespace ROCKSDB_NAMESPACE {
ExpectedState::ExpectedState(size_t max_key, size_t num_column_families)
: max_key_(max_key),
num_column_families_(num_column_families),
values_(nullptr) {}
void ExpectedState::ClearColumnFamily(int cf) {
std::fill(&Value(cf, 0 /* key */), &Value(cf + 1, 0 /* key */),
SharedState::DELETION_SENTINEL);
}
void ExpectedState::Put(int cf, int64_t key, uint32_t value_base,
bool pending) {
if (!pending) {
// prevent expected-value update from reordering before Write
std::atomic_thread_fence(std::memory_order_release);
}
Value(cf, key).store(pending ? SharedState::UNKNOWN_SENTINEL : value_base,
std::memory_order_relaxed);
if (pending) {
// prevent Write from reordering before expected-value update
std::atomic_thread_fence(std::memory_order_release);
}
}
uint32_t ExpectedState::Get(int cf, int64_t key) const {
return Value(cf, key);
}
bool ExpectedState::Delete(int cf, int64_t key, bool pending) {
if (Value(cf, key) == SharedState::DELETION_SENTINEL) {
return false;
}
Put(cf, key, SharedState::DELETION_SENTINEL, pending);
return true;
}
bool ExpectedState::SingleDelete(int cf, int64_t key, bool pending) {
return Delete(cf, key, pending);
}
int ExpectedState::DeleteRange(int cf, int64_t begin_key, int64_t end_key,
bool pending) {
int covered = 0;
for (int64_t key = begin_key; key < end_key; ++key) {
if (Delete(cf, key, pending)) {
++covered;
}
}
return covered;
}
bool ExpectedState::Exists(int cf, int64_t key) {
// UNKNOWN_SENTINEL counts as exists. That assures a key for which overwrite
// is disallowed can't be accidentally added a second time, in which case
// SingleDelete wouldn't be able to properly delete the key. It does allow
// the case where a SingleDelete might be added which covers nothing, but
// that's not a correctness issue.
uint32_t expected_value = Value(cf, key).load();
return expected_value != SharedState::DELETION_SENTINEL;
}
void ExpectedState::Reset() {
for (size_t i = 0; i < num_column_families_; ++i) {
for (size_t j = 0; j < max_key_; ++j) {
Value(static_cast<int>(i), j)
.store(SharedState::DELETION_SENTINEL, std::memory_order_relaxed);
}
}
}
FileExpectedState::FileExpectedState(std::string expected_state_file_path,
size_t max_key, size_t num_column_families)
: ExpectedState(max_key, num_column_families),
expected_state_file_path_(expected_state_file_path) {}
Status FileExpectedState::Open(bool create) {
size_t expected_values_size = GetValuesLen();
Env* default_env = Env::Default();
Status status;
if (create) {
std::unique_ptr<WritableFile> wfile;
const EnvOptions soptions;
status = default_env->NewWritableFile(expected_state_file_path_, &wfile,
soptions);
if (status.ok()) {
std::string buf(expected_values_size, '\0');
status = wfile->Append(buf);
}
}
if (status.ok()) {
status = default_env->NewMemoryMappedFileBuffer(
expected_state_file_path_, &expected_state_mmap_buffer_);
}
if (status.ok()) {
assert(expected_state_mmap_buffer_->GetLen() == expected_values_size);
values_ = static_cast<std::atomic<uint32_t>*>(
expected_state_mmap_buffer_->GetBase());
assert(values_ != nullptr);
if (create) {
Reset();
}
} else {
assert(values_ == nullptr);
}
return status;
}
AnonExpectedState::AnonExpectedState(size_t max_key, size_t num_column_families)
: ExpectedState(max_key, num_column_families) {}
#ifndef NDEBUG
Status AnonExpectedState::Open(bool create) {
#else
Status AnonExpectedState::Open(bool /* create */) {
#endif
// AnonExpectedState only supports being freshly created.
assert(create);
values_allocation_.reset(
new std::atomic<uint32_t>[GetValuesLen() /
sizeof(std::atomic<uint32_t>)]);
values_ = &values_allocation_[0];
Reset();
return Status::OK();
}
ExpectedStateManager::ExpectedStateManager(size_t max_key,
size_t num_column_families)
: max_key_(max_key),
num_column_families_(num_column_families),
latest_(nullptr) {}
ExpectedStateManager::~ExpectedStateManager() {}
const std::string FileExpectedStateManager::kLatestBasename = "LATEST";
const std::string FileExpectedStateManager::kStateFilenameSuffix = ".state";
const std::string FileExpectedStateManager::kTraceFilenameSuffix = ".trace";
const std::string FileExpectedStateManager::kTempFilenamePrefix = ".";
const std::string FileExpectedStateManager::kTempFilenameSuffix = ".tmp";
FileExpectedStateManager::FileExpectedStateManager(
size_t max_key, size_t num_column_families,
std::string expected_state_dir_path)
: ExpectedStateManager(max_key, num_column_families),
expected_state_dir_path_(std::move(expected_state_dir_path)) {
assert(!expected_state_dir_path_.empty());
}
Status FileExpectedStateManager::Open() {
// Before doing anything, sync directory state with ours. That is, determine
// `saved_seqno_`, and create any necessary missing files.
std::vector<std::string> expected_state_dir_children;
Status s = Env::Default()->GetChildren(expected_state_dir_path_,
&expected_state_dir_children);
bool found_trace = false;
if (s.ok()) {
for (size_t i = 0; i < expected_state_dir_children.size(); ++i) {
const auto& filename = expected_state_dir_children[i];
if (filename.size() >= kStateFilenameSuffix.size() &&
filename.rfind(kStateFilenameSuffix) ==
filename.size() - kStateFilenameSuffix.size() &&
filename.rfind(kLatestBasename, 0) == std::string::npos) {
SequenceNumber found_seqno = ParseUint64(
filename.substr(0, filename.size() - kStateFilenameSuffix.size()));
if (saved_seqno_ == kMaxSequenceNumber || found_seqno > saved_seqno_) {
saved_seqno_ = found_seqno;
}
}
}
// Check if crash happened after creating state file but before creating
// trace file.
if (saved_seqno_ != kMaxSequenceNumber) {
std::string saved_seqno_trace_path = GetPathForFilename(
std::to_string(saved_seqno_) + kTraceFilenameSuffix);
Status exists_status = Env::Default()->FileExists(saved_seqno_trace_path);
if (exists_status.ok()) {
found_trace = true;
} else if (exists_status.IsNotFound()) {
found_trace = false;
} else {
s = exists_status;
}
}
}
if (s.ok() && saved_seqno_ != kMaxSequenceNumber && !found_trace) {
// Create an empty trace file so later logic does not need to distinguish
// missing vs. empty trace file.
std::unique_ptr<WritableFile> wfile;
const EnvOptions soptions;
std::string saved_seqno_trace_path =
GetPathForFilename(std::to_string(saved_seqno_) + kTraceFilenameSuffix);
s = Env::Default()->NewWritableFile(saved_seqno_trace_path, &wfile,
soptions);
}
if (s.ok()) {
s = Clean();
}
std::string expected_state_file_path =
GetPathForFilename(kLatestBasename + kStateFilenameSuffix);
bool found = false;
if (s.ok()) {
Status exists_status = Env::Default()->FileExists(expected_state_file_path);
if (exists_status.ok()) {
found = true;
} else if (exists_status.IsNotFound()) {
found = false;
} else {
s = exists_status;
}
}
if (!found) {
// Initialize the file in a temp path and then rename it. That way, in case
// this process is killed during setup, `Clean()` will take care of removing
// the incomplete expected values file.
std::string temp_expected_state_file_path =
GetTempPathForFilename(kLatestBasename + kStateFilenameSuffix);
FileExpectedState temp_expected_state(temp_expected_state_file_path,
max_key_, num_column_families_);
if (s.ok()) {
s = temp_expected_state.Open(true /* create */);
}
if (s.ok()) {
s = Env::Default()->RenameFile(temp_expected_state_file_path,
expected_state_file_path);
}
}
if (s.ok()) {
latest_.reset(new FileExpectedState(std::move(expected_state_file_path),
max_key_, num_column_families_));
s = latest_->Open(false /* create */);
}
return s;
}
#ifndef ROCKSDB_LITE
Status FileExpectedStateManager::SaveAtAndAfter(DB* db) {
SequenceNumber seqno = db->GetLatestSequenceNumber();
std::string state_filename = std::to_string(seqno) + kStateFilenameSuffix;
std::string state_file_temp_path = GetTempPathForFilename(state_filename);
std::string state_file_path = GetPathForFilename(state_filename);
std::string latest_file_path =
GetPathForFilename(kLatestBasename + kStateFilenameSuffix);
std::string trace_filename = std::to_string(seqno) + kTraceFilenameSuffix;
std::string trace_file_path = GetPathForFilename(trace_filename);
// Populate a tempfile and then rename it to atomically create "<seqno>.state"
// with contents from "LATEST.state"
Status s = CopyFile(FileSystem::Default(), latest_file_path,
state_file_temp_path, 0 /* size */, false /* use_fsync */,
nullptr /* io_tracer */, Temperature::kUnknown);
if (s.ok()) {
s = FileSystem::Default()->RenameFile(state_file_temp_path, state_file_path,
IOOptions(), nullptr /* dbg */);
}
SequenceNumber old_saved_seqno = 0;
if (s.ok()) {
old_saved_seqno = saved_seqno_;
saved_seqno_ = seqno;
}
// If there is a crash now, i.e., after "<seqno>.state" was created but before
// "<seqno>.trace" is created, it will be treated as if "<seqno>.trace" were
// present but empty.
// Create "<seqno>.trace" directly. It is initially empty so no need for
// tempfile.
std::unique_ptr<TraceWriter> trace_writer;
if (s.ok()) {
EnvOptions soptions;
// Disable buffering so traces will not get stuck in application buffer.
soptions.writable_file_max_buffer_size = 0;
s = NewFileTraceWriter(Env::Default(), soptions, trace_file_path,
&trace_writer);
}
if (s.ok()) {
TraceOptions trace_opts;
trace_opts.filter |= kTraceFilterGet;
trace_opts.filter |= kTraceFilterMultiGet;
trace_opts.filter |= kTraceFilterIteratorSeek;
trace_opts.filter |= kTraceFilterIteratorSeekForPrev;
trace_opts.preserve_write_order = true;
s = db->StartTrace(trace_opts, std::move(trace_writer));
}
// Delete old state/trace files. Deletion order does not matter since we only
// delete after successfully saving new files, so old files will never be used
// again, even if we crash.
if (s.ok() && old_saved_seqno != kMaxSequenceNumber &&
old_saved_seqno != saved_seqno_) {
s = Env::Default()->DeleteFile(GetPathForFilename(
std::to_string(old_saved_seqno) + kStateFilenameSuffix));
}
if (s.ok() && old_saved_seqno != kMaxSequenceNumber &&
old_saved_seqno != saved_seqno_) {
s = Env::Default()->DeleteFile(GetPathForFilename(
std::to_string(old_saved_seqno) + kTraceFilenameSuffix));
}
return s;
}
#else // ROCKSDB_LITE
Status FileExpectedStateManager::SaveAtAndAfter(DB* /* db */) {
return Status::NotSupported();
}
#endif // ROCKSDB_LITE
bool FileExpectedStateManager::HasHistory() {
return saved_seqno_ != kMaxSequenceNumber;
}
#ifndef ROCKSDB_LITE
namespace {
// An `ExpectedStateTraceRecordHandler` applies a configurable number of
// write operation trace records to the configured expected state. It is used in
// `FileExpectedStateManager::Restore()` to sync the expected state with the
// DB's post-recovery state.
class ExpectedStateTraceRecordHandler : public TraceRecord::Handler,
public WriteBatch::Handler {
public:
ExpectedStateTraceRecordHandler(uint64_t max_write_ops, ExpectedState* state)
: max_write_ops_(max_write_ops),
state_(state),
buffered_writes_(nullptr) {}
~ExpectedStateTraceRecordHandler() { assert(IsDone()); }
// True if we have already reached the limit on write operations to apply.
bool IsDone() { return num_write_ops_ == max_write_ops_; }
Status Handle(const WriteQueryTraceRecord& record,
std::unique_ptr<TraceRecordResult>* /* result */) override {
if (IsDone()) {
return Status::OK();
}
WriteBatch batch(record.GetWriteBatchRep().ToString());
return batch.Iterate(this);
}
// Ignore reads.
Status Handle(const GetQueryTraceRecord& /* record */,
std::unique_ptr<TraceRecordResult>* /* result */) override {
return Status::OK();
}
// Ignore reads.
Status Handle(const IteratorSeekQueryTraceRecord& /* record */,
std::unique_ptr<TraceRecordResult>* /* result */) override {
return Status::OK();
}
// Ignore reads.
Status Handle(const MultiGetQueryTraceRecord& /* record */,
std::unique_ptr<TraceRecordResult>* /* result */) override {
return Status::OK();
}
// Below are the WriteBatch::Handler overrides. We could use a separate
// object, but it's convenient and works to share state with the
// `TraceRecord::Handler`.
Status PutCF(uint32_t column_family_id, const Slice& key_with_ts,
const Slice& value) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
uint64_t key_id;
if (!GetIntVal(key.ToString(), &key_id)) {
return Status::Corruption("unable to parse key", key.ToString());
}
uint32_t value_id = GetValueBase(value);
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::Put(buffered_writes_.get(), column_family_id,
key, value);
}
state_->Put(column_family_id, static_cast<int64_t>(key_id), value_id,
false /* pending */);
++num_write_ops_;
return Status::OK();
}
Status PutEntityCF(uint32_t column_family_id, const Slice& key_with_ts,
const Slice& entity) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
uint64_t key_id = 0;
if (!GetIntVal(key.ToString(), &key_id)) {
return Status::Corruption("Unable to parse key", key.ToString());
}
Slice entity_copy = entity;
WideColumns columns;
if (!WideColumnSerialization::Deserialize(entity_copy, columns).ok()) {
return Status::Corruption("Unable to deserialize entity",
entity.ToString(/* hex */ true));
}
if (columns.empty() || columns[0].name() != kDefaultWideColumnName) {
return Status::Corruption("Cannot find default column in entity",
entity.ToString(/* hex */ true));
}
const Slice& value_of_default = columns[0].value();
const uint32_t value_base = GetValueBase(value_of_default);
if (columns != GenerateExpectedWideColumns(value_base, value_of_default)) {
return Status::Corruption("Wide columns in entity inconsistent",
entity.ToString(/* hex */ true));
}
if (buffered_writes_) {
return WriteBatchInternal::PutEntity(buffered_writes_.get(),
column_family_id, key, columns);
}
state_->Put(column_family_id, static_cast<int64_t>(key_id), value_base,
false /* pending */);
++num_write_ops_;
return Status::OK();
}
Status DeleteCF(uint32_t column_family_id,
const Slice& key_with_ts) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
uint64_t key_id;
if (!GetIntVal(key.ToString(), &key_id)) {
return Status::Corruption("unable to parse key", key.ToString());
}
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::Delete(buffered_writes_.get(),
column_family_id, key);
}
state_->Delete(column_family_id, static_cast<int64_t>(key_id),
false /* pending */);
++num_write_ops_;
return Status::OK();
}
Status SingleDeleteCF(uint32_t column_family_id,
const Slice& key_with_ts) override {
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
Slice ts =
ExtractTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
std::array<Slice, 2> key_with_ts_arr{{key, ts}};
return WriteBatchInternal::SingleDelete(
buffered_writes_.get(), column_family_id,
SliceParts(key_with_ts_arr.data(), 2));
}
return DeleteCF(column_family_id, key_with_ts);
}
Status DeleteRangeCF(uint32_t column_family_id,
const Slice& begin_key_with_ts,
const Slice& end_key_with_ts) override {
Slice begin_key =
StripTimestampFromUserKey(begin_key_with_ts, FLAGS_user_timestamp_size);
Slice end_key =
StripTimestampFromUserKey(end_key_with_ts, FLAGS_user_timestamp_size);
uint64_t begin_key_id, end_key_id;
if (!GetIntVal(begin_key.ToString(), &begin_key_id)) {
return Status::Corruption("unable to parse begin key",
begin_key.ToString());
}
if (!GetIntVal(end_key.ToString(), &end_key_id)) {
return Status::Corruption("unable to parse end key", end_key.ToString());
}
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::DeleteRange(
buffered_writes_.get(), column_family_id, begin_key, end_key);
}
state_->DeleteRange(column_family_id, static_cast<int64_t>(begin_key_id),
static_cast<int64_t>(end_key_id), false /* pending */);
++num_write_ops_;
return Status::OK();
}
Status MergeCF(uint32_t column_family_id, const Slice& key_with_ts,
const Slice& value) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::Merge(buffered_writes_.get(), column_family_id,
key, value);
}
return PutCF(column_family_id, key, value);
}
Status MarkBeginPrepare(bool = false) override {
assert(!buffered_writes_);
buffered_writes_.reset(new WriteBatch());
return Status::OK();
}
Status MarkEndPrepare(const Slice& xid) override {
assert(buffered_writes_);
std::string xid_str = xid.ToString();
assert(xid_to_buffered_writes_.find(xid_str) ==
xid_to_buffered_writes_.end());
xid_to_buffered_writes_[xid_str].swap(buffered_writes_);
buffered_writes_.reset();
return Status::OK();
}
Status MarkCommit(const Slice& xid) override {
std::string xid_str = xid.ToString();
assert(xid_to_buffered_writes_.find(xid_str) !=
xid_to_buffered_writes_.end());
assert(xid_to_buffered_writes_.at(xid_str));
Status s = xid_to_buffered_writes_.at(xid_str)->Iterate(this);
xid_to_buffered_writes_.erase(xid_str);
return s;
}
Status MarkRollback(const Slice& xid) override {
std::string xid_str = xid.ToString();
assert(xid_to_buffered_writes_.find(xid_str) !=
xid_to_buffered_writes_.end());
assert(xid_to_buffered_writes_.at(xid_str));
xid_to_buffered_writes_.erase(xid_str);
return Status::OK();
}
private:
uint64_t num_write_ops_ = 0;
uint64_t max_write_ops_;
ExpectedState* state_;
std::unordered_map<std::string, std::unique_ptr<WriteBatch>>
xid_to_buffered_writes_;
std::unique_ptr<WriteBatch> buffered_writes_;
};
} // anonymous namespace
Status FileExpectedStateManager::Restore(DB* db) {
assert(HasHistory());
SequenceNumber seqno = db->GetLatestSequenceNumber();
if (seqno < saved_seqno_) {
return Status::Corruption("DB is older than any restorable expected state");
}
std::string state_filename =
std::to_string(saved_seqno_) + kStateFilenameSuffix;
std::string state_file_path = GetPathForFilename(state_filename);
std::string latest_file_temp_path =
GetTempPathForFilename(kLatestBasename + kStateFilenameSuffix);
std::string latest_file_path =
GetPathForFilename(kLatestBasename + kStateFilenameSuffix);
std::string trace_filename =
std::to_string(saved_seqno_) + kTraceFilenameSuffix;
std::string trace_file_path = GetPathForFilename(trace_filename);
std::unique_ptr<TraceReader> trace_reader;
Status s = NewFileTraceReader(Env::Default(), EnvOptions(), trace_file_path,
&trace_reader);
if (s.ok()) {
// We are going to replay on top of "`seqno`.state" to create a new
// "LATEST.state". Start off by creating a tempfile so we can later make the
// new "LATEST.state" appear atomically using `RenameFile()`.
s = CopyFile(FileSystem::Default(), state_file_path, latest_file_temp_path,
0 /* size */, false /* use_fsync */, nullptr /* io_tracer */,
Temperature::kUnknown);
}
{
std::unique_ptr<Replayer> replayer;
std::unique_ptr<ExpectedState> state;
std::unique_ptr<ExpectedStateTraceRecordHandler> handler;
if (s.ok()) {
state.reset(new FileExpectedState(latest_file_temp_path, max_key_,
num_column_families_));
s = state->Open(false /* create */);
}
if (s.ok()) {
handler.reset(new ExpectedStateTraceRecordHandler(seqno - saved_seqno_,
state.get()));
// TODO(ajkr): An API limitation requires we provide `handles` although
// they will be unused since we only use the replayer for reading records.
// Just give a default CFH for now to satisfy the requirement.
s = db->NewDefaultReplayer({db->DefaultColumnFamily()} /* handles */,
std::move(trace_reader), &replayer);
}
if (s.ok()) {
s = replayer->Prepare();
}
for (;;) {
std::unique_ptr<TraceRecord> record;
s = replayer->Next(&record);
if (!s.ok()) {
break;
}
std::unique_ptr<TraceRecordResult> res;
record->Accept(handler.get(), &res);
}
if (s.IsCorruption() && handler->IsDone()) {
// There could be a corruption reading the tail record of the trace due to
// `db_stress` crashing while writing it. It shouldn't matter as long as
// we already found all the write ops we need to catch up the expected
// state.
s = Status::OK();
}
if (s.IsIncomplete()) {
// OK because `Status::Incomplete` is expected upon finishing all the
// trace records.
s = Status::OK();
}
}
if (s.ok()) {
s = FileSystem::Default()->RenameFile(latest_file_temp_path,
latest_file_path, IOOptions(),
nullptr /* dbg */);
}
if (s.ok()) {
latest_.reset(new FileExpectedState(latest_file_path, max_key_,
num_column_families_));
s = latest_->Open(false /* create */);
}
// Delete old state/trace files. We must delete the state file first.
// Otherwise, a crash-recovery immediately after deleting the trace file could
// lead to `Restore()` unable to replay to `seqno`.
if (s.ok()) {
s = Env::Default()->DeleteFile(state_file_path);
}
if (s.ok()) {
saved_seqno_ = kMaxSequenceNumber;
s = Env::Default()->DeleteFile(trace_file_path);
}
return s;
}
#else // ROCKSDB_LITE
Status FileExpectedStateManager::Restore(DB* /* db */) {
return Status::NotSupported();
}
#endif // ROCKSDB_LITE
Status FileExpectedStateManager::Clean() {
std::vector<std::string> expected_state_dir_children;
Status s = Env::Default()->GetChildren(expected_state_dir_path_,
&expected_state_dir_children);
// An incomplete `Open()` or incomplete `SaveAtAndAfter()` could have left
// behind invalid temporary files. An incomplete `SaveAtAndAfter()` could have
// also left behind stale state/trace files. An incomplete `Restore()` could
// have left behind stale trace files.
for (size_t i = 0; s.ok() && i < expected_state_dir_children.size(); ++i) {
const auto& filename = expected_state_dir_children[i];
if (filename.rfind(kTempFilenamePrefix, 0 /* pos */) == 0 &&
filename.size() >= kTempFilenameSuffix.size() &&
filename.rfind(kTempFilenameSuffix) ==
filename.size() - kTempFilenameSuffix.size()) {
// Delete all temp files.
s = Env::Default()->DeleteFile(GetPathForFilename(filename));
} else if (filename.size() >= kStateFilenameSuffix.size() &&
filename.rfind(kStateFilenameSuffix) ==
filename.size() - kStateFilenameSuffix.size() &&
filename.rfind(kLatestBasename, 0) == std::string::npos &&
ParseUint64(filename.substr(
0, filename.size() - kStateFilenameSuffix.size())) <
saved_seqno_) {
assert(saved_seqno_ != kMaxSequenceNumber);
// Delete stale state files.
s = Env::Default()->DeleteFile(GetPathForFilename(filename));
} else if (filename.size() >= kTraceFilenameSuffix.size() &&
filename.rfind(kTraceFilenameSuffix) ==
filename.size() - kTraceFilenameSuffix.size() &&
ParseUint64(filename.substr(
0, filename.size() - kTraceFilenameSuffix.size())) <
saved_seqno_) {
// Delete stale trace files.
s = Env::Default()->DeleteFile(GetPathForFilename(filename));
}
}
return s;
}
std::string FileExpectedStateManager::GetTempPathForFilename(
const std::string& filename) {
assert(!expected_state_dir_path_.empty());
std::string expected_state_dir_path_slash =
expected_state_dir_path_.back() == '/' ? expected_state_dir_path_
: expected_state_dir_path_ + "/";
return expected_state_dir_path_slash + kTempFilenamePrefix + filename +
kTempFilenameSuffix;
}
std::string FileExpectedStateManager::GetPathForFilename(
const std::string& filename) {
assert(!expected_state_dir_path_.empty());
std::string expected_state_dir_path_slash =
expected_state_dir_path_.back() == '/' ? expected_state_dir_path_
: expected_state_dir_path_ + "/";
return expected_state_dir_path_slash + filename;
}
AnonExpectedStateManager::AnonExpectedStateManager(size_t max_key,
size_t num_column_families)
: ExpectedStateManager(max_key, num_column_families) {}
Status AnonExpectedStateManager::Open() {
latest_.reset(new AnonExpectedState(max_key_, num_column_families_));
return latest_->Open(true /* create */);
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS