mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-29 18:33:58 +00:00
f4a616ebf9
Summary: This PR updated the python script to plot graphs for stats output from block cache analyzer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5673 Test Plan: Manually run the script to generate graphs. Differential Revision: D16657145 Pulled By: HaoyuHuang fbshipit-source-id: fd510b5fd4307835f9a986fac545734dbe003d28
722 lines
23 KiB
Python
722 lines
23 KiB
Python
#!/usr/bin/env python3
|
|
import csv
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
import matplotlib.backends.backend_pdf
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
|
|
|
|
# Make sure a legend has the same color across all generated graphs.
|
|
def get_cmap(n, name="hsv"):
|
|
"""Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
|
|
RGB color; the keyword argument name must be a standard mpl colormap name."""
|
|
return plt.cm.get_cmap(name, n)
|
|
|
|
|
|
color_index = 0
|
|
bar_color_maps = {}
|
|
colors = []
|
|
n_colors = 360
|
|
linear_colors = get_cmap(n_colors)
|
|
for i in range(n_colors):
|
|
colors.append(linear_colors(i))
|
|
# Shuffle the colors so that adjacent bars in a graph are obvious to differentiate.
|
|
random.shuffle(colors)
|
|
|
|
|
|
def num_to_gb(n):
|
|
one_gb = 1024 * 1024 * 1024
|
|
if float(n) % one_gb == 0:
|
|
return "{}".format(n / one_gb)
|
|
# Keep two decimal points.
|
|
return "{0:.2f}".format(float(n) / one_gb)
|
|
|
|
|
|
def plot_miss_stats_graphs(
|
|
csv_result_dir, output_result_dir, file_prefix, file_suffix, ylabel, pdf_file_name
|
|
):
|
|
miss_ratios = {}
|
|
for file in os.listdir(csv_result_dir):
|
|
if not file.startswith(file_prefix):
|
|
continue
|
|
if not file.endswith(file_suffix):
|
|
continue
|
|
print("Processing file {}/{}".format(csv_result_dir, file))
|
|
mrc_file_path = csv_result_dir + "/" + file
|
|
with open(mrc_file_path, "r") as csvfile:
|
|
rows = csv.reader(csvfile, delimiter=",")
|
|
for row in rows:
|
|
cache_name = row[0]
|
|
num_shard_bits = int(row[1])
|
|
ghost_capacity = int(row[2])
|
|
capacity = int(row[3])
|
|
miss_ratio = float(row[4])
|
|
config = "{}-{}-{}".format(cache_name, num_shard_bits, ghost_capacity)
|
|
if config not in miss_ratios:
|
|
miss_ratios[config] = {}
|
|
miss_ratios[config]["x"] = []
|
|
miss_ratios[config]["y"] = []
|
|
miss_ratios[config]["x"].append(capacity)
|
|
miss_ratios[config]["y"].append(miss_ratio)
|
|
fig = plt.figure()
|
|
for config in miss_ratios:
|
|
plt.plot(
|
|
miss_ratios[config]["x"], miss_ratios[config]["y"], label=config
|
|
)
|
|
plt.xlabel("Cache capacity")
|
|
plt.ylabel(ylabel)
|
|
plt.xscale("log", basex=2)
|
|
plt.ylim(ymin=0)
|
|
plt.title("{}".format(file))
|
|
plt.legend()
|
|
fig.savefig(
|
|
output_result_dir + "/{}.pdf".format(pdf_file_name), bbox_inches="tight"
|
|
)
|
|
|
|
|
|
def plot_miss_stats_diff_lru_graphs(
|
|
csv_result_dir, output_result_dir, file_prefix, file_suffix, ylabel, pdf_file_name
|
|
):
|
|
miss_ratios = {}
|
|
for file in os.listdir(csv_result_dir):
|
|
if not file.startswith(file_prefix):
|
|
continue
|
|
if not file.endswith(file_suffix):
|
|
continue
|
|
print("Processing file {}/{}".format(csv_result_dir, file))
|
|
mrc_file_path = csv_result_dir + "/" + file
|
|
with open(mrc_file_path, "r") as csvfile:
|
|
rows = csv.reader(csvfile, delimiter=",")
|
|
for row in rows:
|
|
cache_name = row[0]
|
|
num_shard_bits = int(row[1])
|
|
ghost_capacity = int(row[2])
|
|
capacity = int(row[3])
|
|
miss_ratio = float(row[4])
|
|
config = "{}-{}-{}".format(cache_name, num_shard_bits, ghost_capacity)
|
|
if config not in miss_ratios:
|
|
miss_ratios[config] = {}
|
|
miss_ratios[config]["x"] = []
|
|
miss_ratios[config]["y"] = []
|
|
miss_ratios[config]["x"].append(capacity)
|
|
miss_ratios[config]["y"].append(miss_ratio)
|
|
if "lru-0-0" not in miss_ratios:
|
|
return
|
|
fig = plt.figure()
|
|
for config in miss_ratios:
|
|
diffs = [0] * len(miss_ratios["lru-0-0"]["x"])
|
|
for i in range(len(miss_ratios["lru-0-0"]["x"])):
|
|
for j in range(len(miss_ratios[config]["x"])):
|
|
if miss_ratios["lru-0-0"]["x"][i] == miss_ratios[config]["x"][j]:
|
|
diffs[i] = (
|
|
miss_ratios[config]["y"][j] - miss_ratios["lru-0-0"]["y"][i]
|
|
)
|
|
break
|
|
plt.plot(miss_ratios["lru-0-0"]["x"], diffs, label=config)
|
|
plt.xlabel("Cache capacity")
|
|
plt.ylabel(ylabel)
|
|
plt.xscale("log", basex=2)
|
|
plt.title("{}".format(file))
|
|
plt.legend()
|
|
fig.savefig(
|
|
output_result_dir + "/{}.pdf".format(pdf_file_name), bbox_inches="tight"
|
|
)
|
|
|
|
|
|
def sanitize(label):
|
|
# matplotlib cannot plot legends that is prefixed with "_"
|
|
# so we need to remove them here.
|
|
index = 0
|
|
for i in range(len(label)):
|
|
if label[i] == "_":
|
|
index += 1
|
|
else:
|
|
break
|
|
data = label[index:]
|
|
# The value of uint64_max in c++.
|
|
if "18446744073709551615" in data:
|
|
return "max"
|
|
return data
|
|
|
|
|
|
# Read the csv file vertically, i.e., group the data by columns.
|
|
def read_data_for_plot_vertical(csvfile):
|
|
x = []
|
|
labels = []
|
|
label_stats = {}
|
|
csv_rows = csv.reader(csvfile, delimiter=",")
|
|
data_rows = []
|
|
for row in csv_rows:
|
|
data_rows.append(row)
|
|
# header
|
|
for i in range(1, len(data_rows[0])):
|
|
labels.append(sanitize(data_rows[0][i]))
|
|
label_stats[i - 1] = []
|
|
for i in range(1, len(data_rows)):
|
|
for j in range(len(data_rows[i])):
|
|
if j == 0:
|
|
x.append(sanitize(data_rows[i][j]))
|
|
continue
|
|
label_stats[j - 1].append(float(data_rows[i][j]))
|
|
return x, labels, label_stats
|
|
|
|
|
|
# Read the csv file horizontally, i.e., group the data by rows.
|
|
def read_data_for_plot_horizontal(csvfile):
|
|
x = []
|
|
labels = []
|
|
label_stats = {}
|
|
csv_rows = csv.reader(csvfile, delimiter=",")
|
|
data_rows = []
|
|
for row in csv_rows:
|
|
data_rows.append(row)
|
|
# header
|
|
for i in range(1, len(data_rows)):
|
|
labels.append(sanitize(data_rows[i][0]))
|
|
label_stats[i - 1] = []
|
|
for i in range(1, len(data_rows[0])):
|
|
x.append(sanitize(data_rows[0][i]))
|
|
for i in range(1, len(data_rows)):
|
|
for j in range(len(data_rows[i])):
|
|
if j == 0:
|
|
# label
|
|
continue
|
|
label_stats[i - 1].append(float(data_rows[i][j]))
|
|
return x, labels, label_stats
|
|
|
|
|
|
def read_data_for_plot(csvfile, vertical):
|
|
if vertical:
|
|
return read_data_for_plot_vertical(csvfile)
|
|
return read_data_for_plot_horizontal(csvfile)
|
|
|
|
|
|
def plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix,
|
|
filename_suffix,
|
|
pdf_name,
|
|
xlabel,
|
|
ylabel,
|
|
title,
|
|
vertical,
|
|
legend,
|
|
):
|
|
global color_index, bar_color_maps, colors
|
|
pdf = matplotlib.backends.backend_pdf.PdfPages(output_result_dir + "/" + pdf_name)
|
|
for file in os.listdir(csv_result_dir):
|
|
if not file.endswith(filename_suffix):
|
|
continue
|
|
if not file.startswith(filename_prefix):
|
|
continue
|
|
print("Processing file {}/{}".format(csv_result_dir, file))
|
|
with open(csv_result_dir + "/" + file, "r") as csvfile:
|
|
x, labels, label_stats = read_data_for_plot(csvfile, vertical)
|
|
if len(x) == 0 or len(labels) == 0:
|
|
continue
|
|
# plot figure
|
|
fig = plt.figure()
|
|
for label_index in label_stats:
|
|
# Assign a unique color to this label.
|
|
if labels[label_index] not in bar_color_maps:
|
|
bar_color_maps[labels[label_index]] = colors[color_index]
|
|
color_index += 1
|
|
plt.plot(
|
|
[int(x[i]) for i in range(len(x) - 1)],
|
|
label_stats[label_index][:-1],
|
|
label=labels[label_index],
|
|
color=bar_color_maps[labels[label_index]],
|
|
)
|
|
|
|
# Translate time unit into x labels.
|
|
if "_60" in file:
|
|
plt.xlabel("{} (Minute)".format(xlabel))
|
|
if "_3600" in file:
|
|
plt.xlabel("{} (Hour)".format(xlabel))
|
|
plt.ylabel(ylabel)
|
|
plt.title("{} {}".format(title, file))
|
|
if legend:
|
|
plt.legend()
|
|
pdf.savefig(fig)
|
|
pdf.close()
|
|
|
|
|
|
def plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix,
|
|
pdf_name,
|
|
xlabel,
|
|
ylabel,
|
|
title,
|
|
vertical,
|
|
x_prefix,
|
|
):
|
|
global color_index, bar_color_maps, colors
|
|
pdf = matplotlib.backends.backend_pdf.PdfPages(
|
|
"{}/{}".format(output_result_dir, pdf_name)
|
|
)
|
|
for file in os.listdir(csv_result_dir):
|
|
if not file.endswith(filename_suffix):
|
|
continue
|
|
with open(csv_result_dir + "/" + file, "r") as csvfile:
|
|
print("Processing file {}/{}".format(csv_result_dir, file))
|
|
x, labels, label_stats = read_data_for_plot(csvfile, vertical)
|
|
if len(x) == 0 or len(label_stats) == 0:
|
|
continue
|
|
# Plot figure
|
|
fig = plt.figure()
|
|
ind = np.arange(len(x)) # the x locations for the groups
|
|
width = 0.5 # the width of the bars: can also be len(x) sequence
|
|
bars = []
|
|
bottom_bars = []
|
|
for _i in label_stats[0]:
|
|
bottom_bars.append(0)
|
|
for i in range(0, len(label_stats)):
|
|
# Assign a unique color to this label.
|
|
if labels[i] not in bar_color_maps:
|
|
bar_color_maps[labels[i]] = colors[color_index]
|
|
color_index += 1
|
|
p = plt.bar(
|
|
ind,
|
|
label_stats[i],
|
|
width,
|
|
bottom=bottom_bars,
|
|
color=bar_color_maps[labels[i]],
|
|
)
|
|
bars.append(p[0])
|
|
for j in range(len(label_stats[i])):
|
|
bottom_bars[j] += label_stats[i][j]
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel(ylabel)
|
|
plt.xticks(
|
|
ind, [x_prefix + x[i] for i in range(len(x))], rotation=20, fontsize=8
|
|
)
|
|
plt.legend(bars, labels)
|
|
plt.title("{} filename:{}".format(title, file))
|
|
pdf.savefig(fig)
|
|
pdf.close()
|
|
|
|
|
|
def plot_heatmap(csv_result_dir, output_result_dir, filename_suffix, pdf_name, title):
|
|
pdf = matplotlib.backends.backend_pdf.PdfPages(
|
|
"{}/{}".format(output_result_dir, pdf_name)
|
|
)
|
|
for file in os.listdir(csv_result_dir):
|
|
if not file.endswith(filename_suffix):
|
|
continue
|
|
csv_file_name = "{}/{}".format(csv_result_dir, file)
|
|
print("Processing file {}/{}".format(csv_result_dir, file))
|
|
corr_table = pd.read_csv(csv_file_name)
|
|
corr_table = corr_table.pivot("label", "corr", "value")
|
|
fig = plt.figure()
|
|
sns.heatmap(corr_table, annot=True, linewidths=0.5, fmt=".2")
|
|
plt.title("{} filename:{}".format(title, file))
|
|
pdf.savefig(fig)
|
|
pdf.close()
|
|
|
|
|
|
def plot_timeline(csv_result_dir, output_result_dir):
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="access_timeline",
|
|
pdf_name="access_time.pdf",
|
|
xlabel="Time",
|
|
ylabel="Throughput",
|
|
title="Access timeline with group by label",
|
|
vertical=False,
|
|
legend=True,
|
|
)
|
|
|
|
|
|
def convert_to_0_if_nan(n):
|
|
if math.isnan(n):
|
|
return 0.0
|
|
return n
|
|
|
|
|
|
def plot_correlation(csv_result_dir, output_result_dir):
|
|
# Processing the correlation input first.
|
|
label_str_file = {}
|
|
for file in os.listdir(csv_result_dir):
|
|
if not file.endswith("correlation_input"):
|
|
continue
|
|
csv_file_name = "{}/{}".format(csv_result_dir, file)
|
|
print("Processing file {}/{}".format(csv_result_dir, file))
|
|
corr_table = pd.read_csv(csv_file_name)
|
|
label_str = file.split("_")[0]
|
|
label = file[len(label_str) + 1 :]
|
|
label = label[: len(label) - len("_correlation_input")]
|
|
|
|
output_file = "{}/{}_correlation_output".format(csv_result_dir, label_str)
|
|
if output_file not in label_str_file:
|
|
f = open("{}/{}_correlation_output".format(csv_result_dir, label_str), "w+")
|
|
label_str_file[output_file] = f
|
|
f.write("label,corr,value\n")
|
|
f = label_str_file[output_file]
|
|
f.write(
|
|
"{},{},{}\n".format(
|
|
label,
|
|
"LA+A",
|
|
convert_to_0_if_nan(
|
|
corr_table["num_accesses_since_last_access"].corr(
|
|
corr_table["num_accesses_till_next_access"], method="spearman"
|
|
)
|
|
),
|
|
)
|
|
)
|
|
f.write(
|
|
"{},{},{}\n".format(
|
|
label,
|
|
"PA+A",
|
|
convert_to_0_if_nan(
|
|
corr_table["num_past_accesses"].corr(
|
|
corr_table["num_accesses_till_next_access"], method="spearman"
|
|
)
|
|
),
|
|
)
|
|
)
|
|
f.write(
|
|
"{},{},{}\n".format(
|
|
label,
|
|
"LT+A",
|
|
convert_to_0_if_nan(
|
|
corr_table["elapsed_time_since_last_access"].corr(
|
|
corr_table["num_accesses_till_next_access"], method="spearman"
|
|
)
|
|
),
|
|
)
|
|
)
|
|
f.write(
|
|
"{},{},{}\n".format(
|
|
label,
|
|
"LA+T",
|
|
convert_to_0_if_nan(
|
|
corr_table["num_accesses_since_last_access"].corr(
|
|
corr_table["elapsed_time_till_next_access"], method="spearman"
|
|
)
|
|
),
|
|
)
|
|
)
|
|
f.write(
|
|
"{},{},{}\n".format(
|
|
label,
|
|
"LT+T",
|
|
convert_to_0_if_nan(
|
|
corr_table["elapsed_time_since_last_access"].corr(
|
|
corr_table["elapsed_time_till_next_access"], method="spearman"
|
|
)
|
|
),
|
|
)
|
|
)
|
|
f.write(
|
|
"{},{},{}\n".format(
|
|
label,
|
|
"PA+T",
|
|
convert_to_0_if_nan(
|
|
corr_table["num_past_accesses"].corr(
|
|
corr_table["elapsed_time_till_next_access"], method="spearman"
|
|
)
|
|
),
|
|
)
|
|
)
|
|
for label_str in label_str_file:
|
|
label_str_file[label_str].close()
|
|
|
|
plot_heatmap(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
"correlation_output",
|
|
"correlation.pdf",
|
|
"Correlation",
|
|
)
|
|
|
|
|
|
def plot_reuse_graphs(csv_result_dir, output_result_dir):
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="avg_reuse_interval_naccesses",
|
|
pdf_name="avg_reuse_interval_naccesses.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of accesses",
|
|
title="Average reuse interval",
|
|
vertical=True,
|
|
x_prefix="< ",
|
|
)
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="avg_reuse_interval",
|
|
pdf_name="avg_reuse_interval.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of blocks",
|
|
title="Average reuse interval",
|
|
vertical=True,
|
|
x_prefix="< ",
|
|
)
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="access_reuse_interval",
|
|
pdf_name="reuse_interval.pdf",
|
|
xlabel="Seconds",
|
|
ylabel="Percentage of accesses",
|
|
title="Reuse interval",
|
|
vertical=True,
|
|
x_prefix="< ",
|
|
)
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="reuse_lifetime",
|
|
pdf_name="reuse_lifetime.pdf",
|
|
xlabel="Seconds",
|
|
ylabel="Percentage of blocks",
|
|
title="Reuse lifetime",
|
|
vertical=True,
|
|
x_prefix="< ",
|
|
)
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="reuse_blocks_timeline",
|
|
pdf_name="reuse_blocks_timeline.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of blocks",
|
|
title="Reuse blocks timeline",
|
|
vertical=False,
|
|
legend=False,
|
|
)
|
|
|
|
|
|
def plot_percentage_access_summary(csv_result_dir, output_result_dir):
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="percentage_of_accesses_summary",
|
|
pdf_name="percentage_access.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of accesses",
|
|
title="",
|
|
vertical=True,
|
|
x_prefix="",
|
|
)
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="percent_ref_keys",
|
|
pdf_name="percent_ref_keys.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of blocks",
|
|
title="",
|
|
vertical=True,
|
|
x_prefix="",
|
|
)
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="percent_data_size_on_ref_keys",
|
|
pdf_name="percent_data_size_on_ref_keys.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of blocks",
|
|
title="",
|
|
vertical=True,
|
|
x_prefix="",
|
|
)
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="percent_accesses_on_ref_keys",
|
|
pdf_name="percent_accesses_on_ref_keys.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of blocks",
|
|
title="",
|
|
vertical=True,
|
|
x_prefix="",
|
|
)
|
|
|
|
|
|
def plot_access_count_summary(csv_result_dir, output_result_dir):
|
|
plot_stacked_bar_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_suffix="access_count_summary",
|
|
pdf_name="access_count_summary.pdf",
|
|
xlabel="Access count",
|
|
ylabel="Percentage of blocks",
|
|
title="",
|
|
vertical=True,
|
|
x_prefix="< ",
|
|
)
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="skewness",
|
|
pdf_name="skew.pdf",
|
|
xlabel="",
|
|
ylabel="Percentage of accesses",
|
|
title="Skewness",
|
|
vertical=True,
|
|
legend=False,
|
|
)
|
|
|
|
|
|
def plot_miss_ratio_timeline(csv_result_dir, output_result_dir):
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="3600_miss_ratio_timeline",
|
|
pdf_name="miss_ratio_timeline.pdf",
|
|
xlabel="Time",
|
|
ylabel="Miss Ratio (%)",
|
|
title="Miss ratio timeline",
|
|
vertical=False,
|
|
legend=True,
|
|
)
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="3600_miss_timeline",
|
|
pdf_name="miss_timeline.pdf",
|
|
xlabel="Time",
|
|
ylabel="# of misses ",
|
|
title="Miss timeline",
|
|
vertical=False,
|
|
legend=True,
|
|
)
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="3600_miss_timeline",
|
|
pdf_name="miss_timeline.pdf",
|
|
xlabel="Time",
|
|
ylabel="# of misses ",
|
|
title="Miss timeline",
|
|
vertical=False,
|
|
legend=True,
|
|
)
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="3600_policy_timeline",
|
|
pdf_name="policy_timeline.pdf",
|
|
xlabel="Time",
|
|
ylabel="# of times a policy is selected ",
|
|
title="Policy timeline",
|
|
vertical=False,
|
|
legend=True,
|
|
)
|
|
plot_line_charts(
|
|
csv_result_dir,
|
|
output_result_dir,
|
|
filename_prefix="",
|
|
filename_suffix="3600_policy_ratio_timeline",
|
|
pdf_name="policy_ratio_timeline.pdf",
|
|
xlabel="Time",
|
|
ylabel="Percentage of times a policy is selected ",
|
|
title="Policy timeline",
|
|
vertical=False,
|
|
legend=True,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) < 3:
|
|
print(
|
|
"Must provide two arguments: \n"
|
|
"1) The directory that saves a list of "
|
|
"directories which contain block cache trace analyzer result files. \n"
|
|
"2) the directory to save plotted graphs. \n"
|
|
)
|
|
exit(1)
|
|
csv_result_dir = sys.argv[1]
|
|
output_result_dir = sys.argv[2]
|
|
print(
|
|
"Processing directory {} and save graphs to {}.".format(
|
|
csv_result_dir, output_result_dir
|
|
)
|
|
)
|
|
for csv_relative_dir in os.listdir(csv_result_dir):
|
|
csv_abs_dir = csv_result_dir + "/" + csv_relative_dir
|
|
result_dir = output_result_dir + "/" + csv_relative_dir
|
|
if not os.path.isdir(csv_abs_dir):
|
|
print("{} is not a directory".format(csv_abs_dir))
|
|
continue
|
|
print("Processing experiment dir: {}".format(csv_relative_dir))
|
|
if not os.path.exists(result_dir):
|
|
os.makedirs(result_dir)
|
|
plot_access_count_summary(csv_abs_dir, result_dir)
|
|
plot_timeline(csv_abs_dir, result_dir)
|
|
plot_miss_ratio_timeline(csv_result_dir, output_result_dir)
|
|
plot_correlation(csv_abs_dir, result_dir)
|
|
plot_reuse_graphs(csv_abs_dir, result_dir)
|
|
plot_percentage_access_summary(csv_abs_dir, result_dir)
|
|
plot_miss_stats_graphs(
|
|
csv_abs_dir,
|
|
result_dir,
|
|
file_prefix="",
|
|
file_suffix="mrc",
|
|
ylabel="Miss ratio (%)",
|
|
pdf_file_name="mrc",
|
|
)
|
|
plot_miss_stats_diff_lru_graphs(
|
|
csv_abs_dir,
|
|
result_dir,
|
|
file_prefix="",
|
|
file_suffix="mrc",
|
|
ylabel="Miss ratio (%)",
|
|
pdf_file_name="mrc_diff_lru",
|
|
)
|
|
# The following stats are only available in pysim.
|
|
for time_unit in ["1", "60", "3600"]:
|
|
plot_miss_stats_graphs(
|
|
csv_abs_dir,
|
|
result_dir,
|
|
file_prefix="ml_{}_".format(time_unit),
|
|
file_suffix="p95mb",
|
|
ylabel="p95 number of byte miss per {} seconds".format(time_unit),
|
|
pdf_file_name="p95mb_per{}_seconds".format(time_unit),
|
|
)
|
|
plot_miss_stats_graphs(
|
|
csv_abs_dir,
|
|
result_dir,
|
|
file_prefix="ml_{}_".format(time_unit),
|
|
file_suffix="avgmb",
|
|
ylabel="Average number of byte miss per {} seconds".format(time_unit),
|
|
pdf_file_name="avgmb_per{}_seconds".format(time_unit),
|
|
)
|
|
plot_miss_stats_diff_lru_graphs(
|
|
csv_abs_dir,
|
|
result_dir,
|
|
file_prefix="ml_{}_".format(time_unit),
|
|
file_suffix="p95mb",
|
|
ylabel="p95 number of byte miss per {} seconds".format(time_unit),
|
|
pdf_file_name="p95mb_per{}_seconds_diff_lru".format(time_unit),
|
|
)
|
|
plot_miss_stats_diff_lru_graphs(
|
|
csv_abs_dir,
|
|
result_dir,
|
|
file_prefix="ml_{}_".format(time_unit),
|
|
file_suffix="avgmb",
|
|
ylabel="Average number of byte miss per {} seconds".format(time_unit),
|
|
pdf_file_name="avgmb_per{}_seconds_diff_lru".format(time_unit),
|
|
)
|