rocksdb/db_stress_tool/db_stress_common.h
Changyu Bi defd97bc9d Add an option to verify memtable key order during reads (#12889)
Summary:
add a new CF option `paranoid_memory_checks` that allows additional data integrity validations during read/scan. Currently, skiplist-based memtable will validate the order of keys visited. Further data validation can be added in different layers. The option will be opt-in due to performance overhead.

The motivation for this feature is for services where data correctness is critical and want to detect in-memory corruption earlier. For a corrupted memtable key, this feature can help to detect it during during reads instead of during flush with existing protections (OutputValidator that verifies key order or per kv checksum). See internally linked task for more context.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12889

Test Plan:
* new unit test added for paranoid_memory_checks=true.
* existing unit test for paranoid_memory_checks=false.
* enable in stress test.

Performance Benchmark: we check for performance regression in read path where data is in memtable only. For each benchmark, the script was run at the same time for main and this PR:
* Memtable-only randomread ops/sec:
```
(for I in $(seq 1 50);do ./db_bench --benchmarks=fillseq,readrandom --write_buffer_size=268435456 --writes=250000 --num=250000 --reads=500000  --seed=1723056275 2>&1 | grep "readrandom"; done;) | awk '{ t += $5; c++; print } END { print 1.0 * t / c }';

Main: 608146
PR with paranoid_memory_checks=false: 607727 (- %0.07)
PR with paranoid_memory_checks=true: 521889 (-%14.2)
```

* Memtable-only sequential scan ops/sec:
```
(for I in $(seq 1 50); do ./db_bench--benchmarks=fillseq,readseq[-X10] --write_buffer_size=268435456 --num=1000000  --seed=1723056275 2>1 | grep "\[AVG 10 runs\]"; done;) | awk '{ t += $6; c++; print; } END { printf "%.0f\n", 1.0 * t / c }';

Main: 9180077
PR with paranoid_memory_checks=false: 9536241 (+%3.8)
PR with paranoid_memory_checks=true: 7653934 (-%16.6)
```

* Memtable-only reverse scan ops/sec:
```
(for I in $(seq 1 20); do ./db_bench --benchmarks=fillseq,readreverse[-X10] --write_buffer_size=268435456 --num=1000000  --seed=1723056275 2>1 | grep "\[AVG 10 runs\]"; done;) | awk '{ t += $6; c++; print; } END { printf "%.0f\n", 1.0 * t / c }';

 Main: 1285719
 PR with integrity_checks=false: 1431626 (+%11.3)
 PR with integrity_checks=true: 811031 (-%36.9)
```

The `readrandom` benchmark shows no regression. The scanning benchmarks show improvement that I can't explain.

Reviewed By: pdillinger

Differential Revision: D60414267

Pulled By: cbi42

fbshipit-source-id: a70b0cbeea131f1a249a5f78f9dc3a62dacfaa91
2024-08-19 13:53:25 -07:00

794 lines
28 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// The test uses an array to compare against values written to the database.
// Keys written to the array are in 1:1 correspondence to the actual values in
// the database according to the formula in the function GenerateValue.
// Space is reserved in the array from 0 to FLAGS_max_key and values are
// randomly written/deleted/read from those positions. During verification we
// compare all the positions in the array. To shorten/elongate the running
// time, you could change the settings: FLAGS_max_key, FLAGS_ops_per_thread,
// (sometimes also FLAGS_threads).
//
// NOTE that if FLAGS_test_batches_snapshots is set, the test will have
// different behavior. See comment of the flag for details.
#ifdef GFLAGS
#pragma once
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <algorithm>
#include <array>
#include <chrono>
#include <cinttypes>
#include <exception>
#include <queue>
#include <thread>
#include "db/db_impl/db_impl.h"
#include "db/version_set.h"
#include "db/wide/wide_columns_helper.h"
#include "db_stress_tool/db_stress_env_wrapper.h"
#include "db_stress_tool/db_stress_listener.h"
#include "db_stress_tool/db_stress_shared_state.h"
#include "db_stress_tool/db_stress_test_base.h"
#include "logging/logging.h"
#include "monitoring/histogram.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "rocksdb/advanced_options.h"
#include "rocksdb/cache.h"
#include "rocksdb/env.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "rocksdb/utilities/backup_engine.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/db_ttl.h"
#include "rocksdb/utilities/debug.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/options_util.h"
#include "rocksdb/utilities/transaction.h"
#include "rocksdb/utilities/transaction_db.h"
#include "rocksdb/write_batch.h"
#include "test_util/testutil.h"
#include "util/coding.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/gflags_compat.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/string_util.h"
#include "utilities/blob_db/blob_db.h"
#include "utilities/fault_injection_fs.h"
#include "utilities/merge_operators.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage;
DECLARE_uint64(seed);
DECLARE_bool(read_only);
DECLARE_int64(max_key);
DECLARE_double(hot_key_alpha);
DECLARE_int32(max_key_len);
DECLARE_string(key_len_percent_dist);
DECLARE_int32(key_window_scale_factor);
DECLARE_int32(column_families);
DECLARE_string(options_file);
DECLARE_int64(active_width);
DECLARE_bool(test_batches_snapshots);
DECLARE_bool(atomic_flush);
DECLARE_int32(lock_wal_one_in);
DECLARE_bool(test_cf_consistency);
DECLARE_bool(test_multi_ops_txns);
DECLARE_int32(threads);
DECLARE_int32(ttl);
DECLARE_int32(value_size_mult);
DECLARE_int32(compaction_readahead_size);
DECLARE_bool(enable_pipelined_write);
DECLARE_bool(verify_before_write);
DECLARE_bool(histogram);
DECLARE_bool(destroy_db_initially);
DECLARE_bool(verbose);
DECLARE_bool(progress_reports);
DECLARE_uint64(db_write_buffer_size);
DECLARE_int32(write_buffer_size);
DECLARE_int32(max_write_buffer_number);
DECLARE_int32(min_write_buffer_number_to_merge);
DECLARE_int32(max_write_buffer_number_to_maintain);
DECLARE_int64(max_write_buffer_size_to_maintain);
DECLARE_bool(use_write_buffer_manager);
DECLARE_double(memtable_prefix_bloom_size_ratio);
DECLARE_bool(memtable_whole_key_filtering);
DECLARE_int32(open_files);
DECLARE_uint64(compressed_secondary_cache_size);
DECLARE_int32(compressed_secondary_cache_numshardbits);
DECLARE_int32(secondary_cache_update_interval);
DECLARE_double(compressed_secondary_cache_ratio);
DECLARE_int32(compaction_style);
DECLARE_int32(compaction_pri);
DECLARE_int32(num_levels);
DECLARE_int32(level0_file_num_compaction_trigger);
DECLARE_int32(level0_slowdown_writes_trigger);
DECLARE_int32(level0_stop_writes_trigger);
DECLARE_int32(block_size);
DECLARE_int32(format_version);
DECLARE_int32(index_block_restart_interval);
DECLARE_int32(max_background_compactions);
DECLARE_int32(num_bottom_pri_threads);
DECLARE_int32(compaction_thread_pool_adjust_interval);
DECLARE_int32(compaction_thread_pool_variations);
DECLARE_int32(max_background_flushes);
DECLARE_int32(universal_size_ratio);
DECLARE_int32(universal_min_merge_width);
DECLARE_int32(universal_max_merge_width);
DECLARE_int32(universal_max_size_amplification_percent);
DECLARE_int32(universal_max_read_amp);
DECLARE_int32(clear_column_family_one_in);
DECLARE_int32(get_live_files_apis_one_in);
DECLARE_int32(get_all_column_family_metadata_one_in);
DECLARE_int32(get_sorted_wal_files_one_in);
DECLARE_int32(get_current_wal_file_one_in);
DECLARE_int32(set_options_one_in);
DECLARE_int32(set_in_place_one_in);
DECLARE_int64(cache_size);
DECLARE_int32(cache_numshardbits);
DECLARE_bool(cache_index_and_filter_blocks);
DECLARE_bool(charge_compression_dictionary_building_buffer);
DECLARE_bool(charge_filter_construction);
DECLARE_bool(charge_table_reader);
DECLARE_bool(charge_file_metadata);
DECLARE_bool(charge_blob_cache);
DECLARE_bool(decouple_partitioned_filters);
DECLARE_int32(top_level_index_pinning);
DECLARE_int32(partition_pinning);
DECLARE_int32(unpartitioned_pinning);
DECLARE_string(cache_type);
DECLARE_uint64(subcompactions);
DECLARE_uint64(periodic_compaction_seconds);
DECLARE_string(daily_offpeak_time_utc);
DECLARE_uint64(compaction_ttl);
DECLARE_bool(fifo_allow_compaction);
DECLARE_bool(allow_concurrent_memtable_write);
DECLARE_double(experimental_mempurge_threshold);
DECLARE_bool(enable_write_thread_adaptive_yield);
DECLARE_int32(reopen);
DECLARE_double(bloom_bits);
DECLARE_int32(bloom_before_level);
DECLARE_bool(partition_filters);
DECLARE_bool(optimize_filters_for_memory);
DECLARE_bool(detect_filter_construct_corruption);
DECLARE_string(sqfc_name);
DECLARE_uint32(sqfc_version);
DECLARE_bool(use_sqfc_for_range_queries);
DECLARE_int32(index_type);
DECLARE_int32(data_block_index_type);
DECLARE_string(db);
DECLARE_string(secondaries_base);
DECLARE_bool(test_secondary);
DECLARE_string(expected_values_dir);
DECLARE_bool(verify_checksum);
DECLARE_bool(mmap_read);
DECLARE_bool(mmap_write);
DECLARE_bool(use_direct_reads);
DECLARE_bool(use_direct_io_for_flush_and_compaction);
DECLARE_bool(mock_direct_io);
DECLARE_bool(statistics);
DECLARE_bool(sync);
DECLARE_bool(use_fsync);
DECLARE_uint64(stats_dump_period_sec);
DECLARE_uint64(bytes_per_sync);
DECLARE_uint64(wal_bytes_per_sync);
DECLARE_int32(kill_random_test);
DECLARE_string(kill_exclude_prefixes);
DECLARE_uint64(recycle_log_file_num);
DECLARE_int64(target_file_size_base);
DECLARE_int32(target_file_size_multiplier);
DECLARE_uint64(max_bytes_for_level_base);
DECLARE_double(max_bytes_for_level_multiplier);
DECLARE_uint64(rate_limiter_bytes_per_sec);
DECLARE_bool(rate_limit_bg_reads);
DECLARE_bool(rate_limit_user_ops);
DECLARE_bool(rate_limit_auto_wal_flush);
DECLARE_uint64(sst_file_manager_bytes_per_sec);
DECLARE_uint64(sst_file_manager_bytes_per_truncate);
DECLARE_int32(backup_one_in);
DECLARE_uint64(backup_max_size);
DECLARE_int32(checkpoint_one_in);
DECLARE_int32(ingest_external_file_one_in);
DECLARE_int32(ingest_external_file_width);
DECLARE_int32(compact_files_one_in);
DECLARE_int32(compact_range_one_in);
DECLARE_int32(promote_l0_one_in);
DECLARE_int32(mark_for_compaction_one_file_in);
DECLARE_int32(flush_one_in);
DECLARE_int32(key_may_exist_one_in);
DECLARE_int32(reset_stats_one_in);
DECLARE_int32(pause_background_one_in);
DECLARE_int32(disable_file_deletions_one_in);
DECLARE_int32(disable_manual_compaction_one_in);
DECLARE_int32(compact_range_width);
DECLARE_int32(acquire_snapshot_one_in);
DECLARE_bool(compare_full_db_state_snapshot);
DECLARE_uint64(snapshot_hold_ops);
DECLARE_bool(long_running_snapshots);
DECLARE_bool(use_multiget);
DECLARE_bool(use_get_entity);
DECLARE_bool(use_multi_get_entity);
DECLARE_int32(readpercent);
DECLARE_int32(prefixpercent);
DECLARE_int32(writepercent);
DECLARE_int32(delpercent);
DECLARE_int32(delrangepercent);
DECLARE_int32(nooverwritepercent);
DECLARE_int32(iterpercent);
DECLARE_uint64(num_iterations);
DECLARE_int32(customopspercent);
DECLARE_string(compression_type);
DECLARE_string(bottommost_compression_type);
DECLARE_int32(compression_max_dict_bytes);
DECLARE_int32(compression_zstd_max_train_bytes);
DECLARE_int32(compression_parallel_threads);
DECLARE_uint64(compression_max_dict_buffer_bytes);
DECLARE_bool(compression_use_zstd_dict_trainer);
DECLARE_bool(compression_checksum);
DECLARE_string(checksum_type);
DECLARE_string(env_uri);
DECLARE_string(fs_uri);
DECLARE_uint64(ops_per_thread);
DECLARE_uint64(log2_keys_per_lock);
DECLARE_uint64(max_manifest_file_size);
DECLARE_bool(in_place_update);
DECLARE_string(memtablerep);
DECLARE_int32(prefix_size);
DECLARE_bool(use_merge);
DECLARE_uint32(use_put_entity_one_in);
DECLARE_bool(use_attribute_group);
DECLARE_bool(use_multi_cf_iterator);
DECLARE_bool(use_full_merge_v1);
DECLARE_int32(sync_wal_one_in);
DECLARE_bool(avoid_unnecessary_blocking_io);
DECLARE_bool(write_dbid_to_manifest);
DECLARE_bool(avoid_flush_during_recovery);
DECLARE_uint64(max_write_batch_group_size_bytes);
DECLARE_bool(level_compaction_dynamic_level_bytes);
DECLARE_int32(verify_checksum_one_in);
DECLARE_int32(verify_file_checksums_one_in);
DECLARE_int32(verify_db_one_in);
DECLARE_int32(continuous_verification_interval);
DECLARE_int32(get_property_one_in);
DECLARE_int32(get_properties_of_all_tables_one_in);
DECLARE_string(file_checksum_impl);
DECLARE_bool(verification_only);
DECLARE_string(last_level_temperature);
DECLARE_string(default_write_temperature);
DECLARE_string(default_temperature);
DECLARE_bool(paranoid_memory_checks);
// Options for transaction dbs.
// Use TransactionDB (a.k.a. Pessimistic Transaction DB)
// OR OptimisticTransactionDB
DECLARE_bool(use_txn);
// Options for TransactionDB (a.k.a. Pessimistic Transaction DB)
DECLARE_uint64(txn_write_policy);
DECLARE_bool(unordered_write);
// Options for OptimisticTransactionDB
DECLARE_bool(use_optimistic_txn);
DECLARE_uint64(occ_validation_policy);
DECLARE_bool(share_occ_lock_buckets);
DECLARE_uint32(occ_lock_bucket_count);
// Options for StackableDB-based BlobDB
DECLARE_bool(use_blob_db);
DECLARE_uint64(blob_db_min_blob_size);
DECLARE_uint64(blob_db_bytes_per_sync);
DECLARE_uint64(blob_db_file_size);
DECLARE_bool(blob_db_enable_gc);
DECLARE_double(blob_db_gc_cutoff);
// Options for integrated BlobDB
DECLARE_bool(allow_setting_blob_options_dynamically);
DECLARE_bool(enable_blob_files);
DECLARE_uint64(min_blob_size);
DECLARE_uint64(blob_file_size);
DECLARE_string(blob_compression_type);
DECLARE_bool(enable_blob_garbage_collection);
DECLARE_double(blob_garbage_collection_age_cutoff);
DECLARE_double(blob_garbage_collection_force_threshold);
DECLARE_uint64(blob_compaction_readahead_size);
DECLARE_int32(blob_file_starting_level);
DECLARE_bool(use_blob_cache);
DECLARE_bool(use_shared_block_and_blob_cache);
DECLARE_uint64(blob_cache_size);
DECLARE_int32(blob_cache_numshardbits);
DECLARE_int32(prepopulate_blob_cache);
DECLARE_int32(approximate_size_one_in);
DECLARE_bool(best_efforts_recovery);
DECLARE_bool(skip_verifydb);
DECLARE_bool(paranoid_file_checks);
DECLARE_bool(fail_if_options_file_error);
DECLARE_uint64(batch_protection_bytes_per_key);
DECLARE_uint32(memtable_protection_bytes_per_key);
DECLARE_uint32(block_protection_bytes_per_key);
DECLARE_uint64(user_timestamp_size);
DECLARE_bool(persist_user_defined_timestamps);
DECLARE_string(secondary_cache_uri);
DECLARE_int32(secondary_cache_fault_one_in);
DECLARE_int32(prepopulate_block_cache);
DECLARE_bool(two_write_queues);
DECLARE_bool(use_only_the_last_commit_time_batch_for_recovery);
DECLARE_uint64(wp_snapshot_cache_bits);
DECLARE_uint64(wp_commit_cache_bits);
DECLARE_bool(adaptive_readahead);
DECLARE_bool(async_io);
DECLARE_string(wal_compression);
DECLARE_bool(verify_sst_unique_id_in_manifest);
DECLARE_int32(create_timestamped_snapshot_one_in);
DECLARE_bool(allow_data_in_errors);
DECLARE_bool(enable_thread_tracking);
DECLARE_uint32(memtable_max_range_deletions);
DECLARE_uint32(bottommost_file_compaction_delay);
// Tiered storage
DECLARE_int64(preclude_last_level_data_seconds);
DECLARE_int64(preserve_internal_time_seconds);
DECLARE_uint32(use_timed_put_one_in);
DECLARE_int32(verify_iterator_with_expected_state_one_in);
DECLARE_bool(preserve_unverified_changes);
DECLARE_uint64(readahead_size);
DECLARE_uint64(initial_auto_readahead_size);
DECLARE_uint64(max_auto_readahead_size);
DECLARE_uint64(num_file_reads_for_auto_readahead);
DECLARE_bool(auto_readahead_size);
DECLARE_bool(allow_fallocate);
DECLARE_int32(table_cache_numshardbits);
DECLARE_bool(enable_write_thread_adaptive_yield);
DECLARE_uint64(log_readahead_size);
DECLARE_uint64(bgerror_resume_retry_interval);
DECLARE_uint64(delete_obsolete_files_period_micros);
DECLARE_uint64(max_log_file_size);
DECLARE_uint64(log_file_time_to_roll);
DECLARE_bool(use_adaptive_mutex);
DECLARE_bool(advise_random_on_open);
DECLARE_uint64(WAL_ttl_seconds);
DECLARE_uint64(WAL_size_limit_MB);
DECLARE_bool(strict_bytes_per_sync);
DECLARE_bool(avoid_flush_during_shutdown);
DECLARE_bool(fill_cache);
DECLARE_bool(optimize_multiget_for_io);
DECLARE_bool(memtable_insert_hint_per_batch);
DECLARE_bool(dump_malloc_stats);
DECLARE_uint64(stats_history_buffer_size);
DECLARE_bool(skip_stats_update_on_db_open);
DECLARE_bool(optimize_filters_for_hits);
DECLARE_uint64(sample_for_compression);
DECLARE_bool(report_bg_io_stats);
DECLARE_bool(cache_index_and_filter_blocks_with_high_priority);
DECLARE_bool(use_delta_encoding);
DECLARE_bool(verify_compression);
DECLARE_uint32(read_amp_bytes_per_bit);
DECLARE_bool(enable_index_compression);
DECLARE_uint32(index_shortening);
DECLARE_uint32(metadata_charge_policy);
DECLARE_bool(use_adaptive_mutex_lru);
DECLARE_uint32(compress_format_version);
DECLARE_uint64(manifest_preallocation_size);
DECLARE_bool(enable_checksum_handoff);
DECLARE_uint64(max_total_wal_size);
DECLARE_double(high_pri_pool_ratio);
DECLARE_double(low_pri_pool_ratio);
DECLARE_uint64(soft_pending_compaction_bytes_limit);
DECLARE_uint64(hard_pending_compaction_bytes_limit);
DECLARE_uint64(max_sequential_skip_in_iterations);
DECLARE_bool(enable_sst_partitioner_factory);
DECLARE_bool(enable_do_not_compress_roles);
DECLARE_bool(block_align);
DECLARE_uint32(lowest_used_cache_tier);
DECLARE_bool(enable_custom_split_merge);
DECLARE_uint32(adm_policy);
DECLARE_bool(enable_memtable_insert_with_hint_prefix_extractor);
DECLARE_bool(check_multiget_consistency);
DECLARE_bool(check_multiget_entity_consistency);
DECLARE_bool(inplace_update_support);
DECLARE_uint32(uncache_aggressiveness);
constexpr long KB = 1024;
constexpr int kRandomValueMaxFactor = 3;
constexpr int kValueMaxLen = 100;
constexpr uint32_t kLargePrimeForCommonFactorSkew = 1872439133;
// wrapped posix environment
extern ROCKSDB_NAMESPACE::Env* db_stress_env;
extern ROCKSDB_NAMESPACE::Env* db_stress_listener_env;
extern std::shared_ptr<ROCKSDB_NAMESPACE::FaultInjectionTestFS> fault_fs_guard;
extern std::shared_ptr<ROCKSDB_NAMESPACE::SecondaryCache>
compressed_secondary_cache;
extern std::shared_ptr<ROCKSDB_NAMESPACE::Cache> block_cache;
extern enum ROCKSDB_NAMESPACE::CompressionType compression_type_e;
extern enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e;
extern enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e;
enum RepFactory { kSkipList, kHashSkipList, kVectorRep };
inline enum RepFactory StringToRepFactory(const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "skip_list"))
return kSkipList;
else if (!strcasecmp(ctype, "prefix_hash"))
return kHashSkipList;
else if (!strcasecmp(ctype, "vector"))
return kVectorRep;
fprintf(stdout, "Cannot parse memreptable %s\n", ctype);
return kSkipList;
}
extern enum RepFactory FLAGS_rep_factory;
namespace ROCKSDB_NAMESPACE {
inline enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
const char* ctype) {
assert(ctype);
ROCKSDB_NAMESPACE::CompressionType ret_compression_type;
if (!strcasecmp(ctype, "disable")) {
ret_compression_type = ROCKSDB_NAMESPACE::kDisableCompressionOption;
} else if (!strcasecmp(ctype, "none")) {
ret_compression_type = ROCKSDB_NAMESPACE::kNoCompression;
} else if (!strcasecmp(ctype, "snappy")) {
ret_compression_type = ROCKSDB_NAMESPACE::kSnappyCompression;
} else if (!strcasecmp(ctype, "zlib")) {
ret_compression_type = ROCKSDB_NAMESPACE::kZlibCompression;
} else if (!strcasecmp(ctype, "bzip2")) {
ret_compression_type = ROCKSDB_NAMESPACE::kBZip2Compression;
} else if (!strcasecmp(ctype, "lz4")) {
ret_compression_type = ROCKSDB_NAMESPACE::kLZ4Compression;
} else if (!strcasecmp(ctype, "lz4hc")) {
ret_compression_type = ROCKSDB_NAMESPACE::kLZ4HCCompression;
} else if (!strcasecmp(ctype, "xpress")) {
ret_compression_type = ROCKSDB_NAMESPACE::kXpressCompression;
} else if (!strcasecmp(ctype, "zstd")) {
ret_compression_type = ROCKSDB_NAMESPACE::kZSTD;
} else {
fprintf(stderr, "Cannot parse compression type '%s'\n", ctype);
ret_compression_type =
ROCKSDB_NAMESPACE::kSnappyCompression; // default value
}
if (ret_compression_type != ROCKSDB_NAMESPACE::kDisableCompressionOption &&
!CompressionTypeSupported(ret_compression_type)) {
// Use no compression will be more portable but considering this is
// only a stress test and snappy is widely available. Use snappy here.
ret_compression_type = ROCKSDB_NAMESPACE::kSnappyCompression;
}
return ret_compression_type;
}
inline enum ROCKSDB_NAMESPACE::ChecksumType StringToChecksumType(
const char* ctype) {
assert(ctype);
auto iter = ROCKSDB_NAMESPACE::checksum_type_string_map.find(ctype);
if (iter != ROCKSDB_NAMESPACE::checksum_type_string_map.end()) {
return iter->second;
}
fprintf(stderr, "Cannot parse checksum type '%s'\n", ctype);
return ROCKSDB_NAMESPACE::kCRC32c;
}
inline std::string ChecksumTypeToString(ROCKSDB_NAMESPACE::ChecksumType ctype) {
auto iter = std::find_if(
ROCKSDB_NAMESPACE::checksum_type_string_map.begin(),
ROCKSDB_NAMESPACE::checksum_type_string_map.end(),
[&](const std::pair<std::string, ROCKSDB_NAMESPACE::ChecksumType>&
name_and_enum_val) { return name_and_enum_val.second == ctype; });
assert(iter != ROCKSDB_NAMESPACE::checksum_type_string_map.end());
return iter->first;
}
inline enum ROCKSDB_NAMESPACE::Temperature StringToTemperature(
const char* ctype) {
assert(ctype);
auto iter = std::find_if(
ROCKSDB_NAMESPACE::temperature_to_string.begin(),
ROCKSDB_NAMESPACE::temperature_to_string.end(),
[&](const std::pair<ROCKSDB_NAMESPACE::Temperature, std::string>&
temp_and_string_val) {
return ctype == temp_and_string_val.second;
});
assert(iter != ROCKSDB_NAMESPACE::temperature_to_string.end());
return iter->first;
}
inline std::string TemperatureToString(
ROCKSDB_NAMESPACE::Temperature temperature) {
auto iter =
ROCKSDB_NAMESPACE::OptionsHelper::temperature_to_string.find(temperature);
assert(iter != ROCKSDB_NAMESPACE::OptionsHelper::temperature_to_string.end());
return iter->second;
}
inline std::vector<std::string> SplitString(std::string src) {
std::vector<std::string> ret;
if (src.empty()) {
return ret;
}
size_t pos = 0;
size_t pos_comma;
while ((pos_comma = src.find(',', pos)) != std::string::npos) {
ret.push_back(src.substr(pos, pos_comma - pos));
pos = pos_comma + 1;
}
ret.push_back(src.substr(pos, src.length()));
return ret;
}
#ifdef _MSC_VER
#pragma warning(push)
// truncation of constant value on static_cast
#pragma warning(disable : 4309)
#endif
inline bool GetNextPrefix(const ROCKSDB_NAMESPACE::Slice& src, std::string* v) {
std::string ret = src.ToString();
for (int i = static_cast<int>(ret.size()) - 1; i >= 0; i--) {
if (ret[i] != static_cast<char>(255)) {
ret[i] = ret[i] + 1;
break;
} else if (i != 0) {
ret[i] = 0;
} else {
// all FF. No next prefix
return false;
}
}
*v = ret;
return true;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// Append `val` to `*key` in fixed-width big-endian format
inline void AppendIntToString(uint64_t val, std::string* key) {
// PutFixed64 uses little endian
PutFixed64(key, val);
// Reverse to get big endian
char* int_data = &((*key)[key->size() - sizeof(uint64_t)]);
for (size_t i = 0; i < sizeof(uint64_t) / 2; ++i) {
std::swap(int_data[i], int_data[sizeof(uint64_t) - 1 - i]);
}
}
// A struct for maintaining the parameters for generating variable length keys
struct KeyGenContext {
// Number of adjacent keys in one cycle of key lengths
uint64_t window;
// Number of keys of each possible length in a given window
std::vector<uint64_t> weights;
};
extern KeyGenContext key_gen_ctx;
// Generate a variable length key string from the given int64 val. The
// order of the keys is preserved. The key could be anywhere from 8 to
// max_key_len * 8 bytes.
// The algorithm picks the length based on the
// offset of the val within a configured window and the distribution of the
// number of keys of various lengths in that window. For example, if x, y, x are
// the weights assigned to each possible key length, the keys generated would be
// - {0}...{x-1}
// {(x-1),0}..{(x-1),(y-1)},{(x-1),(y-1),0}..{(x-1),(y-1),(z-1)} and so on.
// Additionally, a trailer of 0-7 bytes could be appended.
inline std::string Key(int64_t val) {
uint64_t window = key_gen_ctx.window;
size_t levels = key_gen_ctx.weights.size();
std::string key;
// Over-reserve and for now do not bother `shrink_to_fit()` since the key
// strings are transient.
key.reserve(FLAGS_max_key_len * 8);
uint64_t window_idx = static_cast<uint64_t>(val) / window;
uint64_t offset = static_cast<uint64_t>(val) % window;
for (size_t level = 0; level < levels; ++level) {
uint64_t weight = key_gen_ctx.weights[level];
uint64_t pfx;
if (level == 0) {
pfx = window_idx * weight;
} else {
pfx = 0;
}
pfx += offset >= weight ? weight - 1 : offset;
AppendIntToString(pfx, &key);
if (offset < weight) {
// Use the bottom 3 bits of offset as the number of trailing 'x's in the
// key. If the next key is going to be of the next level, then skip the
// trailer as it would break ordering. If the key length is already at
// max, skip the trailer.
if (offset < weight - 1 && level < levels - 1) {
size_t trailer_len = offset & 0x7;
key.append(trailer_len, 'x');
}
break;
}
offset -= weight;
}
return key;
}
// Given a string key, map it to an index into the expected values buffer
inline bool GetIntVal(std::string big_endian_key, uint64_t* key_p) {
size_t size_key = big_endian_key.size();
std::vector<uint64_t> prefixes;
assert(size_key <= key_gen_ctx.weights.size() * sizeof(uint64_t));
std::string little_endian_key;
little_endian_key.resize(size_key);
for (size_t start = 0; start + sizeof(uint64_t) <= size_key;
start += sizeof(uint64_t)) {
size_t end = start + sizeof(uint64_t);
for (size_t i = 0; i < sizeof(uint64_t); ++i) {
little_endian_key[start + i] = big_endian_key[end - 1 - i];
}
Slice little_endian_slice =
Slice(&little_endian_key[start], sizeof(uint64_t));
uint64_t pfx;
if (!GetFixed64(&little_endian_slice, &pfx)) {
return false;
}
prefixes.emplace_back(pfx);
}
uint64_t key = 0;
for (size_t i = 0; i < prefixes.size(); ++i) {
uint64_t pfx = prefixes[i];
key += (pfx / key_gen_ctx.weights[i]) * key_gen_ctx.window +
pfx % key_gen_ctx.weights[i];
if (i < prefixes.size() - 1) {
// The encoding writes a `key_gen_ctx.weights[i] - 1` that counts for
// `key_gen_ctx.weights[i]` when there are more prefixes to come. So we
// need to add back the one here as we're at a non-last prefix.
++key;
}
}
*key_p = key;
return true;
}
// Given a string prefix, map it to the first corresponding index in the
// expected values buffer.
inline bool GetFirstIntValInPrefix(std::string big_endian_prefix,
uint64_t* key_p) {
size_t size_key = big_endian_prefix.size();
// Pad with zeros to make it a multiple of 8. This function may be called
// with a prefix, in which case we return the first index that falls
// inside or outside that prefix, dependeing on whether the prefix is
// the start of upper bound of a scan
unsigned int pad = sizeof(uint64_t) - (size_key % sizeof(uint64_t));
if (pad < sizeof(uint64_t)) {
big_endian_prefix.append(pad, '\0');
}
return GetIntVal(std::move(big_endian_prefix), key_p);
}
inline uint64_t GetPrefixKeyCount(const std::string& prefix,
const std::string& ub) {
uint64_t start = 0;
uint64_t end = 0;
if (!GetFirstIntValInPrefix(prefix, &start) ||
!GetFirstIntValInPrefix(ub, &end)) {
return 0;
}
return end - start;
}
inline std::string StringToHex(const std::string& str) {
std::string result = "0x";
result.append(Slice(str).ToString(true));
return result;
}
inline std::string WideColumnsToHex(const WideColumns& columns) {
if (columns.empty()) {
return std::string();
}
std::ostringstream oss;
WideColumnsHelper::DumpWideColumns(columns, oss, true);
return oss.str();
}
// Unified output format for double parameters
inline std::string FormatDoubleParam(double param) {
return std::to_string(param);
}
// Make sure that double parameter is a value we can reproduce by
// re-inputting the value printed.
inline void SanitizeDoubleParam(double* param) {
*param = std::atof(FormatDoubleParam(*param).c_str());
}
void PoolSizeChangeThread(void* v);
void DbVerificationThread(void* v);
void CompressedCacheSetCapacityThread(void* v);
void TimestampedSnapshotsThread(void* v);
void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz);
int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration);
std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
uint64_t iteration);
size_t GenerateValue(uint32_t rand, char* v, size_t max_sz);
uint32_t GetValueBase(Slice s);
WideColumns GenerateWideColumns(uint32_t value_base, const Slice& slice);
WideColumns GenerateExpectedWideColumns(uint32_t value_base,
const Slice& slice);
bool VerifyWideColumns(const Slice& value, const WideColumns& columns);
bool VerifyWideColumns(const WideColumns& columns);
bool VerifyIteratorAttributeGroups(
const IteratorAttributeGroups& attribute_groups);
AttributeGroups GenerateAttributeGroups(
const std::vector<ColumnFamilyHandle*>& cfhs, uint32_t value_base,
const Slice& slice);
StressTest* CreateCfConsistencyStressTest();
StressTest* CreateBatchedOpsStressTest();
StressTest* CreateNonBatchedOpsStressTest();
StressTest* CreateMultiOpsTxnsStressTest();
void CheckAndSetOptionsForMultiOpsTxnStressTest();
void InitializeHotKeyGenerator(double alpha);
int64_t GetOneHotKeyID(double rand_seed, int64_t max_key);
std::string GetNowNanos();
uint64_t GetWriteUnixTime(ThreadState* thread);
std::shared_ptr<FileChecksumGenFactory> GetFileChecksumImpl(
const std::string& name);
Status DeleteFilesInDirectory(const std::string& dirname);
Status SaveFilesInDirectory(const std::string& src_dirname,
const std::string& dst_dirname);
Status DestroyUnverifiedSubdir(const std::string& dirname);
Status InitUnverifiedSubdir(const std::string& dirname);
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS