rocksdb/util/dynamic_bloom_test.cc

338 lines
9.7 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
return 0;
}
#else
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include <algorithm>
#include <atomic>
#include <memory>
#include <thread>
#include <vector>
#include <gflags/gflags.h>
#include "dynamic_bloom.h"
#include "port/port.h"
#include "util/arena.h"
#include "util/logging.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "util/stop_watch.h"
using GFLAGS::ParseCommandLineFlags;
DEFINE_int32(bits_per_key, 10, "");
DEFINE_int32(num_probes, 6, "");
DEFINE_bool(enable_perf, false, "");
namespace rocksdb {
static Slice Key(uint64_t i, char* buffer) {
memcpy(buffer, &i, sizeof(i));
return Slice(buffer, sizeof(i));
}
class DynamicBloomTest : public testing::Test {};
TEST_F(DynamicBloomTest, EmptyFilter) {
Arena arena;
DynamicBloom bloom1(&arena, 100, 0, 2);
ASSERT_TRUE(!bloom1.MayContain("hello"));
ASSERT_TRUE(!bloom1.MayContain("world"));
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
ASSERT_TRUE(!bloom2.MayContain("hello"));
ASSERT_TRUE(!bloom2.MayContain("world"));
}
TEST_F(DynamicBloomTest, Small) {
Arena arena;
DynamicBloom bloom1(&arena, 100, 0, 2);
bloom1.Add("hello");
bloom1.Add("world");
ASSERT_TRUE(bloom1.MayContain("hello"));
ASSERT_TRUE(bloom1.MayContain("world"));
ASSERT_TRUE(!bloom1.MayContain("x"));
ASSERT_TRUE(!bloom1.MayContain("foo"));
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
bloom2.Add("hello");
bloom2.Add("world");
ASSERT_TRUE(bloom2.MayContain("hello"));
ASSERT_TRUE(bloom2.MayContain("world"));
ASSERT_TRUE(!bloom2.MayContain("x"));
ASSERT_TRUE(!bloom2.MayContain("foo"));
}
TEST_F(DynamicBloomTest, SmallConcurrentAdd) {
Arena arena;
DynamicBloom bloom1(&arena, 100, 0, 2);
bloom1.AddConcurrently("hello");
bloom1.AddConcurrently("world");
ASSERT_TRUE(bloom1.MayContain("hello"));
ASSERT_TRUE(bloom1.MayContain("world"));
ASSERT_TRUE(!bloom1.MayContain("x"));
ASSERT_TRUE(!bloom1.MayContain("foo"));
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
bloom2.AddConcurrently("hello");
bloom2.AddConcurrently("world");
ASSERT_TRUE(bloom2.MayContain("hello"));
ASSERT_TRUE(bloom2.MayContain("world"));
ASSERT_TRUE(!bloom2.MayContain("x"));
ASSERT_TRUE(!bloom2.MayContain("foo"));
}
static uint32_t NextNum(uint32_t num) {
if (num < 10) {
num += 1;
} else if (num < 100) {
num += 10;
} else if (num < 1000) {
num += 100;
} else {
num += 1000;
}
return num;
}
TEST_F(DynamicBloomTest, VaryingLengths) {
char buffer[sizeof(uint64_t)];
// Count number of filters that significantly exceed the false positive rate
int mediocre_filters = 0;
int good_filters = 0;
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
fprintf(stderr, "bits_per_key: %d num_probes: %d\n", FLAGS_bits_per_key,
num_probes);
for (uint32_t enable_locality = 0; enable_locality < 2; ++enable_locality) {
for (uint32_t num = 1; num <= 10000; num = NextNum(num)) {
uint32_t bloom_bits = 0;
Arena arena;
if (enable_locality == 0) {
bloom_bits = std::max(num * FLAGS_bits_per_key, 64U);
} else {
bloom_bits = std::max(num * FLAGS_bits_per_key,
enable_locality * CACHE_LINE_SIZE * 8);
}
DynamicBloom bloom(&arena, bloom_bits, enable_locality, num_probes);
for (uint64_t i = 0; i < num; i++) {
bloom.Add(Key(i, buffer));
ASSERT_TRUE(bloom.MayContain(Key(i, buffer)));
}
// All added keys must match
for (uint64_t i = 0; i < num; i++) {
ASSERT_TRUE(bloom.MayContain(Key(i, buffer))) << "Num " << num
<< "; key " << i;
}
// Check false positive rate
int result = 0;
for (uint64_t i = 0; i < 10000; i++) {
if (bloom.MayContain(Key(i + 1000000000, buffer))) {
result++;
}
}
double rate = result / 10000.0;
fprintf(stderr,
"False positives: %5.2f%% @ num = %6u, bloom_bits = %6u, "
"enable locality?%u\n",
rate * 100.0, num, bloom_bits, enable_locality);
if (rate > 0.0125)
mediocre_filters++; // Allowed, but not too often
else
good_filters++;
}
fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters,
mediocre_filters);
ASSERT_LE(mediocre_filters, good_filters / 5);
}
}
TEST_F(DynamicBloomTest, perf) {
StopWatchNano timer(Env::Default());
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
if (!FLAGS_enable_perf) {
return;
}
for (uint32_t m = 1; m <= 8; ++m) {
Arena arena;
const uint32_t num_keys = m * 8 * 1024 * 1024;
fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);
DynamicBloom std_bloom(&arena, num_keys * 10, 0, num_probes);
timer.Start();
for (uint64_t i = 1; i <= num_keys; ++i) {
std_bloom.Add(Slice(reinterpret_cast<const char*>(&i), 8));
}
uint64_t elapsed = timer.ElapsedNanos();
fprintf(stderr, "standard bloom, avg add latency %" PRIu64 "\n",
elapsed / num_keys);
uint32_t count = 0;
timer.Start();
for (uint64_t i = 1; i <= num_keys; ++i) {
if (std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8))) {
++count;
}
}
ASSERT_EQ(count, num_keys);
elapsed = timer.ElapsedNanos();
fprintf(stderr, "standard bloom, avg query latency %" PRIu64 "\n",
elapsed / count);
// Locality enabled version
DynamicBloom blocked_bloom(&arena, num_keys * 10, 1, num_probes);
timer.Start();
for (uint64_t i = 1; i <= num_keys; ++i) {
blocked_bloom.Add(Slice(reinterpret_cast<const char*>(&i), 8));
}
elapsed = timer.ElapsedNanos();
fprintf(stderr,
"blocked bloom(enable locality), avg add latency %" PRIu64 "\n",
elapsed / num_keys);
count = 0;
timer.Start();
for (uint64_t i = 1; i <= num_keys; ++i) {
if (blocked_bloom.MayContain(
Slice(reinterpret_cast<const char*>(&i), 8))) {
++count;
}
}
elapsed = timer.ElapsedNanos();
fprintf(stderr,
"blocked bloom(enable locality), avg query latency %" PRIu64 "\n",
elapsed / count);
ASSERT_TRUE(count == num_keys);
}
}
TEST_F(DynamicBloomTest, concurrent_with_perf) {
StopWatchNano timer(Env::Default());
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
uint32_t m_limit = FLAGS_enable_perf ? 8 : 1;
uint32_t locality_limit = FLAGS_enable_perf ? 1 : 0;
uint32_t num_threads = 4;
std::vector<std::thread> threads;
for (uint32_t m = 1; m <= m_limit; ++m) {
for (uint32_t locality = 0; locality <= locality_limit; ++locality) {
Arena arena;
const uint32_t num_keys = m * 8 * 1024 * 1024;
fprintf(stderr, "testing %" PRIu32 "M keys with %" PRIu32 " locality\n",
m * 8, locality);
DynamicBloom std_bloom(&arena, num_keys * 10, locality, num_probes);
timer.Start();
std::function<void(size_t)> adder = [&](size_t t) {
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
std_bloom.AddConcurrently(
Slice(reinterpret_cast<const char*>(&i), 8));
}
};
for (size_t t = 0; t < num_threads; ++t) {
threads.emplace_back(adder, t);
}
while (threads.size() > 0) {
threads.back().join();
threads.pop_back();
}
uint64_t elapsed = timer.ElapsedNanos();
fprintf(stderr, "standard bloom, avg parallel add latency %" PRIu64
" nanos/key\n",
elapsed / num_keys);
timer.Start();
std::function<void(size_t)> hitter = [&](size_t t) {
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
bool f =
std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8));
ASSERT_TRUE(f);
}
};
for (size_t t = 0; t < num_threads; ++t) {
threads.emplace_back(hitter, t);
}
while (threads.size() > 0) {
threads.back().join();
threads.pop_back();
}
elapsed = timer.ElapsedNanos();
fprintf(stderr, "standard bloom, avg parallel hit latency %" PRIu64
" nanos/key\n",
elapsed / num_keys);
timer.Start();
std::atomic<uint32_t> false_positives(0);
std::function<void(size_t)> misser = [&](size_t t) {
for (uint64_t i = num_keys + 1 + t; i <= 2 * num_keys;
i += num_threads) {
bool f =
std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8));
if (f) {
++false_positives;
}
}
};
for (size_t t = 0; t < num_threads; ++t) {
threads.emplace_back(misser, t);
}
while (threads.size() > 0) {
threads.back().join();
threads.pop_back();
}
elapsed = timer.ElapsedNanos();
fprintf(stderr, "standard bloom, avg parallel miss latency %" PRIu64
" nanos/key, %f%% false positive rate\n",
elapsed / num_keys, false_positives.load() * 100.0 / num_keys);
}
}
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}
#endif // GFLAGS