rocksdb/utilities/transactions/transaction_impl.cc
agiardullo c3466eab07 Have Transactions use WriteBatch::RollbackToSavePoint
Summary:
Clean up transactions to use the new RollbackToSavePoint api in WriteBatchWithIndex.

Note, this diff depends on Pessimistic Transactions diff and ManagedSnapshot diff (D40869 and D43293).

Test Plan: unit tests

Reviewers: rven, yhchiang, kradhakrishnan, spetrunia, sdong

Reviewed By: sdong

Subscribers: dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D43371
2015-08-11 17:53:30 -07:00

554 lines
16 KiB
C++

// Copyright (c) 2015, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef ROCKSDB_LITE
#include "utilities/transactions/transaction_impl.h"
#include <map>
#include <set>
#include <string>
#include <vector>
#include "db/column_family.h"
#include "db/db_impl.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/status.h"
#include "rocksdb/utilities/transaction_db.h"
#include "util/string_util.h"
#include "utilities/transactions/transaction_db_impl.h"
#include "utilities/transactions/transaction_util.h"
namespace rocksdb {
struct WriteOptions;
std::atomic<TransactionID> TransactionImpl::txn_id_counter_(1);
TransactionID TransactionImpl::GenTxnID() {
return txn_id_counter_.fetch_add(1);
}
TransactionImpl::TransactionImpl(TransactionDB* txn_db,
const WriteOptions& write_options,
const TransactionOptions& txn_options)
: db_(txn_db),
txn_db_impl_(nullptr),
txn_id_(GenTxnID()),
write_options_(write_options),
cmp_(GetColumnFamilyUserComparator(txn_db->DefaultColumnFamily())),
write_batch_(new WriteBatchWithIndex(cmp_, 0, true)),
start_time_(
txn_options.expiration >= 0 ? db_->GetEnv()->NowMicros() / 1000 : 0),
expiration_time_(txn_options.expiration >= 0
? start_time_ + txn_options.expiration
: 0),
lock_timeout_(txn_options.lock_timeout) {
txn_db_impl_ = dynamic_cast<TransactionDBImpl*>(txn_db);
assert(txn_db_impl_);
if (lock_timeout_ < 0) {
// Lock timeout not set, use default
lock_timeout_ = txn_db_impl_->GetTxnDBOptions().transaction_lock_timeout;
}
if (txn_options.set_snapshot) {
SetSnapshot();
}
}
TransactionImpl::~TransactionImpl() {
txn_db_impl_->UnLock(this, &tracked_keys_);
}
void TransactionImpl::SetSnapshot() {
snapshot_.reset(new ManagedSnapshot(db_));
}
void TransactionImpl::Cleanup() {
write_batch_->Clear();
txn_db_impl_->UnLock(this, &tracked_keys_);
tracked_keys_.clear();
save_points_.reset(nullptr);
}
bool TransactionImpl::IsExpired() const {
if (expiration_time_ > 0) {
if (db_->GetEnv()->NowMicros() >= expiration_time_ * 1000) {
// Transaction is expired.
return true;
}
}
return false;
}
Status TransactionImpl::CommitBatch(WriteBatch* batch) {
TransactionKeyMap keys_to_unlock;
Status s = LockBatch(batch, &keys_to_unlock);
if (s.ok()) {
s = DoCommit(batch);
txn_db_impl_->UnLock(this, &keys_to_unlock);
}
return s;
}
Status TransactionImpl::Commit() {
Status s = DoCommit(write_batch_->GetWriteBatch());
Cleanup();
return s;
}
Status TransactionImpl::DoCommit(WriteBatch* batch) {
Status s;
// Do write directly on base db as TransctionDB::Write() would attempt to
// do conflict checking that we've already done.
DB* db = db_->GetBaseDB();
if (expiration_time_ > 0) {
// We cannot commit a transaction that is expired as its locks might have
// been released.
// To avoid race conditions, we need to use a WriteCallback to check the
// expiration time once we're on the writer thread.
TransactionCallback callback(this);
assert(dynamic_cast<DBImpl*>(db) != nullptr);
auto db_impl = reinterpret_cast<DBImpl*>(db);
s = db_impl->WriteWithCallback(write_options_, batch, &callback);
} else {
s = db->Write(write_options_, batch);
}
return s;
}
void TransactionImpl::Rollback() { Cleanup(); }
void TransactionImpl::SetSavePoint() {
if (save_points_ == nullptr) {
save_points_.reset(new std::stack<std::shared_ptr<ManagedSnapshot>>());
}
save_points_->push(snapshot_);
write_batch_->SetSavePoint();
}
Status TransactionImpl::RollbackToSavePoint() {
if (save_points_ != nullptr && save_points_->size() > 0) {
// Restore saved snapshot
snapshot_ = save_points_->top();
save_points_->pop();
// Rollback batch
Status s = write_batch_->RollbackToSavePoint();
assert(s.ok());
return s;
} else {
assert(write_batch_->RollbackToSavePoint().IsNotFound());
return Status::NotFound();
}
}
// Lock all keys in this batch.
// On success, caller should unlock keys_to_unlock
Status TransactionImpl::LockBatch(WriteBatch* batch,
TransactionKeyMap* keys_to_unlock) {
class Handler : public WriteBatch::Handler {
public:
// Sorted map of column_family_id to sorted set of keys.
// Since LockBatch() always locks keys in sorted order, it cannot deadlock
// with itself. We're not using a comparator here since it doesn't matter
// what the sorting is as long as it's consistent.
std::map<uint32_t, std::set<std::string>> keys_;
Handler() {}
void RecordKey(uint32_t column_family_id, const Slice& key) {
std::string key_str = key.ToString();
auto iter = (keys_)[column_family_id].find(key_str);
if (iter == (keys_)[column_family_id].end()) {
// key not yet seen, store it.
(keys_)[column_family_id].insert({std::move(key_str)});
}
}
virtual Status PutCF(uint32_t column_family_id, const Slice& key,
const Slice& value) override {
RecordKey(column_family_id, key);
return Status::OK();
}
virtual Status MergeCF(uint32_t column_family_id, const Slice& key,
const Slice& value) override {
RecordKey(column_family_id, key);
return Status::OK();
}
virtual Status DeleteCF(uint32_t column_family_id,
const Slice& key) override {
RecordKey(column_family_id, key);
return Status::OK();
}
};
// Iterating on this handler will add all keys in this batch into keys
Handler handler;
batch->Iterate(&handler);
Status s;
// Attempt to lock all keys
for (const auto& cf_iter : handler.keys_) {
uint32_t cfh_id = cf_iter.first;
auto& cfh_keys = cf_iter.second;
for (const auto& key_iter : cfh_keys) {
const std::string& key = key_iter;
s = txn_db_impl_->TryLock(this, cfh_id, key);
if (!s.ok()) {
break;
}
(*keys_to_unlock)[cfh_id].insert({std::move(key), kMaxSequenceNumber});
}
if (!s.ok()) {
break;
}
}
if (!s.ok()) {
txn_db_impl_->UnLock(this, keys_to_unlock);
}
return s;
}
Status TransactionImpl::TryLock(ColumnFamilyHandle* column_family,
const SliceParts& key, bool check_snapshot) {
size_t key_size = 0;
for (int i = 0; i < key.num_parts; ++i) {
key_size += key.parts[i].size();
}
std::string str;
str.reserve(key_size);
for (int i = 0; i < key.num_parts; ++i) {
str.append(key.parts[i].data(), key.parts[i].size());
}
return TryLock(column_family, str, check_snapshot);
}
// Attempt to lock this key.
// Returns OK if the key has been successfully locked. Non-ok, otherwise.
// If check_shapshot is true and this transaction has a snapshot set,
// this key will only be locked if there have been no writes to this key since
// the snapshot time.
Status TransactionImpl::TryLock(ColumnFamilyHandle* column_family,
const Slice& key, bool check_snapshot) {
uint32_t cfh_id = GetColumnFamilyID(column_family);
std::string key_str = key.ToString();
bool previously_locked;
Status s;
// lock this key if this transactions hasn't already locked it
auto iter = tracked_keys_[cfh_id].find(key_str);
if (iter == tracked_keys_[cfh_id].end()) {
previously_locked = false;
s = txn_db_impl_->TryLock(this, cfh_id, key_str);
if (s.ok()) {
// Record that we've locked this key
auto result = tracked_keys_[cfh_id].insert({key_str, kMaxSequenceNumber});
iter = result.first;
}
} else {
previously_locked = true;
}
if (s.ok()) {
// If a snapshot is set, we need to make sure the key hasn't been modified
// since the snapshot. This must be done after we locked the key.
if (!check_snapshot || snapshot_ == nullptr) {
// Need to remember the earliest sequence number that we know that this
// key has not been modified after. This is useful if this same
// transaction
// later tries to lock this key again.
if (iter->second == kMaxSequenceNumber) {
// Since we haven't checked a snapshot, we only know this key has not
// been modified since after we locked it.
iter->second = db_->GetLatestSequenceNumber();
}
} else {
// If the key has been previous validated at a sequence number earlier
// than the curent snapshot's sequence number, we already know it has not
// been modified.
SequenceNumber seq = snapshot_->snapshot()->GetSequenceNumber();
bool already_validated = iter->second <= seq;
if (!already_validated) {
s = CheckKeySequence(column_family, key);
if (s.ok()) {
// Record that there have been no writes to this key after this
// sequence.
iter->second = seq;
} else {
// Failed to validate key
if (!previously_locked) {
// Unlock key we just locked
txn_db_impl_->UnLock(this, cfh_id, key.ToString());
tracked_keys_[cfh_id].erase(iter);
}
}
}
}
}
return s;
}
// Return OK() if this key has not been modified more recently than the
// transaction snapshot_.
Status TransactionImpl::CheckKeySequence(ColumnFamilyHandle* column_family,
const Slice& key) {
Status result;
if (snapshot_ != nullptr) {
assert(dynamic_cast<DBImpl*>(db_->GetBaseDB()) != nullptr);
auto db_impl = reinterpret_cast<DBImpl*>(db_->GetBaseDB());
ColumnFamilyHandle* cfh = column_family ? column_family :
db_impl->DefaultColumnFamily();
result = TransactionUtil::CheckKeyForConflicts(
db_impl, cfh, key.ToString(),
snapshot_->snapshot()->GetSequenceNumber());
}
return result;
}
Status TransactionImpl::Get(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
std::string* value) {
return write_batch_->GetFromBatchAndDB(db_, read_options, column_family, key,
value);
}
Status TransactionImpl::GetForUpdate(const ReadOptions& read_options,
ColumnFamilyHandle* column_family,
const Slice& key, std::string* value) {
Status s = TryLock(column_family, key);
if (s.ok() && value != nullptr) {
s = Get(read_options, column_family, key, value);
}
return s;
}
std::vector<Status> TransactionImpl::MultiGet(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values) {
size_t num_keys = keys.size();
values->resize(num_keys);
std::vector<Status> stat_list(num_keys);
for (size_t i = 0; i < num_keys; ++i) {
std::string* value = values ? &(*values)[i] : nullptr;
stat_list[i] = Get(read_options, column_family[i], keys[i], value);
}
return stat_list;
}
std::vector<Status> TransactionImpl::MultiGetForUpdate(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values) {
// Regardless of whether the MultiGet succeeded, track these keys.
size_t num_keys = keys.size();
values->resize(num_keys);
// Lock all keys
for (size_t i = 0; i < num_keys; ++i) {
Status s = TryLock(column_family[i], keys[i]);
if (!s.ok()) {
// Fail entire multiget if we cannot lock all keys
return std::vector<Status>(num_keys, s);
}
}
// TODO(agiardullo): optimize multiget?
std::vector<Status> stat_list(num_keys);
for (size_t i = 0; i < num_keys; ++i) {
std::string* value = values ? &(*values)[i] : nullptr;
stat_list[i] = Get(read_options, column_family[i], keys[i], value);
}
return stat_list;
}
Iterator* TransactionImpl::GetIterator(const ReadOptions& read_options) {
Iterator* db_iter = db_->NewIterator(read_options);
assert(db_iter);
return write_batch_->NewIteratorWithBase(db_iter);
}
Iterator* TransactionImpl::GetIterator(const ReadOptions& read_options,
ColumnFamilyHandle* column_family) {
Iterator* db_iter = db_->NewIterator(read_options, column_family);
assert(db_iter);
return write_batch_->NewIteratorWithBase(column_family, db_iter);
}
Status TransactionImpl::Put(ColumnFamilyHandle* column_family, const Slice& key,
const Slice& value) {
Status s = TryLock(column_family, key);
if (s.ok()) {
write_batch_->Put(column_family, key, value);
}
return s;
}
Status TransactionImpl::Put(ColumnFamilyHandle* column_family,
const SliceParts& key, const SliceParts& value) {
Status s = TryLock(column_family, key);
if (s.ok()) {
write_batch_->Put(column_family, key, value);
}
return s;
}
Status TransactionImpl::Merge(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
Status s = TryLock(column_family, key);
if (s.ok()) {
write_batch_->Merge(column_family, key, value);
}
return s;
}
Status TransactionImpl::Delete(ColumnFamilyHandle* column_family,
const Slice& key) {
Status s = TryLock(column_family, key);
if (s.ok()) {
write_batch_->Delete(column_family, key);
}
return s;
}
Status TransactionImpl::Delete(ColumnFamilyHandle* column_family,
const SliceParts& key) {
Status s = TryLock(column_family, key);
if (s.ok()) {
write_batch_->Delete(column_family, key);
}
return s;
}
Status TransactionImpl::PutUntracked(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
// Even though we do not care about doing conflict checking for this write,
// we still need to take a lock to make sure we do not cause a conflict with
// some other write. However, we do not need to check if there have been
// any writes since this transaction's snapshot.
bool check_snapshot = false;
// TODO(agiardullo): could optimize by supporting shared txn locks in the
// future
Status s = TryLock(column_family, key, check_snapshot);
if (s.ok()) {
write_batch_->Put(column_family, key, value);
}
return s;
}
Status TransactionImpl::PutUntracked(ColumnFamilyHandle* column_family,
const SliceParts& key,
const SliceParts& value) {
bool check_snapshot = false;
Status s = TryLock(column_family, key, check_snapshot);
if (s.ok()) {
write_batch_->Put(column_family, key, value);
}
return s;
}
Status TransactionImpl::MergeUntracked(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
bool check_snapshot = false;
Status s = TryLock(column_family, key, check_snapshot);
if (s.ok()) {
write_batch_->Merge(column_family, key, value);
}
return s;
}
Status TransactionImpl::DeleteUntracked(ColumnFamilyHandle* column_family,
const Slice& key) {
bool check_snapshot = false;
Status s = TryLock(column_family, key, check_snapshot);
if (s.ok()) {
write_batch_->Delete(column_family, key);
}
return s;
}
Status TransactionImpl::DeleteUntracked(ColumnFamilyHandle* column_family,
const SliceParts& key) {
bool check_snapshot = false;
Status s = TryLock(column_family, key, check_snapshot);
if (s.ok()) {
write_batch_->Delete(column_family, key);
}
return s;
}
void TransactionImpl::PutLogData(const Slice& blob) {
write_batch_->PutLogData(blob);
}
WriteBatchWithIndex* TransactionImpl::GetWriteBatch() {
return write_batch_.get();
}
} // namespace rocksdb
#endif // ROCKSDB_LITE