rocksdb/db/memtable_list_test.cc
agiardullo c815351038 Support saving history in memtable_list
Summary:
For transactions, we are using the memtables to validate that there are no write conflicts.  But after flushing, we don't have any memtables, and transactions could fail to commit.  So we want to someone keep around some extra history to use for conflict checking.  In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit.

After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure).  It seems like the best place for this is abstracted inside the memtable_list.  I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much.

This diff adds a new parameter to control how much memtable history to keep around after flushing.  However, it sounds like people aren't too fond of adding new parameters.  So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers.  This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit.  (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached).  So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit).

However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions.

Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests.  Added testing in memtablelist_test and planning on adding more testing here.

Reviewers: sdong, rven, igor

Reviewed By: igor

Subscribers: dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 16:34:24 -07:00

592 lines
19 KiB
C++

// Copyright (c) 2015, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#include <algorithm>
#include <string>
#include <vector>
#include "db/memtable_list.h"
#include "db/merge_context.h"
#include "db/version_set.h"
#include "db/write_controller.h"
#include "db/writebuffer.h"
#include "rocksdb/db.h"
#include "rocksdb/status.h"
#include "util/testharness.h"
namespace rocksdb {
class DumbLogger : public Logger {
public:
using Logger::Logv;
virtual void Logv(const char* format, va_list ap) override {}
virtual size_t GetLogFileSize() const override { return 0; }
};
class MemTableListTest : public testing::Test {
public:
std::string dbname;
DB* db;
Options options;
MemTableListTest() : db(nullptr) {
dbname = test::TmpDir() + "/memtable_list_test";
}
// Create a test db if not yet created
void CreateDB() {
if (db == nullptr) {
options.create_if_missing = true;
DestroyDB(dbname, options);
Status s = DB::Open(options, dbname, &db);
EXPECT_OK(s);
}
}
~MemTableListTest() {
if (db) {
delete db;
DestroyDB(dbname, options);
}
}
// Calls MemTableList::InstallMemtableFlushResults() and sets up all
// structures needed to call this function.
Status Mock_InstallMemtableFlushResults(
MemTableList* list, const MutableCFOptions& mutable_cf_options,
const autovector<MemTable*>& m, autovector<MemTable*>* to_delete) {
// Create a mock Logger
DumbLogger logger;
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
// Create a mock VersionSet
DBOptions db_options;
EnvOptions env_options;
shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
WriteBuffer write_buffer(db_options.db_write_buffer_size);
WriteController write_controller;
CreateDB();
VersionSet versions(dbname, &db_options, env_options, table_cache.get(),
&write_buffer, &write_controller);
// Create mock default ColumnFamilyData
ColumnFamilyOptions cf_options;
std::vector<ColumnFamilyDescriptor> column_families;
column_families.emplace_back(kDefaultColumnFamilyName, cf_options);
EXPECT_OK(versions.Recover(column_families, false));
auto column_family_set = versions.GetColumnFamilySet();
auto cfd = column_family_set->GetColumnFamily(0);
EXPECT_TRUE(cfd != nullptr);
// Create dummy mutex.
InstrumentedMutex mutex;
InstrumentedMutexLock l(&mutex);
return list->InstallMemtableFlushResults(cfd, mutable_cf_options, m,
&versions, &mutex, 1, to_delete,
nullptr, &log_buffer);
}
};
TEST_F(MemTableListTest, Empty) {
// Create an empty MemTableList and validate basic functions.
MemTableList list(1, 0);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
autovector<MemTable*> mems;
list.PickMemtablesToFlush(&mems);
ASSERT_EQ(0, mems.size());
autovector<MemTable*> to_delete;
list.current()->Unref(&to_delete);
ASSERT_EQ(0, to_delete.size());
}
TEST_F(MemTableListTest, GetTest) {
// Create MemTableList
int min_write_buffer_number_to_merge = 2;
int max_write_buffer_number_to_maintain = 0;
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain);
SequenceNumber seq = 1;
std::string value;
Status s;
MergeContext merge_context;
autovector<MemTable*> to_delete;
LookupKey lkey("key1", seq);
bool found = list.current()->Get(lkey, &value, &s, &merge_context);
ASSERT_FALSE(found);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableCFOptions ioptions(options);
WriteBuffer wb(options.db_write_buffer_size);
MemTable* mem =
new MemTable(cmp, ioptions, MutableCFOptions(options, ioptions), &wb);
mem->Ref();
// Write some keys to this memtable.
mem->Add(++seq, kTypeDeletion, "key1", "");
mem->Add(++seq, kTypeValue, "key2", "value2");
mem->Add(++seq, kTypeValue, "key1", "value1");
mem->Add(++seq, kTypeValue, "key2", "value2.2");
// Fetch the newly written keys
merge_context.Clear();
found = mem->Get(LookupKey("key1", seq), &value, &s, &merge_context);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value1");
merge_context.Clear();
found = mem->Get(LookupKey("key1", 2), &value, &s, &merge_context);
// MemTable found out that this key is *not* found (at this sequence#)
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = mem->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.2");
ASSERT_EQ(4, mem->num_entries());
ASSERT_EQ(1, mem->num_deletes());
// Add memtable to list
list.Add(mem, &to_delete);
SequenceNumber saved_seq = seq;
// Create another memtable and write some keys to it
WriteBuffer wb2(options.db_write_buffer_size);
MemTable* mem2 =
new MemTable(cmp, ioptions, MutableCFOptions(options, ioptions), &wb2);
mem2->Ref();
mem2->Add(++seq, kTypeDeletion, "key1", "");
mem2->Add(++seq, kTypeValue, "key2", "value2.3");
// Add second memtable to list
list.Add(mem2, &to_delete);
// Fetch keys via MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, &s, &merge_context);
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = list.current()->Get(LookupKey("key1", saved_seq), &value, &s,
&merge_context);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ("value1", value);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.3");
merge_context.Clear();
found = list.current()->Get(LookupKey("key2", 1), &value, &s, &merge_context);
ASSERT_FALSE(found);
ASSERT_EQ(2, list.NumNotFlushed());
list.current()->Unref(&to_delete);
for (MemTable* m : to_delete) {
delete m;
}
}
TEST_F(MemTableListTest, GetFromHistoryTest) {
// Create MemTableList
int min_write_buffer_number_to_merge = 2;
int max_write_buffer_number_to_maintain = 2;
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain);
SequenceNumber seq = 1;
std::string value;
Status s;
MergeContext merge_context;
autovector<MemTable*> to_delete;
LookupKey lkey("key1", seq);
bool found = list.current()->Get(lkey, &value, &s, &merge_context);
ASSERT_FALSE(found);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableCFOptions ioptions(options);
WriteBuffer wb(options.db_write_buffer_size);
MemTable* mem =
new MemTable(cmp, ioptions, MutableCFOptions(options, ioptions), &wb);
mem->Ref();
// Write some keys to this memtable.
mem->Add(++seq, kTypeDeletion, "key1", "");
mem->Add(++seq, kTypeValue, "key2", "value2");
mem->Add(++seq, kTypeValue, "key2", "value2.2");
// Fetch the newly written keys
merge_context.Clear();
found = mem->Get(LookupKey("key1", seq), &value, &s, &merge_context);
// MemTable found out that this key is *not* found (at this sequence#)
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = mem->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.2");
// Add memtable to list
list.Add(mem, &to_delete);
ASSERT_EQ(0, to_delete.size());
// Fetch keys via MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, &s, &merge_context);
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ("value2.2", value);
// Flush this memtable from the list.
// (It will then be a part of the memtable history).
autovector<MemTable*> to_flush;
list.PickMemtablesToFlush(&to_flush);
ASSERT_EQ(1, to_flush.size());
s = Mock_InstallMemtableFlushResults(
&list, MutableCFOptions(options, ioptions), to_flush, &to_delete);
ASSERT_OK(s);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_EQ(1, list.NumFlushed());
ASSERT_EQ(0, to_delete.size());
// Verify keys are no longer in MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, &s, &merge_context);
ASSERT_FALSE(found);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_FALSE(found);
// Verify keys are present in history
merge_context.Clear();
found = list.current()->GetFromHistory(LookupKey("key1", seq), &value, &s,
&merge_context);
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = list.current()->GetFromHistory(LookupKey("key2", seq), &value, &s,
&merge_context);
ASSERT_TRUE(found);
ASSERT_EQ("value2.2", value);
// Create another memtable and write some keys to it
WriteBuffer wb2(options.db_write_buffer_size);
MemTable* mem2 =
new MemTable(cmp, ioptions, MutableCFOptions(options, ioptions), &wb2);
mem2->Ref();
mem2->Add(++seq, kTypeDeletion, "key1", "");
mem2->Add(++seq, kTypeValue, "key3", "value3");
// Add second memtable to list
list.Add(mem2, &to_delete);
ASSERT_EQ(0, to_delete.size());
to_flush.clear();
list.PickMemtablesToFlush(&to_flush);
ASSERT_EQ(1, to_flush.size());
// Flush second memtable
s = Mock_InstallMemtableFlushResults(
&list, MutableCFOptions(options, ioptions), to_flush, &to_delete);
ASSERT_OK(s);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_EQ(2, list.NumFlushed());
ASSERT_EQ(0, to_delete.size());
// Add a third memtable to push the first memtable out of the history
WriteBuffer wb3(options.db_write_buffer_size);
MemTable* mem3 =
new MemTable(cmp, ioptions, MutableCFOptions(options, ioptions), &wb3);
mem3->Ref();
list.Add(mem3, &to_delete);
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_EQ(1, list.NumFlushed());
ASSERT_EQ(1, to_delete.size());
// Verify keys are no longer in MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, &s, &merge_context);
ASSERT_FALSE(found);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_FALSE(found);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key3", seq), &value, &s, &merge_context);
ASSERT_FALSE(found);
// Verify that the second memtable's keys are in the history
merge_context.Clear();
found = list.current()->GetFromHistory(LookupKey("key1", seq), &value, &s,
&merge_context);
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = list.current()->GetFromHistory(LookupKey("key3", seq), &value, &s,
&merge_context);
ASSERT_TRUE(found);
ASSERT_EQ("value3", value);
// Verify that key2 from the first memtable is no longer in the history
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, &s, &merge_context);
ASSERT_FALSE(found);
// Cleanup
list.current()->Unref(&to_delete);
ASSERT_EQ(3, to_delete.size());
for (MemTable* m : to_delete) {
delete m;
}
}
TEST_F(MemTableListTest, FlushPendingTest) {
const int num_tables = 5;
SequenceNumber seq = 1;
Status s;
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableCFOptions ioptions(options);
InternalKeyComparator cmp(BytewiseComparator());
WriteBuffer wb(options.db_write_buffer_size);
autovector<MemTable*> to_delete;
// Create MemTableList
int min_write_buffer_number_to_merge = 3;
int max_write_buffer_number_to_maintain = 7;
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain);
// Create some MemTables
std::vector<MemTable*> tables;
MutableCFOptions mutable_cf_options(options, ioptions);
for (int i = 0; i < num_tables; i++) {
MemTable* mem = new MemTable(cmp, ioptions, mutable_cf_options, &wb);
mem->Ref();
std::string value;
MergeContext merge_context;
mem->Add(++seq, kTypeValue, "key1", std::to_string(i));
mem->Add(++seq, kTypeValue, "keyN" + std::to_string(i), "valueN");
mem->Add(++seq, kTypeValue, "keyX" + std::to_string(i), "value");
mem->Add(++seq, kTypeValue, "keyM" + std::to_string(i), "valueM");
mem->Add(++seq, kTypeDeletion, "keyX" + std::to_string(i), "");
tables.push_back(mem);
}
// Nothing to flush
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
autovector<MemTable*> to_flush;
list.PickMemtablesToFlush(&to_flush);
ASSERT_EQ(0, to_flush.size());
// Request a flush even though there is nothing to flush
list.FlushRequested();
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Attempt to 'flush' to clear request for flush
list.PickMemtablesToFlush(&to_flush);
ASSERT_EQ(0, to_flush.size());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Request a flush again
list.FlushRequested();
// No flush pending since the list is empty.
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Add 2 tables
list.Add(tables[0], &to_delete);
list.Add(tables[1], &to_delete);
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_EQ(0, to_delete.size());
// Even though we have less than the minimum to flush, a flush is
// pending since we had previously requested a flush and never called
// PickMemtablesToFlush() to clear the flush.
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush
list.PickMemtablesToFlush(&to_flush);
ASSERT_EQ(2, to_flush.size());
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Revert flush
list.RollbackMemtableFlush(to_flush, 0);
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
to_flush.clear();
// Add another table
list.Add(tables[2], &to_delete);
// We now have the minimum to flush regardles of whether FlushRequested()
// was called.
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_EQ(0, to_delete.size());
// Pick tables to flush
list.PickMemtablesToFlush(&to_flush);
ASSERT_EQ(3, to_flush.size());
ASSERT_EQ(3, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
autovector<MemTable*> to_flush2;
list.PickMemtablesToFlush(&to_flush2);
ASSERT_EQ(0, to_flush2.size());
ASSERT_EQ(3, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Add another table
list.Add(tables[3], &to_delete);
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_EQ(0, to_delete.size());
// Request a flush again
list.FlushRequested();
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
list.PickMemtablesToFlush(&to_flush2);
ASSERT_EQ(1, to_flush2.size());
ASSERT_EQ(4, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Rollback first pick of tables
list.RollbackMemtableFlush(to_flush, 0);
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
to_flush.clear();
// Add another tables
list.Add(tables[4], &to_delete);
ASSERT_EQ(5, list.NumNotFlushed());
// We now have the minimum to flush regardles of whether FlushRequested()
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_EQ(0, to_delete.size());
// Pick tables to flush
list.PickMemtablesToFlush(&to_flush);
// Should pick 4 of 5 since 1 table has been picked in to_flush2
ASSERT_EQ(4, to_flush.size());
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
autovector<MemTable*> to_flush3;
ASSERT_EQ(0, to_flush3.size()); // nothing not in progress of being flushed
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Flush the 4 memtables that were picked in to_flush
s = Mock_InstallMemtableFlushResults(
&list, MutableCFOptions(options, ioptions), to_flush, &to_delete);
ASSERT_OK(s);
// Note: now to_flush contains tables[0,1,2,4]. to_flush2 contains
// tables[3].
// Current implementation will only commit memtables in the order they were
// created. So InstallMemtableFlushResults will install the first 3 tables
// in to_flush and stop when it encounters a table not yet flushed.
ASSERT_EQ(2, list.NumNotFlushed());
int num_in_history = std::min(3, max_write_buffer_number_to_maintain);
ASSERT_EQ(num_in_history, list.NumFlushed());
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
// Request a flush again. Should be nothing to flush
list.FlushRequested();
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Flush the 1 memtable that was picked in to_flush2
s = MemTableListTest::Mock_InstallMemtableFlushResults(
&list, MutableCFOptions(options, ioptions), to_flush2, &to_delete);
ASSERT_OK(s);
// This will actually install 2 tables. The 1 we told it to flush, and also
// tables[4] which has been waiting for tables[3] to commit.
ASSERT_EQ(0, list.NumNotFlushed());
num_in_history = std::min(5, max_write_buffer_number_to_maintain);
ASSERT_EQ(num_in_history, list.NumFlushed());
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling InstallMemtableFlushResults.
// Verify this, by Ref'ing then UnRef'ing:
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
to_delete.clear();
list.current()->Unref(&to_delete);
int to_delete_size = std::min(5, max_write_buffer_number_to_maintain);
ASSERT_EQ(to_delete_size, to_delete.size());
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}