mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-29 18:33:58 +00:00
8d73137ae8
Summary: In the current code base, we can use Directory from Env to manage directory (e.g, Fsync()). The PR https://github.com/facebook/rocksdb/issues/5761 introduce the File System as a new Env API. So we further replace the Directory class in DB with FSDirectory such that we can have more IO information from IOStatus returned by FSDirectory. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6468 Test Plan: pass make asan_check Differential Revision: D20195261 Pulled By: zhichao-cao fbshipit-source-id: 93962cb9436852bfcfb76e086d9e7babd461cbe1
1701 lines
66 KiB
C++
1701 lines
66 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <functional>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <set>
|
|
#include <thread>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "db/builder.h"
|
|
#include "db/compaction/compaction_job.h"
|
|
#include "db/db_impl/db_impl.h"
|
|
#include "db/db_iter.h"
|
|
#include "db/dbformat.h"
|
|
#include "db/error_handler.h"
|
|
#include "db/event_helpers.h"
|
|
#include "db/log_reader.h"
|
|
#include "db/log_writer.h"
|
|
#include "db/memtable.h"
|
|
#include "db/memtable_list.h"
|
|
#include "db/merge_context.h"
|
|
#include "db/merge_helper.h"
|
|
#include "db/range_del_aggregator.h"
|
|
#include "db/version_set.h"
|
|
#include "file/filename.h"
|
|
#include "file/read_write_util.h"
|
|
#include "file/sst_file_manager_impl.h"
|
|
#include "file/writable_file_writer.h"
|
|
#include "logging/log_buffer.h"
|
|
#include "logging/logging.h"
|
|
#include "monitoring/iostats_context_imp.h"
|
|
#include "monitoring/perf_context_imp.h"
|
|
#include "monitoring/thread_status_util.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/statistics.h"
|
|
#include "rocksdb/status.h"
|
|
#include "rocksdb/table.h"
|
|
#include "table/block_based/block.h"
|
|
#include "table/block_based/block_based_table_factory.h"
|
|
#include "table/merging_iterator.h"
|
|
#include "table/table_builder.h"
|
|
#include "test_util/sync_point.h"
|
|
#include "util/coding.h"
|
|
#include "util/mutexlock.h"
|
|
#include "util/random.h"
|
|
#include "util/stop_watch.h"
|
|
#include "util/string_util.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
const char* GetCompactionReasonString(CompactionReason compaction_reason) {
|
|
switch (compaction_reason) {
|
|
case CompactionReason::kUnknown:
|
|
return "Unknown";
|
|
case CompactionReason::kLevelL0FilesNum:
|
|
return "LevelL0FilesNum";
|
|
case CompactionReason::kLevelMaxLevelSize:
|
|
return "LevelMaxLevelSize";
|
|
case CompactionReason::kUniversalSizeAmplification:
|
|
return "UniversalSizeAmplification";
|
|
case CompactionReason::kUniversalSizeRatio:
|
|
return "UniversalSizeRatio";
|
|
case CompactionReason::kUniversalSortedRunNum:
|
|
return "UniversalSortedRunNum";
|
|
case CompactionReason::kFIFOMaxSize:
|
|
return "FIFOMaxSize";
|
|
case CompactionReason::kFIFOReduceNumFiles:
|
|
return "FIFOReduceNumFiles";
|
|
case CompactionReason::kFIFOTtl:
|
|
return "FIFOTtl";
|
|
case CompactionReason::kManualCompaction:
|
|
return "ManualCompaction";
|
|
case CompactionReason::kFilesMarkedForCompaction:
|
|
return "FilesMarkedForCompaction";
|
|
case CompactionReason::kBottommostFiles:
|
|
return "BottommostFiles";
|
|
case CompactionReason::kTtl:
|
|
return "Ttl";
|
|
case CompactionReason::kFlush:
|
|
return "Flush";
|
|
case CompactionReason::kExternalSstIngestion:
|
|
return "ExternalSstIngestion";
|
|
case CompactionReason::kPeriodicCompaction:
|
|
return "PeriodicCompaction";
|
|
case CompactionReason::kNumOfReasons:
|
|
// fall through
|
|
default:
|
|
assert(false);
|
|
return "Invalid";
|
|
}
|
|
}
|
|
|
|
// Maintains state for each sub-compaction
|
|
struct CompactionJob::SubcompactionState {
|
|
const Compaction* compaction;
|
|
std::unique_ptr<CompactionIterator> c_iter;
|
|
|
|
// The boundaries of the key-range this compaction is interested in. No two
|
|
// subcompactions may have overlapping key-ranges.
|
|
// 'start' is inclusive, 'end' is exclusive, and nullptr means unbounded
|
|
Slice *start, *end;
|
|
|
|
// The return status of this subcompaction
|
|
Status status;
|
|
|
|
// Files produced by this subcompaction
|
|
struct Output {
|
|
FileMetaData meta;
|
|
bool finished;
|
|
std::shared_ptr<const TableProperties> table_properties;
|
|
};
|
|
|
|
// State kept for output being generated
|
|
std::vector<Output> outputs;
|
|
std::unique_ptr<WritableFileWriter> outfile;
|
|
std::unique_ptr<TableBuilder> builder;
|
|
Output* current_output() {
|
|
if (outputs.empty()) {
|
|
// This subcompaction's outptut could be empty if compaction was aborted
|
|
// before this subcompaction had a chance to generate any output files.
|
|
// When subcompactions are executed sequentially this is more likely and
|
|
// will be particulalry likely for the later subcompactions to be empty.
|
|
// Once they are run in parallel however it should be much rarer.
|
|
return nullptr;
|
|
} else {
|
|
return &outputs.back();
|
|
}
|
|
}
|
|
|
|
uint64_t current_output_file_size;
|
|
|
|
// State during the subcompaction
|
|
uint64_t total_bytes;
|
|
uint64_t num_output_records;
|
|
CompactionJobStats compaction_job_stats;
|
|
uint64_t approx_size;
|
|
// An index that used to speed up ShouldStopBefore().
|
|
size_t grandparent_index = 0;
|
|
// The number of bytes overlapping between the current output and
|
|
// grandparent files used in ShouldStopBefore().
|
|
uint64_t overlapped_bytes = 0;
|
|
// A flag determine whether the key has been seen in ShouldStopBefore()
|
|
bool seen_key = false;
|
|
|
|
SubcompactionState(Compaction* c, Slice* _start, Slice* _end,
|
|
uint64_t size = 0)
|
|
: compaction(c),
|
|
start(_start),
|
|
end(_end),
|
|
outfile(nullptr),
|
|
builder(nullptr),
|
|
current_output_file_size(0),
|
|
total_bytes(0),
|
|
num_output_records(0),
|
|
approx_size(size),
|
|
grandparent_index(0),
|
|
overlapped_bytes(0),
|
|
seen_key(false) {
|
|
assert(compaction != nullptr);
|
|
}
|
|
|
|
SubcompactionState(SubcompactionState&& o) { *this = std::move(o); }
|
|
|
|
SubcompactionState& operator=(SubcompactionState&& o) {
|
|
compaction = std::move(o.compaction);
|
|
start = std::move(o.start);
|
|
end = std::move(o.end);
|
|
status = std::move(o.status);
|
|
outputs = std::move(o.outputs);
|
|
outfile = std::move(o.outfile);
|
|
builder = std::move(o.builder);
|
|
current_output_file_size = std::move(o.current_output_file_size);
|
|
total_bytes = std::move(o.total_bytes);
|
|
num_output_records = std::move(o.num_output_records);
|
|
compaction_job_stats = std::move(o.compaction_job_stats);
|
|
approx_size = std::move(o.approx_size);
|
|
grandparent_index = std::move(o.grandparent_index);
|
|
overlapped_bytes = std::move(o.overlapped_bytes);
|
|
seen_key = std::move(o.seen_key);
|
|
return *this;
|
|
}
|
|
|
|
// Because member std::unique_ptrs do not have these.
|
|
SubcompactionState(const SubcompactionState&) = delete;
|
|
|
|
SubcompactionState& operator=(const SubcompactionState&) = delete;
|
|
|
|
// Returns true iff we should stop building the current output
|
|
// before processing "internal_key".
|
|
bool ShouldStopBefore(const Slice& internal_key, uint64_t curr_file_size) {
|
|
const InternalKeyComparator* icmp =
|
|
&compaction->column_family_data()->internal_comparator();
|
|
const std::vector<FileMetaData*>& grandparents = compaction->grandparents();
|
|
|
|
// Scan to find earliest grandparent file that contains key.
|
|
while (grandparent_index < grandparents.size() &&
|
|
icmp->Compare(internal_key,
|
|
grandparents[grandparent_index]->largest.Encode()) >
|
|
0) {
|
|
if (seen_key) {
|
|
overlapped_bytes += grandparents[grandparent_index]->fd.GetFileSize();
|
|
}
|
|
assert(grandparent_index + 1 >= grandparents.size() ||
|
|
icmp->Compare(
|
|
grandparents[grandparent_index]->largest.Encode(),
|
|
grandparents[grandparent_index + 1]->smallest.Encode()) <= 0);
|
|
grandparent_index++;
|
|
}
|
|
seen_key = true;
|
|
|
|
if (overlapped_bytes + curr_file_size >
|
|
compaction->max_compaction_bytes()) {
|
|
// Too much overlap for current output; start new output
|
|
overlapped_bytes = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Maintains state for the entire compaction
|
|
struct CompactionJob::CompactionState {
|
|
Compaction* const compaction;
|
|
|
|
// REQUIRED: subcompaction states are stored in order of increasing
|
|
// key-range
|
|
std::vector<CompactionJob::SubcompactionState> sub_compact_states;
|
|
Status status;
|
|
|
|
uint64_t total_bytes;
|
|
uint64_t num_output_records;
|
|
|
|
explicit CompactionState(Compaction* c)
|
|
: compaction(c),
|
|
total_bytes(0),
|
|
num_output_records(0) {}
|
|
|
|
size_t NumOutputFiles() {
|
|
size_t total = 0;
|
|
for (auto& s : sub_compact_states) {
|
|
total += s.outputs.size();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
Slice SmallestUserKey() {
|
|
for (const auto& sub_compact_state : sub_compact_states) {
|
|
if (!sub_compact_state.outputs.empty() &&
|
|
sub_compact_state.outputs[0].finished) {
|
|
return sub_compact_state.outputs[0].meta.smallest.user_key();
|
|
}
|
|
}
|
|
// If there is no finished output, return an empty slice.
|
|
return Slice(nullptr, 0);
|
|
}
|
|
|
|
Slice LargestUserKey() {
|
|
for (auto it = sub_compact_states.rbegin(); it < sub_compact_states.rend();
|
|
++it) {
|
|
if (!it->outputs.empty() && it->current_output()->finished) {
|
|
assert(it->current_output() != nullptr);
|
|
return it->current_output()->meta.largest.user_key();
|
|
}
|
|
}
|
|
// If there is no finished output, return an empty slice.
|
|
return Slice(nullptr, 0);
|
|
}
|
|
};
|
|
|
|
void CompactionJob::AggregateStatistics() {
|
|
for (SubcompactionState& sc : compact_->sub_compact_states) {
|
|
compact_->total_bytes += sc.total_bytes;
|
|
compact_->num_output_records += sc.num_output_records;
|
|
}
|
|
if (compaction_job_stats_) {
|
|
for (SubcompactionState& sc : compact_->sub_compact_states) {
|
|
compaction_job_stats_->Add(sc.compaction_job_stats);
|
|
}
|
|
}
|
|
}
|
|
|
|
CompactionJob::CompactionJob(
|
|
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
|
|
const FileOptions& file_options, VersionSet* versions,
|
|
const std::atomic<bool>* shutting_down,
|
|
const SequenceNumber preserve_deletes_seqnum, LogBuffer* log_buffer,
|
|
FSDirectory* db_directory, FSDirectory* output_directory, Statistics* stats,
|
|
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
|
|
std::vector<SequenceNumber> existing_snapshots,
|
|
SequenceNumber earliest_write_conflict_snapshot,
|
|
const SnapshotChecker* snapshot_checker, std::shared_ptr<Cache> table_cache,
|
|
EventLogger* event_logger, bool paranoid_file_checks, bool measure_io_stats,
|
|
const std::string& dbname, CompactionJobStats* compaction_job_stats,
|
|
Env::Priority thread_pri, const std::atomic<bool>* manual_compaction_paused)
|
|
: job_id_(job_id),
|
|
compact_(new CompactionState(compaction)),
|
|
compaction_job_stats_(compaction_job_stats),
|
|
compaction_stats_(compaction->compaction_reason(), 1),
|
|
dbname_(dbname),
|
|
db_options_(db_options),
|
|
file_options_(file_options),
|
|
env_(db_options.env),
|
|
fs_(db_options.fs.get()),
|
|
file_options_for_read_(
|
|
fs_->OptimizeForCompactionTableRead(file_options, db_options_)),
|
|
versions_(versions),
|
|
shutting_down_(shutting_down),
|
|
manual_compaction_paused_(manual_compaction_paused),
|
|
preserve_deletes_seqnum_(preserve_deletes_seqnum),
|
|
log_buffer_(log_buffer),
|
|
db_directory_(db_directory),
|
|
output_directory_(output_directory),
|
|
stats_(stats),
|
|
db_mutex_(db_mutex),
|
|
db_error_handler_(db_error_handler),
|
|
existing_snapshots_(std::move(existing_snapshots)),
|
|
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
|
|
snapshot_checker_(snapshot_checker),
|
|
table_cache_(std::move(table_cache)),
|
|
event_logger_(event_logger),
|
|
bottommost_level_(false),
|
|
paranoid_file_checks_(paranoid_file_checks),
|
|
measure_io_stats_(measure_io_stats),
|
|
write_hint_(Env::WLTH_NOT_SET),
|
|
thread_pri_(thread_pri) {
|
|
assert(log_buffer_ != nullptr);
|
|
const auto* cfd = compact_->compaction->column_family_data();
|
|
ThreadStatusUtil::SetColumnFamily(cfd, cfd->ioptions()->env,
|
|
db_options_.enable_thread_tracking);
|
|
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
|
|
ReportStartedCompaction(compaction);
|
|
}
|
|
|
|
CompactionJob::~CompactionJob() {
|
|
assert(compact_ == nullptr);
|
|
ThreadStatusUtil::ResetThreadStatus();
|
|
}
|
|
|
|
void CompactionJob::ReportStartedCompaction(Compaction* compaction) {
|
|
const auto* cfd = compact_->compaction->column_family_data();
|
|
ThreadStatusUtil::SetColumnFamily(cfd, cfd->ioptions()->env,
|
|
db_options_.enable_thread_tracking);
|
|
|
|
ThreadStatusUtil::SetThreadOperationProperty(ThreadStatus::COMPACTION_JOB_ID,
|
|
job_id_);
|
|
|
|
ThreadStatusUtil::SetThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_INPUT_OUTPUT_LEVEL,
|
|
(static_cast<uint64_t>(compact_->compaction->start_level()) << 32) +
|
|
compact_->compaction->output_level());
|
|
|
|
// In the current design, a CompactionJob is always created
|
|
// for non-trivial compaction.
|
|
assert(compaction->IsTrivialMove() == false ||
|
|
compaction->is_manual_compaction() == true);
|
|
|
|
ThreadStatusUtil::SetThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_PROP_FLAGS,
|
|
compaction->is_manual_compaction() +
|
|
(compaction->deletion_compaction() << 1));
|
|
|
|
ThreadStatusUtil::SetThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_TOTAL_INPUT_BYTES,
|
|
compaction->CalculateTotalInputSize());
|
|
|
|
IOSTATS_RESET(bytes_written);
|
|
IOSTATS_RESET(bytes_read);
|
|
ThreadStatusUtil::SetThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_BYTES_WRITTEN, 0);
|
|
ThreadStatusUtil::SetThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_BYTES_READ, 0);
|
|
|
|
// Set the thread operation after operation properties
|
|
// to ensure GetThreadList() can always show them all together.
|
|
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
|
|
|
|
if (compaction_job_stats_) {
|
|
compaction_job_stats_->is_manual_compaction =
|
|
compaction->is_manual_compaction();
|
|
}
|
|
}
|
|
|
|
void CompactionJob::Prepare() {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_COMPACTION_PREPARE);
|
|
|
|
// Generate file_levels_ for compaction berfore making Iterator
|
|
auto* c = compact_->compaction;
|
|
assert(c->column_family_data() != nullptr);
|
|
assert(c->column_family_data()->current()->storage_info()->NumLevelFiles(
|
|
compact_->compaction->level()) > 0);
|
|
|
|
write_hint_ =
|
|
c->column_family_data()->CalculateSSTWriteHint(c->output_level());
|
|
bottommost_level_ = c->bottommost_level();
|
|
|
|
if (c->ShouldFormSubcompactions()) {
|
|
{
|
|
StopWatch sw(env_, stats_, SUBCOMPACTION_SETUP_TIME);
|
|
GenSubcompactionBoundaries();
|
|
}
|
|
assert(sizes_.size() == boundaries_.size() + 1);
|
|
|
|
for (size_t i = 0; i <= boundaries_.size(); i++) {
|
|
Slice* start = i == 0 ? nullptr : &boundaries_[i - 1];
|
|
Slice* end = i == boundaries_.size() ? nullptr : &boundaries_[i];
|
|
compact_->sub_compact_states.emplace_back(c, start, end, sizes_[i]);
|
|
}
|
|
RecordInHistogram(stats_, NUM_SUBCOMPACTIONS_SCHEDULED,
|
|
compact_->sub_compact_states.size());
|
|
} else {
|
|
compact_->sub_compact_states.emplace_back(c, nullptr, nullptr);
|
|
}
|
|
}
|
|
|
|
struct RangeWithSize {
|
|
Range range;
|
|
uint64_t size;
|
|
|
|
RangeWithSize(const Slice& a, const Slice& b, uint64_t s = 0)
|
|
: range(a, b), size(s) {}
|
|
};
|
|
|
|
void CompactionJob::GenSubcompactionBoundaries() {
|
|
auto* c = compact_->compaction;
|
|
auto* cfd = c->column_family_data();
|
|
const Comparator* cfd_comparator = cfd->user_comparator();
|
|
std::vector<Slice> bounds;
|
|
int start_lvl = c->start_level();
|
|
int out_lvl = c->output_level();
|
|
|
|
// Add the starting and/or ending key of certain input files as a potential
|
|
// boundary
|
|
for (size_t lvl_idx = 0; lvl_idx < c->num_input_levels(); lvl_idx++) {
|
|
int lvl = c->level(lvl_idx);
|
|
if (lvl >= start_lvl && lvl <= out_lvl) {
|
|
const LevelFilesBrief* flevel = c->input_levels(lvl_idx);
|
|
size_t num_files = flevel->num_files;
|
|
|
|
if (num_files == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (lvl == 0) {
|
|
// For level 0 add the starting and ending key of each file since the
|
|
// files may have greatly differing key ranges (not range-partitioned)
|
|
for (size_t i = 0; i < num_files; i++) {
|
|
bounds.emplace_back(flevel->files[i].smallest_key);
|
|
bounds.emplace_back(flevel->files[i].largest_key);
|
|
}
|
|
} else {
|
|
// For all other levels add the smallest/largest key in the level to
|
|
// encompass the range covered by that level
|
|
bounds.emplace_back(flevel->files[0].smallest_key);
|
|
bounds.emplace_back(flevel->files[num_files - 1].largest_key);
|
|
if (lvl == out_lvl) {
|
|
// For the last level include the starting keys of all files since
|
|
// the last level is the largest and probably has the widest key
|
|
// range. Since it's range partitioned, the ending key of one file
|
|
// and the starting key of the next are very close (or identical).
|
|
for (size_t i = 1; i < num_files; i++) {
|
|
bounds.emplace_back(flevel->files[i].smallest_key);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::sort(bounds.begin(), bounds.end(),
|
|
[cfd_comparator](const Slice& a, const Slice& b) -> bool {
|
|
return cfd_comparator->Compare(ExtractUserKey(a),
|
|
ExtractUserKey(b)) < 0;
|
|
});
|
|
// Remove duplicated entries from bounds
|
|
bounds.erase(
|
|
std::unique(bounds.begin(), bounds.end(),
|
|
[cfd_comparator](const Slice& a, const Slice& b) -> bool {
|
|
return cfd_comparator->Compare(ExtractUserKey(a),
|
|
ExtractUserKey(b)) == 0;
|
|
}),
|
|
bounds.end());
|
|
|
|
// Combine consecutive pairs of boundaries into ranges with an approximate
|
|
// size of data covered by keys in that range
|
|
uint64_t sum = 0;
|
|
std::vector<RangeWithSize> ranges;
|
|
// Get input version from CompactionState since it's already referenced
|
|
// earlier in SetInputVersioCompaction::SetInputVersion and will not change
|
|
// when db_mutex_ is released below
|
|
auto* v = compact_->compaction->input_version();
|
|
for (auto it = bounds.begin();;) {
|
|
const Slice a = *it;
|
|
++it;
|
|
|
|
if (it == bounds.end()) {
|
|
break;
|
|
}
|
|
|
|
const Slice b = *it;
|
|
|
|
// ApproximateSize could potentially create table reader iterator to seek
|
|
// to the index block and may incur I/O cost in the process. Unlock db
|
|
// mutex to reduce contention
|
|
db_mutex_->Unlock();
|
|
uint64_t size = versions_->ApproximateSize(SizeApproximationOptions(), v, a,
|
|
b, start_lvl, out_lvl + 1,
|
|
TableReaderCaller::kCompaction);
|
|
db_mutex_->Lock();
|
|
ranges.emplace_back(a, b, size);
|
|
sum += size;
|
|
}
|
|
|
|
// Group the ranges into subcompactions
|
|
const double min_file_fill_percent = 4.0 / 5;
|
|
int base_level = v->storage_info()->base_level();
|
|
uint64_t max_output_files = static_cast<uint64_t>(std::ceil(
|
|
sum / min_file_fill_percent /
|
|
MaxFileSizeForLevel(*(c->mutable_cf_options()), out_lvl,
|
|
c->immutable_cf_options()->compaction_style, base_level,
|
|
c->immutable_cf_options()->level_compaction_dynamic_level_bytes)));
|
|
uint64_t subcompactions =
|
|
std::min({static_cast<uint64_t>(ranges.size()),
|
|
static_cast<uint64_t>(c->max_subcompactions()),
|
|
max_output_files});
|
|
|
|
if (subcompactions > 1) {
|
|
double mean = sum * 1.0 / subcompactions;
|
|
// Greedily add ranges to the subcompaction until the sum of the ranges'
|
|
// sizes becomes >= the expected mean size of a subcompaction
|
|
sum = 0;
|
|
for (size_t i = 0; i < ranges.size() - 1; i++) {
|
|
sum += ranges[i].size;
|
|
if (subcompactions == 1) {
|
|
// If there's only one left to schedule then it goes to the end so no
|
|
// need to put an end boundary
|
|
continue;
|
|
}
|
|
if (sum >= mean) {
|
|
boundaries_.emplace_back(ExtractUserKey(ranges[i].range.limit));
|
|
sizes_.emplace_back(sum);
|
|
subcompactions--;
|
|
sum = 0;
|
|
}
|
|
}
|
|
sizes_.emplace_back(sum + ranges.back().size);
|
|
} else {
|
|
// Only one range so its size is the total sum of sizes computed above
|
|
sizes_.emplace_back(sum);
|
|
}
|
|
}
|
|
|
|
Status CompactionJob::Run() {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_COMPACTION_RUN);
|
|
TEST_SYNC_POINT("CompactionJob::Run():Start");
|
|
log_buffer_->FlushBufferToLog();
|
|
LogCompaction();
|
|
|
|
const size_t num_threads = compact_->sub_compact_states.size();
|
|
assert(num_threads > 0);
|
|
const uint64_t start_micros = env_->NowMicros();
|
|
|
|
// Launch a thread for each of subcompactions 1...num_threads-1
|
|
std::vector<port::Thread> thread_pool;
|
|
thread_pool.reserve(num_threads - 1);
|
|
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
|
|
thread_pool.emplace_back(&CompactionJob::ProcessKeyValueCompaction, this,
|
|
&compact_->sub_compact_states[i]);
|
|
}
|
|
|
|
// Always schedule the first subcompaction (whether or not there are also
|
|
// others) in the current thread to be efficient with resources
|
|
ProcessKeyValueCompaction(&compact_->sub_compact_states[0]);
|
|
|
|
// Wait for all other threads (if there are any) to finish execution
|
|
for (auto& thread : thread_pool) {
|
|
thread.join();
|
|
}
|
|
|
|
compaction_stats_.micros = env_->NowMicros() - start_micros;
|
|
compaction_stats_.cpu_micros = 0;
|
|
for (size_t i = 0; i < compact_->sub_compact_states.size(); i++) {
|
|
compaction_stats_.cpu_micros +=
|
|
compact_->sub_compact_states[i].compaction_job_stats.cpu_micros;
|
|
}
|
|
|
|
RecordTimeToHistogram(stats_, COMPACTION_TIME, compaction_stats_.micros);
|
|
RecordTimeToHistogram(stats_, COMPACTION_CPU_TIME,
|
|
compaction_stats_.cpu_micros);
|
|
|
|
TEST_SYNC_POINT("CompactionJob::Run:BeforeVerify");
|
|
|
|
// Check if any thread encountered an error during execution
|
|
Status status;
|
|
for (const auto& state : compact_->sub_compact_states) {
|
|
if (!state.status.ok()) {
|
|
status = state.status;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (status.ok() && output_directory_) {
|
|
status = output_directory_->Fsync(IOOptions(), nullptr);
|
|
}
|
|
|
|
if (status.ok()) {
|
|
thread_pool.clear();
|
|
std::vector<const FileMetaData*> files_meta;
|
|
for (const auto& state : compact_->sub_compact_states) {
|
|
for (const auto& output : state.outputs) {
|
|
files_meta.emplace_back(&output.meta);
|
|
}
|
|
}
|
|
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
|
|
auto prefix_extractor =
|
|
compact_->compaction->mutable_cf_options()->prefix_extractor.get();
|
|
std::atomic<size_t> next_file_meta_idx(0);
|
|
auto verify_table = [&](Status& output_status) {
|
|
while (true) {
|
|
size_t file_idx = next_file_meta_idx.fetch_add(1);
|
|
if (file_idx >= files_meta.size()) {
|
|
break;
|
|
}
|
|
// Verify that the table is usable
|
|
// We set for_compaction to false and don't OptimizeForCompactionTableRead
|
|
// here because this is a special case after we finish the table building
|
|
// No matter whether use_direct_io_for_flush_and_compaction is true,
|
|
// we will regard this verification as user reads since the goal is
|
|
// to cache it here for further user reads
|
|
InternalIterator* iter = cfd->table_cache()->NewIterator(
|
|
ReadOptions(), file_options_, cfd->internal_comparator(),
|
|
*files_meta[file_idx], /*range_del_agg=*/nullptr, prefix_extractor,
|
|
/*table_reader_ptr=*/nullptr,
|
|
cfd->internal_stats()->GetFileReadHist(
|
|
compact_->compaction->output_level()),
|
|
TableReaderCaller::kCompactionRefill, /*arena=*/nullptr,
|
|
/*skip_filters=*/false, compact_->compaction->output_level(),
|
|
/*smallest_compaction_key=*/nullptr,
|
|
/*largest_compaction_key=*/nullptr);
|
|
auto s = iter->status();
|
|
|
|
if (s.ok() && paranoid_file_checks_) {
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {}
|
|
s = iter->status();
|
|
}
|
|
|
|
delete iter;
|
|
|
|
if (!s.ok()) {
|
|
output_status = s;
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
|
|
thread_pool.emplace_back(verify_table,
|
|
std::ref(compact_->sub_compact_states[i].status));
|
|
}
|
|
verify_table(compact_->sub_compact_states[0].status);
|
|
for (auto& thread : thread_pool) {
|
|
thread.join();
|
|
}
|
|
for (const auto& state : compact_->sub_compact_states) {
|
|
if (!state.status.ok()) {
|
|
status = state.status;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
TablePropertiesCollection tp;
|
|
for (const auto& state : compact_->sub_compact_states) {
|
|
for (const auto& output : state.outputs) {
|
|
auto fn =
|
|
TableFileName(state.compaction->immutable_cf_options()->cf_paths,
|
|
output.meta.fd.GetNumber(), output.meta.fd.GetPathId());
|
|
tp[fn] = output.table_properties;
|
|
}
|
|
}
|
|
compact_->compaction->SetOutputTableProperties(std::move(tp));
|
|
|
|
// Finish up all book-keeping to unify the subcompaction results
|
|
AggregateStatistics();
|
|
UpdateCompactionStats();
|
|
RecordCompactionIOStats();
|
|
LogFlush(db_options_.info_log);
|
|
TEST_SYNC_POINT("CompactionJob::Run():End");
|
|
|
|
compact_->status = status;
|
|
return status;
|
|
}
|
|
|
|
Status CompactionJob::Install(const MutableCFOptions& mutable_cf_options) {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_COMPACTION_INSTALL);
|
|
db_mutex_->AssertHeld();
|
|
Status status = compact_->status;
|
|
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
|
|
cfd->internal_stats()->AddCompactionStats(
|
|
compact_->compaction->output_level(), thread_pri_, compaction_stats_);
|
|
|
|
if (status.ok()) {
|
|
status = InstallCompactionResults(mutable_cf_options);
|
|
}
|
|
VersionStorageInfo::LevelSummaryStorage tmp;
|
|
auto vstorage = cfd->current()->storage_info();
|
|
const auto& stats = compaction_stats_;
|
|
|
|
double read_write_amp = 0.0;
|
|
double write_amp = 0.0;
|
|
double bytes_read_per_sec = 0;
|
|
double bytes_written_per_sec = 0;
|
|
|
|
if (stats.bytes_read_non_output_levels > 0) {
|
|
read_write_amp = (stats.bytes_written + stats.bytes_read_output_level +
|
|
stats.bytes_read_non_output_levels) /
|
|
static_cast<double>(stats.bytes_read_non_output_levels);
|
|
write_amp = stats.bytes_written /
|
|
static_cast<double>(stats.bytes_read_non_output_levels);
|
|
}
|
|
if (stats.micros > 0) {
|
|
bytes_read_per_sec =
|
|
(stats.bytes_read_non_output_levels + stats.bytes_read_output_level) /
|
|
static_cast<double>(stats.micros);
|
|
bytes_written_per_sec =
|
|
stats.bytes_written / static_cast<double>(stats.micros);
|
|
}
|
|
|
|
ROCKS_LOG_BUFFER(
|
|
log_buffer_,
|
|
"[%s] compacted to: %s, MB/sec: %.1f rd, %.1f wr, level %d, "
|
|
"files in(%d, %d) out(%d) "
|
|
"MB in(%.1f, %.1f) out(%.1f), read-write-amplify(%.1f) "
|
|
"write-amplify(%.1f) %s, records in: %" PRIu64
|
|
", records dropped: %" PRIu64 " output_compression: %s\n",
|
|
cfd->GetName().c_str(), vstorage->LevelSummary(&tmp), bytes_read_per_sec,
|
|
bytes_written_per_sec, compact_->compaction->output_level(),
|
|
stats.num_input_files_in_non_output_levels,
|
|
stats.num_input_files_in_output_level, stats.num_output_files,
|
|
stats.bytes_read_non_output_levels / 1048576.0,
|
|
stats.bytes_read_output_level / 1048576.0,
|
|
stats.bytes_written / 1048576.0, read_write_amp, write_amp,
|
|
status.ToString().c_str(), stats.num_input_records,
|
|
stats.num_dropped_records,
|
|
CompressionTypeToString(compact_->compaction->output_compression())
|
|
.c_str());
|
|
|
|
UpdateCompactionJobStats(stats);
|
|
|
|
auto stream = event_logger_->LogToBuffer(log_buffer_);
|
|
stream << "job" << job_id_ << "event"
|
|
<< "compaction_finished"
|
|
<< "compaction_time_micros" << stats.micros
|
|
<< "compaction_time_cpu_micros" << stats.cpu_micros << "output_level"
|
|
<< compact_->compaction->output_level() << "num_output_files"
|
|
<< compact_->NumOutputFiles() << "total_output_size"
|
|
<< compact_->total_bytes << "num_input_records"
|
|
<< stats.num_input_records << "num_output_records"
|
|
<< compact_->num_output_records << "num_subcompactions"
|
|
<< compact_->sub_compact_states.size() << "output_compression"
|
|
<< CompressionTypeToString(compact_->compaction->output_compression());
|
|
|
|
if (compaction_job_stats_ != nullptr) {
|
|
stream << "num_single_delete_mismatches"
|
|
<< compaction_job_stats_->num_single_del_mismatch;
|
|
stream << "num_single_delete_fallthrough"
|
|
<< compaction_job_stats_->num_single_del_fallthru;
|
|
}
|
|
|
|
if (measure_io_stats_ && compaction_job_stats_ != nullptr) {
|
|
stream << "file_write_nanos" << compaction_job_stats_->file_write_nanos;
|
|
stream << "file_range_sync_nanos"
|
|
<< compaction_job_stats_->file_range_sync_nanos;
|
|
stream << "file_fsync_nanos" << compaction_job_stats_->file_fsync_nanos;
|
|
stream << "file_prepare_write_nanos"
|
|
<< compaction_job_stats_->file_prepare_write_nanos;
|
|
}
|
|
|
|
stream << "lsm_state";
|
|
stream.StartArray();
|
|
for (int level = 0; level < vstorage->num_levels(); ++level) {
|
|
stream << vstorage->NumLevelFiles(level);
|
|
}
|
|
stream.EndArray();
|
|
|
|
CleanupCompaction();
|
|
return status;
|
|
}
|
|
|
|
void CompactionJob::ProcessKeyValueCompaction(SubcompactionState* sub_compact) {
|
|
assert(sub_compact != nullptr);
|
|
|
|
uint64_t prev_cpu_micros = env_->NowCPUNanos() / 1000;
|
|
|
|
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
|
|
|
|
// Create compaction filter and fail the compaction if
|
|
// IgnoreSnapshots() = false because it is not supported anymore
|
|
const CompactionFilter* compaction_filter =
|
|
cfd->ioptions()->compaction_filter;
|
|
std::unique_ptr<CompactionFilter> compaction_filter_from_factory = nullptr;
|
|
if (compaction_filter == nullptr) {
|
|
compaction_filter_from_factory =
|
|
sub_compact->compaction->CreateCompactionFilter();
|
|
compaction_filter = compaction_filter_from_factory.get();
|
|
}
|
|
if (compaction_filter != nullptr && !compaction_filter->IgnoreSnapshots()) {
|
|
sub_compact->status = Status::NotSupported(
|
|
"CompactionFilter::IgnoreSnapshots() = false is not supported "
|
|
"anymore.");
|
|
return;
|
|
}
|
|
|
|
CompactionRangeDelAggregator range_del_agg(&cfd->internal_comparator(),
|
|
existing_snapshots_);
|
|
|
|
// Although the v2 aggregator is what the level iterator(s) know about,
|
|
// the AddTombstones calls will be propagated down to the v1 aggregator.
|
|
std::unique_ptr<InternalIterator> input(versions_->MakeInputIterator(
|
|
sub_compact->compaction, &range_del_agg, file_options_for_read_));
|
|
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_COMPACTION_PROCESS_KV);
|
|
|
|
// I/O measurement variables
|
|
PerfLevel prev_perf_level = PerfLevel::kEnableTime;
|
|
const uint64_t kRecordStatsEvery = 1000;
|
|
uint64_t prev_write_nanos = 0;
|
|
uint64_t prev_fsync_nanos = 0;
|
|
uint64_t prev_range_sync_nanos = 0;
|
|
uint64_t prev_prepare_write_nanos = 0;
|
|
uint64_t prev_cpu_write_nanos = 0;
|
|
uint64_t prev_cpu_read_nanos = 0;
|
|
if (measure_io_stats_) {
|
|
prev_perf_level = GetPerfLevel();
|
|
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
|
|
prev_write_nanos = IOSTATS(write_nanos);
|
|
prev_fsync_nanos = IOSTATS(fsync_nanos);
|
|
prev_range_sync_nanos = IOSTATS(range_sync_nanos);
|
|
prev_prepare_write_nanos = IOSTATS(prepare_write_nanos);
|
|
prev_cpu_write_nanos = IOSTATS(cpu_write_nanos);
|
|
prev_cpu_read_nanos = IOSTATS(cpu_read_nanos);
|
|
}
|
|
|
|
MergeHelper merge(
|
|
env_, cfd->user_comparator(), cfd->ioptions()->merge_operator,
|
|
compaction_filter, db_options_.info_log.get(),
|
|
false /* internal key corruption is expected */,
|
|
existing_snapshots_.empty() ? 0 : existing_snapshots_.back(),
|
|
snapshot_checker_, compact_->compaction->level(),
|
|
db_options_.statistics.get());
|
|
|
|
TEST_SYNC_POINT("CompactionJob::Run():Inprogress");
|
|
TEST_SYNC_POINT_CALLBACK(
|
|
"CompactionJob::Run():PausingManualCompaction:1",
|
|
reinterpret_cast<void*>(
|
|
const_cast<std::atomic<bool>*>(manual_compaction_paused_)));
|
|
|
|
Slice* start = sub_compact->start;
|
|
Slice* end = sub_compact->end;
|
|
if (start != nullptr) {
|
|
IterKey start_iter;
|
|
start_iter.SetInternalKey(*start, kMaxSequenceNumber, kValueTypeForSeek);
|
|
input->Seek(start_iter.GetInternalKey());
|
|
} else {
|
|
input->SeekToFirst();
|
|
}
|
|
|
|
Status status;
|
|
sub_compact->c_iter.reset(new CompactionIterator(
|
|
input.get(), cfd->user_comparator(), &merge, versions_->LastSequence(),
|
|
&existing_snapshots_, earliest_write_conflict_snapshot_,
|
|
snapshot_checker_, env_, ShouldReportDetailedTime(env_, stats_), false,
|
|
&range_del_agg, sub_compact->compaction, compaction_filter,
|
|
shutting_down_, preserve_deletes_seqnum_, manual_compaction_paused_,
|
|
db_options_.info_log));
|
|
auto c_iter = sub_compact->c_iter.get();
|
|
c_iter->SeekToFirst();
|
|
if (c_iter->Valid() && sub_compact->compaction->output_level() != 0) {
|
|
// ShouldStopBefore() maintains state based on keys processed so far. The
|
|
// compaction loop always calls it on the "next" key, thus won't tell it the
|
|
// first key. So we do that here.
|
|
sub_compact->ShouldStopBefore(c_iter->key(),
|
|
sub_compact->current_output_file_size);
|
|
}
|
|
const auto& c_iter_stats = c_iter->iter_stats();
|
|
|
|
while (status.ok() && !cfd->IsDropped() && c_iter->Valid()) {
|
|
// Invariant: c_iter.status() is guaranteed to be OK if c_iter->Valid()
|
|
// returns true.
|
|
const Slice& key = c_iter->key();
|
|
const Slice& value = c_iter->value();
|
|
|
|
// If an end key (exclusive) is specified, check if the current key is
|
|
// >= than it and exit if it is because the iterator is out of its range
|
|
if (end != nullptr &&
|
|
cfd->user_comparator()->Compare(c_iter->user_key(), *end) >= 0) {
|
|
break;
|
|
}
|
|
if (c_iter_stats.num_input_records % kRecordStatsEvery ==
|
|
kRecordStatsEvery - 1) {
|
|
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
|
|
c_iter->ResetRecordCounts();
|
|
RecordCompactionIOStats();
|
|
}
|
|
|
|
// Open output file if necessary
|
|
if (sub_compact->builder == nullptr) {
|
|
status = OpenCompactionOutputFile(sub_compact);
|
|
if (!status.ok()) {
|
|
break;
|
|
}
|
|
}
|
|
assert(sub_compact->builder != nullptr);
|
|
assert(sub_compact->current_output() != nullptr);
|
|
sub_compact->builder->Add(key, value);
|
|
sub_compact->current_output_file_size = sub_compact->builder->FileSize();
|
|
const ParsedInternalKey& ikey = c_iter->ikey();
|
|
sub_compact->current_output()->meta.UpdateBoundaries(
|
|
key, value, ikey.sequence, ikey.type);
|
|
sub_compact->num_output_records++;
|
|
|
|
// Close output file if it is big enough. Two possibilities determine it's
|
|
// time to close it: (1) the current key should be this file's last key, (2)
|
|
// the next key should not be in this file.
|
|
//
|
|
// TODO(aekmekji): determine if file should be closed earlier than this
|
|
// during subcompactions (i.e. if output size, estimated by input size, is
|
|
// going to be 1.2MB and max_output_file_size = 1MB, prefer to have 0.6MB
|
|
// and 0.6MB instead of 1MB and 0.2MB)
|
|
bool output_file_ended = false;
|
|
Status input_status;
|
|
if (sub_compact->compaction->output_level() != 0 &&
|
|
sub_compact->current_output_file_size >=
|
|
sub_compact->compaction->max_output_file_size()) {
|
|
// (1) this key terminates the file. For historical reasons, the iterator
|
|
// status before advancing will be given to FinishCompactionOutputFile().
|
|
input_status = input->status();
|
|
output_file_ended = true;
|
|
}
|
|
TEST_SYNC_POINT_CALLBACK(
|
|
"CompactionJob::Run():PausingManualCompaction:2",
|
|
reinterpret_cast<void*>(
|
|
const_cast<std::atomic<bool>*>(manual_compaction_paused_)));
|
|
c_iter->Next();
|
|
if (c_iter->status().IsManualCompactionPaused()) {
|
|
break;
|
|
}
|
|
if (!output_file_ended && c_iter->Valid() &&
|
|
sub_compact->compaction->output_level() != 0 &&
|
|
sub_compact->ShouldStopBefore(c_iter->key(),
|
|
sub_compact->current_output_file_size) &&
|
|
sub_compact->builder != nullptr) {
|
|
// (2) this key belongs to the next file. For historical reasons, the
|
|
// iterator status after advancing will be given to
|
|
// FinishCompactionOutputFile().
|
|
input_status = input->status();
|
|
output_file_ended = true;
|
|
}
|
|
if (output_file_ended) {
|
|
const Slice* next_key = nullptr;
|
|
if (c_iter->Valid()) {
|
|
next_key = &c_iter->key();
|
|
}
|
|
CompactionIterationStats range_del_out_stats;
|
|
status =
|
|
FinishCompactionOutputFile(input_status, sub_compact, &range_del_agg,
|
|
&range_del_out_stats, next_key);
|
|
RecordDroppedKeys(range_del_out_stats,
|
|
&sub_compact->compaction_job_stats);
|
|
}
|
|
}
|
|
|
|
sub_compact->compaction_job_stats.num_input_deletion_records =
|
|
c_iter_stats.num_input_deletion_records;
|
|
sub_compact->compaction_job_stats.num_corrupt_keys =
|
|
c_iter_stats.num_input_corrupt_records;
|
|
sub_compact->compaction_job_stats.num_single_del_fallthru =
|
|
c_iter_stats.num_single_del_fallthru;
|
|
sub_compact->compaction_job_stats.num_single_del_mismatch =
|
|
c_iter_stats.num_single_del_mismatch;
|
|
sub_compact->compaction_job_stats.total_input_raw_key_bytes +=
|
|
c_iter_stats.total_input_raw_key_bytes;
|
|
sub_compact->compaction_job_stats.total_input_raw_value_bytes +=
|
|
c_iter_stats.total_input_raw_value_bytes;
|
|
|
|
RecordTick(stats_, FILTER_OPERATION_TOTAL_TIME,
|
|
c_iter_stats.total_filter_time);
|
|
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
|
|
RecordCompactionIOStats();
|
|
|
|
if (status.ok() && cfd->IsDropped()) {
|
|
status =
|
|
Status::ColumnFamilyDropped("Column family dropped during compaction");
|
|
}
|
|
if ((status.ok() || status.IsColumnFamilyDropped()) &&
|
|
shutting_down_->load(std::memory_order_relaxed)) {
|
|
status = Status::ShutdownInProgress("Database shutdown");
|
|
}
|
|
if ((status.ok() || status.IsColumnFamilyDropped()) &&
|
|
(manual_compaction_paused_ &&
|
|
manual_compaction_paused_->load(std::memory_order_relaxed))) {
|
|
status = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
|
|
}
|
|
if (status.ok()) {
|
|
status = input->status();
|
|
}
|
|
if (status.ok()) {
|
|
status = c_iter->status();
|
|
}
|
|
|
|
if (status.ok() && sub_compact->builder == nullptr &&
|
|
sub_compact->outputs.size() == 0 && !range_del_agg.IsEmpty()) {
|
|
// handle subcompaction containing only range deletions
|
|
status = OpenCompactionOutputFile(sub_compact);
|
|
}
|
|
|
|
// Call FinishCompactionOutputFile() even if status is not ok: it needs to
|
|
// close the output file.
|
|
if (sub_compact->builder != nullptr) {
|
|
CompactionIterationStats range_del_out_stats;
|
|
Status s = FinishCompactionOutputFile(status, sub_compact, &range_del_agg,
|
|
&range_del_out_stats);
|
|
if (status.ok()) {
|
|
status = s;
|
|
}
|
|
RecordDroppedKeys(range_del_out_stats, &sub_compact->compaction_job_stats);
|
|
}
|
|
|
|
sub_compact->compaction_job_stats.cpu_micros =
|
|
env_->NowCPUNanos() / 1000 - prev_cpu_micros;
|
|
|
|
if (measure_io_stats_) {
|
|
sub_compact->compaction_job_stats.file_write_nanos +=
|
|
IOSTATS(write_nanos) - prev_write_nanos;
|
|
sub_compact->compaction_job_stats.file_fsync_nanos +=
|
|
IOSTATS(fsync_nanos) - prev_fsync_nanos;
|
|
sub_compact->compaction_job_stats.file_range_sync_nanos +=
|
|
IOSTATS(range_sync_nanos) - prev_range_sync_nanos;
|
|
sub_compact->compaction_job_stats.file_prepare_write_nanos +=
|
|
IOSTATS(prepare_write_nanos) - prev_prepare_write_nanos;
|
|
sub_compact->compaction_job_stats.cpu_micros -=
|
|
(IOSTATS(cpu_write_nanos) - prev_cpu_write_nanos +
|
|
IOSTATS(cpu_read_nanos) - prev_cpu_read_nanos) /
|
|
1000;
|
|
if (prev_perf_level != PerfLevel::kEnableTimeAndCPUTimeExceptForMutex) {
|
|
SetPerfLevel(prev_perf_level);
|
|
}
|
|
}
|
|
|
|
sub_compact->c_iter.reset();
|
|
input.reset();
|
|
sub_compact->status = status;
|
|
}
|
|
|
|
void CompactionJob::RecordDroppedKeys(
|
|
const CompactionIterationStats& c_iter_stats,
|
|
CompactionJobStats* compaction_job_stats) {
|
|
if (c_iter_stats.num_record_drop_user > 0) {
|
|
RecordTick(stats_, COMPACTION_KEY_DROP_USER,
|
|
c_iter_stats.num_record_drop_user);
|
|
}
|
|
if (c_iter_stats.num_record_drop_hidden > 0) {
|
|
RecordTick(stats_, COMPACTION_KEY_DROP_NEWER_ENTRY,
|
|
c_iter_stats.num_record_drop_hidden);
|
|
if (compaction_job_stats) {
|
|
compaction_job_stats->num_records_replaced +=
|
|
c_iter_stats.num_record_drop_hidden;
|
|
}
|
|
}
|
|
if (c_iter_stats.num_record_drop_obsolete > 0) {
|
|
RecordTick(stats_, COMPACTION_KEY_DROP_OBSOLETE,
|
|
c_iter_stats.num_record_drop_obsolete);
|
|
if (compaction_job_stats) {
|
|
compaction_job_stats->num_expired_deletion_records +=
|
|
c_iter_stats.num_record_drop_obsolete;
|
|
}
|
|
}
|
|
if (c_iter_stats.num_record_drop_range_del > 0) {
|
|
RecordTick(stats_, COMPACTION_KEY_DROP_RANGE_DEL,
|
|
c_iter_stats.num_record_drop_range_del);
|
|
}
|
|
if (c_iter_stats.num_range_del_drop_obsolete > 0) {
|
|
RecordTick(stats_, COMPACTION_RANGE_DEL_DROP_OBSOLETE,
|
|
c_iter_stats.num_range_del_drop_obsolete);
|
|
}
|
|
if (c_iter_stats.num_optimized_del_drop_obsolete > 0) {
|
|
RecordTick(stats_, COMPACTION_OPTIMIZED_DEL_DROP_OBSOLETE,
|
|
c_iter_stats.num_optimized_del_drop_obsolete);
|
|
}
|
|
}
|
|
|
|
Status CompactionJob::FinishCompactionOutputFile(
|
|
const Status& input_status, SubcompactionState* sub_compact,
|
|
CompactionRangeDelAggregator* range_del_agg,
|
|
CompactionIterationStats* range_del_out_stats,
|
|
const Slice* next_table_min_key /* = nullptr */) {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_COMPACTION_SYNC_FILE);
|
|
assert(sub_compact != nullptr);
|
|
assert(sub_compact->outfile);
|
|
assert(sub_compact->builder != nullptr);
|
|
assert(sub_compact->current_output() != nullptr);
|
|
|
|
uint64_t output_number = sub_compact->current_output()->meta.fd.GetNumber();
|
|
assert(output_number != 0);
|
|
|
|
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
|
|
const Comparator* ucmp = cfd->user_comparator();
|
|
|
|
// Check for iterator errors
|
|
Status s = input_status;
|
|
auto meta = &sub_compact->current_output()->meta;
|
|
assert(meta != nullptr);
|
|
if (s.ok()) {
|
|
Slice lower_bound_guard, upper_bound_guard;
|
|
std::string smallest_user_key;
|
|
const Slice *lower_bound, *upper_bound;
|
|
bool lower_bound_from_sub_compact = false;
|
|
if (sub_compact->outputs.size() == 1) {
|
|
// For the first output table, include range tombstones before the min key
|
|
// but after the subcompaction boundary.
|
|
lower_bound = sub_compact->start;
|
|
lower_bound_from_sub_compact = true;
|
|
} else if (meta->smallest.size() > 0) {
|
|
// For subsequent output tables, only include range tombstones from min
|
|
// key onwards since the previous file was extended to contain range
|
|
// tombstones falling before min key.
|
|
smallest_user_key = meta->smallest.user_key().ToString(false /*hex*/);
|
|
lower_bound_guard = Slice(smallest_user_key);
|
|
lower_bound = &lower_bound_guard;
|
|
} else {
|
|
lower_bound = nullptr;
|
|
}
|
|
if (next_table_min_key != nullptr) {
|
|
// This may be the last file in the subcompaction in some cases, so we
|
|
// need to compare the end key of subcompaction with the next file start
|
|
// key. When the end key is chosen by the subcompaction, we know that
|
|
// it must be the biggest key in output file. Therefore, it is safe to
|
|
// use the smaller key as the upper bound of the output file, to ensure
|
|
// that there is no overlapping between different output files.
|
|
upper_bound_guard = ExtractUserKey(*next_table_min_key);
|
|
if (sub_compact->end != nullptr &&
|
|
ucmp->Compare(upper_bound_guard, *sub_compact->end) >= 0) {
|
|
upper_bound = sub_compact->end;
|
|
} else {
|
|
upper_bound = &upper_bound_guard;
|
|
}
|
|
} else {
|
|
// This is the last file in the subcompaction, so extend until the
|
|
// subcompaction ends.
|
|
upper_bound = sub_compact->end;
|
|
}
|
|
auto earliest_snapshot = kMaxSequenceNumber;
|
|
if (existing_snapshots_.size() > 0) {
|
|
earliest_snapshot = existing_snapshots_[0];
|
|
}
|
|
bool has_overlapping_endpoints;
|
|
if (upper_bound != nullptr && meta->largest.size() > 0) {
|
|
has_overlapping_endpoints =
|
|
ucmp->Compare(meta->largest.user_key(), *upper_bound) == 0;
|
|
} else {
|
|
has_overlapping_endpoints = false;
|
|
}
|
|
|
|
// The end key of the subcompaction must be bigger or equal to the upper
|
|
// bound. If the end of subcompaction is null or the upper bound is null,
|
|
// it means that this file is the last file in the compaction. So there
|
|
// will be no overlapping between this file and others.
|
|
assert(sub_compact->end == nullptr ||
|
|
upper_bound == nullptr ||
|
|
ucmp->Compare(*upper_bound , *sub_compact->end) <= 0);
|
|
auto it = range_del_agg->NewIterator(lower_bound, upper_bound,
|
|
has_overlapping_endpoints);
|
|
// Position the range tombstone output iterator. There may be tombstone
|
|
// fragments that are entirely out of range, so make sure that we do not
|
|
// include those.
|
|
if (lower_bound != nullptr) {
|
|
it->Seek(*lower_bound);
|
|
} else {
|
|
it->SeekToFirst();
|
|
}
|
|
for (; it->Valid(); it->Next()) {
|
|
auto tombstone = it->Tombstone();
|
|
if (upper_bound != nullptr) {
|
|
int cmp = ucmp->Compare(*upper_bound, tombstone.start_key_);
|
|
if ((has_overlapping_endpoints && cmp < 0) ||
|
|
(!has_overlapping_endpoints && cmp <= 0)) {
|
|
// Tombstones starting after upper_bound only need to be included in
|
|
// the next table. If the current SST ends before upper_bound, i.e.,
|
|
// `has_overlapping_endpoints == false`, we can also skip over range
|
|
// tombstones that start exactly at upper_bound. Such range tombstones
|
|
// will be included in the next file and are not relevant to the point
|
|
// keys or endpoints of the current file.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bottommost_level_ && tombstone.seq_ <= earliest_snapshot) {
|
|
// TODO(andrewkr): tombstones that span multiple output files are
|
|
// counted for each compaction output file, so lots of double counting.
|
|
range_del_out_stats->num_range_del_drop_obsolete++;
|
|
range_del_out_stats->num_record_drop_obsolete++;
|
|
continue;
|
|
}
|
|
|
|
auto kv = tombstone.Serialize();
|
|
assert(lower_bound == nullptr ||
|
|
ucmp->Compare(*lower_bound, kv.second) < 0);
|
|
sub_compact->builder->Add(kv.first.Encode(), kv.second);
|
|
InternalKey smallest_candidate = std::move(kv.first);
|
|
if (lower_bound != nullptr &&
|
|
ucmp->Compare(smallest_candidate.user_key(), *lower_bound) <= 0) {
|
|
// Pretend the smallest key has the same user key as lower_bound
|
|
// (the max key in the previous table or subcompaction) in order for
|
|
// files to appear key-space partitioned.
|
|
//
|
|
// When lower_bound is chosen by a subcompaction, we know that
|
|
// subcompactions over smaller keys cannot contain any keys at
|
|
// lower_bound. We also know that smaller subcompactions exist, because
|
|
// otherwise the subcompaction woud be unbounded on the left. As a
|
|
// result, we know that no other files on the output level will contain
|
|
// actual keys at lower_bound (an output file may have a largest key of
|
|
// lower_bound@kMaxSequenceNumber, but this only indicates a large range
|
|
// tombstone was truncated). Therefore, it is safe to use the
|
|
// tombstone's sequence number, to ensure that keys at lower_bound at
|
|
// lower levels are covered by truncated tombstones.
|
|
//
|
|
// If lower_bound was chosen by the smallest data key in the file,
|
|
// choose lowest seqnum so this file's smallest internal key comes after
|
|
// the previous file's largest. The fake seqnum is OK because the read
|
|
// path's file-picking code only considers user key.
|
|
smallest_candidate = InternalKey(
|
|
*lower_bound, lower_bound_from_sub_compact ? tombstone.seq_ : 0,
|
|
kTypeRangeDeletion);
|
|
}
|
|
InternalKey largest_candidate = tombstone.SerializeEndKey();
|
|
if (upper_bound != nullptr &&
|
|
ucmp->Compare(*upper_bound, largest_candidate.user_key()) <= 0) {
|
|
// Pretend the largest key has the same user key as upper_bound (the
|
|
// min key in the following table or subcompaction) in order for files
|
|
// to appear key-space partitioned.
|
|
//
|
|
// Choose highest seqnum so this file's largest internal key comes
|
|
// before the next file's/subcompaction's smallest. The fake seqnum is
|
|
// OK because the read path's file-picking code only considers the user
|
|
// key portion.
|
|
//
|
|
// Note Seek() also creates InternalKey with (user_key,
|
|
// kMaxSequenceNumber), but with kTypeDeletion (0x7) instead of
|
|
// kTypeRangeDeletion (0xF), so the range tombstone comes before the
|
|
// Seek() key in InternalKey's ordering. So Seek() will look in the
|
|
// next file for the user key.
|
|
largest_candidate =
|
|
InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion);
|
|
}
|
|
#ifndef NDEBUG
|
|
SequenceNumber smallest_ikey_seqnum = kMaxSequenceNumber;
|
|
if (meta->smallest.size() > 0) {
|
|
smallest_ikey_seqnum = GetInternalKeySeqno(meta->smallest.Encode());
|
|
}
|
|
#endif
|
|
meta->UpdateBoundariesForRange(smallest_candidate, largest_candidate,
|
|
tombstone.seq_,
|
|
cfd->internal_comparator());
|
|
|
|
// The smallest key in a file is used for range tombstone truncation, so
|
|
// it cannot have a seqnum of 0 (unless the smallest data key in a file
|
|
// has a seqnum of 0). Otherwise, the truncated tombstone may expose
|
|
// deleted keys at lower levels.
|
|
assert(smallest_ikey_seqnum == 0 ||
|
|
ExtractInternalKeyFooter(meta->smallest.Encode()) !=
|
|
PackSequenceAndType(0, kTypeRangeDeletion));
|
|
}
|
|
meta->marked_for_compaction = sub_compact->builder->NeedCompact();
|
|
}
|
|
const uint64_t current_entries = sub_compact->builder->NumEntries();
|
|
if (s.ok()) {
|
|
s = sub_compact->builder->Finish();
|
|
} else {
|
|
sub_compact->builder->Abandon();
|
|
}
|
|
const uint64_t current_bytes = sub_compact->builder->FileSize();
|
|
if (s.ok()) {
|
|
// Add the checksum information to file metadata.
|
|
meta->file_checksum = sub_compact->builder->GetFileChecksum();
|
|
meta->file_checksum_func_name =
|
|
sub_compact->builder->GetFileChecksumFuncName();
|
|
|
|
meta->fd.file_size = current_bytes;
|
|
}
|
|
sub_compact->current_output()->finished = true;
|
|
sub_compact->total_bytes += current_bytes;
|
|
|
|
// Finish and check for file errors
|
|
if (s.ok()) {
|
|
StopWatch sw(env_, stats_, COMPACTION_OUTFILE_SYNC_MICROS);
|
|
s = sub_compact->outfile->Sync(db_options_.use_fsync);
|
|
}
|
|
if (s.ok()) {
|
|
s = sub_compact->outfile->Close();
|
|
}
|
|
sub_compact->outfile.reset();
|
|
|
|
TableProperties tp;
|
|
if (s.ok()) {
|
|
tp = sub_compact->builder->GetTableProperties();
|
|
}
|
|
|
|
if (s.ok() && current_entries == 0 && tp.num_range_deletions == 0) {
|
|
// If there is nothing to output, no necessary to generate a sst file.
|
|
// This happens when the output level is bottom level, at the same time
|
|
// the sub_compact output nothing.
|
|
std::string fname =
|
|
TableFileName(sub_compact->compaction->immutable_cf_options()->cf_paths,
|
|
meta->fd.GetNumber(), meta->fd.GetPathId());
|
|
env_->DeleteFile(fname);
|
|
|
|
// Also need to remove the file from outputs, or it will be added to the
|
|
// VersionEdit.
|
|
assert(!sub_compact->outputs.empty());
|
|
sub_compact->outputs.pop_back();
|
|
meta = nullptr;
|
|
}
|
|
|
|
if (s.ok() && (current_entries > 0 || tp.num_range_deletions > 0)) {
|
|
// Output to event logger and fire events.
|
|
sub_compact->current_output()->table_properties =
|
|
std::make_shared<TableProperties>(tp);
|
|
ROCKS_LOG_INFO(db_options_.info_log,
|
|
"[%s] [JOB %d] Generated table #%" PRIu64 ": %" PRIu64
|
|
" keys, %" PRIu64 " bytes%s",
|
|
cfd->GetName().c_str(), job_id_, output_number,
|
|
current_entries, current_bytes,
|
|
meta->marked_for_compaction ? " (need compaction)" : "");
|
|
}
|
|
std::string fname;
|
|
FileDescriptor output_fd;
|
|
uint64_t oldest_blob_file_number = kInvalidBlobFileNumber;
|
|
if (meta != nullptr) {
|
|
fname =
|
|
TableFileName(sub_compact->compaction->immutable_cf_options()->cf_paths,
|
|
meta->fd.GetNumber(), meta->fd.GetPathId());
|
|
output_fd = meta->fd;
|
|
oldest_blob_file_number = meta->oldest_blob_file_number;
|
|
} else {
|
|
fname = "(nil)";
|
|
}
|
|
EventHelpers::LogAndNotifyTableFileCreationFinished(
|
|
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname,
|
|
job_id_, output_fd, oldest_blob_file_number, tp,
|
|
TableFileCreationReason::kCompaction, s);
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
// Report new file to SstFileManagerImpl
|
|
auto sfm =
|
|
static_cast<SstFileManagerImpl*>(db_options_.sst_file_manager.get());
|
|
if (sfm && meta != nullptr && meta->fd.GetPathId() == 0) {
|
|
sfm->OnAddFile(fname);
|
|
if (sfm->IsMaxAllowedSpaceReached()) {
|
|
// TODO(ajkr): should we return OK() if max space was reached by the final
|
|
// compaction output file (similarly to how flush works when full)?
|
|
s = Status::SpaceLimit("Max allowed space was reached");
|
|
TEST_SYNC_POINT(
|
|
"CompactionJob::FinishCompactionOutputFile:"
|
|
"MaxAllowedSpaceReached");
|
|
InstrumentedMutexLock l(db_mutex_);
|
|
db_error_handler_->SetBGError(s, BackgroundErrorReason::kCompaction);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
sub_compact->builder.reset();
|
|
sub_compact->current_output_file_size = 0;
|
|
return s;
|
|
}
|
|
|
|
Status CompactionJob::InstallCompactionResults(
|
|
const MutableCFOptions& mutable_cf_options) {
|
|
db_mutex_->AssertHeld();
|
|
|
|
auto* compaction = compact_->compaction;
|
|
// paranoia: verify that the files that we started with
|
|
// still exist in the current version and in the same original level.
|
|
// This ensures that a concurrent compaction did not erroneously
|
|
// pick the same files to compact_.
|
|
if (!versions_->VerifyCompactionFileConsistency(compaction)) {
|
|
Compaction::InputLevelSummaryBuffer inputs_summary;
|
|
|
|
ROCKS_LOG_ERROR(db_options_.info_log, "[%s] [JOB %d] Compaction %s aborted",
|
|
compaction->column_family_data()->GetName().c_str(),
|
|
job_id_, compaction->InputLevelSummary(&inputs_summary));
|
|
return Status::Corruption("Compaction input files inconsistent");
|
|
}
|
|
|
|
{
|
|
Compaction::InputLevelSummaryBuffer inputs_summary;
|
|
ROCKS_LOG_INFO(
|
|
db_options_.info_log, "[%s] [JOB %d] Compacted %s => %" PRIu64 " bytes",
|
|
compaction->column_family_data()->GetName().c_str(), job_id_,
|
|
compaction->InputLevelSummary(&inputs_summary), compact_->total_bytes);
|
|
}
|
|
|
|
// Add compaction inputs
|
|
compaction->AddInputDeletions(compact_->compaction->edit());
|
|
|
|
for (const auto& sub_compact : compact_->sub_compact_states) {
|
|
for (const auto& out : sub_compact.outputs) {
|
|
compaction->edit()->AddFile(compaction->output_level(), out.meta);
|
|
}
|
|
}
|
|
return versions_->LogAndApply(compaction->column_family_data(),
|
|
mutable_cf_options, compaction->edit(),
|
|
db_mutex_, db_directory_);
|
|
}
|
|
|
|
void CompactionJob::RecordCompactionIOStats() {
|
|
RecordTick(stats_, COMPACT_READ_BYTES, IOSTATS(bytes_read));
|
|
ThreadStatusUtil::IncreaseThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_BYTES_READ, IOSTATS(bytes_read));
|
|
IOSTATS_RESET(bytes_read);
|
|
RecordTick(stats_, COMPACT_WRITE_BYTES, IOSTATS(bytes_written));
|
|
ThreadStatusUtil::IncreaseThreadOperationProperty(
|
|
ThreadStatus::COMPACTION_BYTES_WRITTEN, IOSTATS(bytes_written));
|
|
IOSTATS_RESET(bytes_written);
|
|
}
|
|
|
|
Status CompactionJob::OpenCompactionOutputFile(
|
|
SubcompactionState* sub_compact) {
|
|
assert(sub_compact != nullptr);
|
|
assert(sub_compact->builder == nullptr);
|
|
// no need to lock because VersionSet::next_file_number_ is atomic
|
|
uint64_t file_number = versions_->NewFileNumber();
|
|
std::string fname =
|
|
TableFileName(sub_compact->compaction->immutable_cf_options()->cf_paths,
|
|
file_number, sub_compact->compaction->output_path_id());
|
|
// Fire events.
|
|
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
|
|
#ifndef ROCKSDB_LITE
|
|
EventHelpers::NotifyTableFileCreationStarted(
|
|
cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname, job_id_,
|
|
TableFileCreationReason::kCompaction);
|
|
#endif // !ROCKSDB_LITE
|
|
// Make the output file
|
|
std::unique_ptr<FSWritableFile> writable_file;
|
|
#ifndef NDEBUG
|
|
bool syncpoint_arg = file_options_.use_direct_writes;
|
|
TEST_SYNC_POINT_CALLBACK("CompactionJob::OpenCompactionOutputFile",
|
|
&syncpoint_arg);
|
|
#endif
|
|
Status s = NewWritableFile(fs_, fname, &writable_file, file_options_);
|
|
if (!s.ok()) {
|
|
ROCKS_LOG_ERROR(
|
|
db_options_.info_log,
|
|
"[%s] [JOB %d] OpenCompactionOutputFiles for table #%" PRIu64
|
|
" fails at NewWritableFile with status %s",
|
|
sub_compact->compaction->column_family_data()->GetName().c_str(),
|
|
job_id_, file_number, s.ToString().c_str());
|
|
LogFlush(db_options_.info_log);
|
|
EventHelpers::LogAndNotifyTableFileCreationFinished(
|
|
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(),
|
|
fname, job_id_, FileDescriptor(), kInvalidBlobFileNumber,
|
|
TableProperties(), TableFileCreationReason::kCompaction, s);
|
|
return s;
|
|
}
|
|
|
|
// Try to figure out the output file's oldest ancester time.
|
|
int64_t temp_current_time = 0;
|
|
auto get_time_status = env_->GetCurrentTime(&temp_current_time);
|
|
// Safe to proceed even if GetCurrentTime fails. So, log and proceed.
|
|
if (!get_time_status.ok()) {
|
|
ROCKS_LOG_WARN(db_options_.info_log,
|
|
"Failed to get current time. Status: %s",
|
|
get_time_status.ToString().c_str());
|
|
}
|
|
uint64_t current_time = static_cast<uint64_t>(temp_current_time);
|
|
uint64_t oldest_ancester_time =
|
|
sub_compact->compaction->MinInputFileOldestAncesterTime();
|
|
if (oldest_ancester_time == port::kMaxUint64) {
|
|
oldest_ancester_time = current_time;
|
|
}
|
|
|
|
// Initialize a SubcompactionState::Output and add it to sub_compact->outputs
|
|
{
|
|
SubcompactionState::Output out;
|
|
out.meta.fd = FileDescriptor(file_number,
|
|
sub_compact->compaction->output_path_id(), 0);
|
|
out.meta.oldest_ancester_time = oldest_ancester_time;
|
|
out.meta.file_creation_time = current_time;
|
|
out.finished = false;
|
|
sub_compact->outputs.push_back(out);
|
|
}
|
|
|
|
writable_file->SetIOPriority(Env::IOPriority::IO_LOW);
|
|
writable_file->SetWriteLifeTimeHint(write_hint_);
|
|
writable_file->SetPreallocationBlockSize(static_cast<size_t>(
|
|
sub_compact->compaction->OutputFilePreallocationSize()));
|
|
const auto& listeners =
|
|
sub_compact->compaction->immutable_cf_options()->listeners;
|
|
sub_compact->outfile.reset(
|
|
new WritableFileWriter(std::move(writable_file), fname, file_options_,
|
|
env_, db_options_.statistics.get(), listeners,
|
|
db_options_.sst_file_checksum_func.get()));
|
|
|
|
// If the Column family flag is to only optimize filters for hits,
|
|
// we can skip creating filters if this is the bottommost_level where
|
|
// data is going to be found
|
|
bool skip_filters =
|
|
cfd->ioptions()->optimize_filters_for_hits && bottommost_level_;
|
|
|
|
sub_compact->builder.reset(NewTableBuilder(
|
|
*cfd->ioptions(), *(sub_compact->compaction->mutable_cf_options()),
|
|
cfd->internal_comparator(), cfd->int_tbl_prop_collector_factories(),
|
|
cfd->GetID(), cfd->GetName(), sub_compact->outfile.get(),
|
|
sub_compact->compaction->output_compression(),
|
|
0 /*sample_for_compression */,
|
|
sub_compact->compaction->output_compression_opts(),
|
|
sub_compact->compaction->output_level(), skip_filters,
|
|
oldest_ancester_time, 0 /* oldest_key_time */,
|
|
sub_compact->compaction->max_output_file_size(), current_time));
|
|
LogFlush(db_options_.info_log);
|
|
return s;
|
|
}
|
|
|
|
void CompactionJob::CleanupCompaction() {
|
|
for (SubcompactionState& sub_compact : compact_->sub_compact_states) {
|
|
const auto& sub_status = sub_compact.status;
|
|
|
|
if (sub_compact.builder != nullptr) {
|
|
// May happen if we get a shutdown call in the middle of compaction
|
|
sub_compact.builder->Abandon();
|
|
sub_compact.builder.reset();
|
|
} else {
|
|
assert(!sub_status.ok() || sub_compact.outfile == nullptr);
|
|
}
|
|
for (const auto& out : sub_compact.outputs) {
|
|
// If this file was inserted into the table cache then remove
|
|
// them here because this compaction was not committed.
|
|
if (!sub_status.ok()) {
|
|
TableCache::Evict(table_cache_.get(), out.meta.fd.GetNumber());
|
|
}
|
|
}
|
|
}
|
|
delete compact_;
|
|
compact_ = nullptr;
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
namespace {
|
|
void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) {
|
|
assert(prefix_length > 0);
|
|
size_t length = src.size() > prefix_length ? prefix_length : src.size();
|
|
dst->assign(src.data(), length);
|
|
}
|
|
} // namespace
|
|
|
|
#endif // !ROCKSDB_LITE
|
|
|
|
void CompactionJob::UpdateCompactionStats() {
|
|
Compaction* compaction = compact_->compaction;
|
|
compaction_stats_.num_input_files_in_non_output_levels = 0;
|
|
compaction_stats_.num_input_files_in_output_level = 0;
|
|
for (int input_level = 0;
|
|
input_level < static_cast<int>(compaction->num_input_levels());
|
|
++input_level) {
|
|
if (compaction->level(input_level) != compaction->output_level()) {
|
|
UpdateCompactionInputStatsHelper(
|
|
&compaction_stats_.num_input_files_in_non_output_levels,
|
|
&compaction_stats_.bytes_read_non_output_levels, input_level);
|
|
} else {
|
|
UpdateCompactionInputStatsHelper(
|
|
&compaction_stats_.num_input_files_in_output_level,
|
|
&compaction_stats_.bytes_read_output_level, input_level);
|
|
}
|
|
}
|
|
|
|
uint64_t num_output_records = 0;
|
|
|
|
for (const auto& sub_compact : compact_->sub_compact_states) {
|
|
size_t num_output_files = sub_compact.outputs.size();
|
|
if (sub_compact.builder != nullptr) {
|
|
// An error occurred so ignore the last output.
|
|
assert(num_output_files > 0);
|
|
--num_output_files;
|
|
}
|
|
compaction_stats_.num_output_files += static_cast<int>(num_output_files);
|
|
|
|
num_output_records += sub_compact.num_output_records;
|
|
|
|
for (const auto& out : sub_compact.outputs) {
|
|
compaction_stats_.bytes_written += out.meta.fd.file_size;
|
|
}
|
|
}
|
|
|
|
if (compaction_stats_.num_input_records > num_output_records) {
|
|
compaction_stats_.num_dropped_records =
|
|
compaction_stats_.num_input_records - num_output_records;
|
|
}
|
|
}
|
|
|
|
void CompactionJob::UpdateCompactionInputStatsHelper(int* num_files,
|
|
uint64_t* bytes_read,
|
|
int input_level) {
|
|
const Compaction* compaction = compact_->compaction;
|
|
auto num_input_files = compaction->num_input_files(input_level);
|
|
*num_files += static_cast<int>(num_input_files);
|
|
|
|
for (size_t i = 0; i < num_input_files; ++i) {
|
|
const auto* file_meta = compaction->input(input_level, i);
|
|
*bytes_read += file_meta->fd.GetFileSize();
|
|
compaction_stats_.num_input_records +=
|
|
static_cast<uint64_t>(file_meta->num_entries);
|
|
}
|
|
}
|
|
|
|
void CompactionJob::UpdateCompactionJobStats(
|
|
const InternalStats::CompactionStats& stats) const {
|
|
#ifndef ROCKSDB_LITE
|
|
if (compaction_job_stats_) {
|
|
compaction_job_stats_->elapsed_micros = stats.micros;
|
|
|
|
// input information
|
|
compaction_job_stats_->total_input_bytes =
|
|
stats.bytes_read_non_output_levels + stats.bytes_read_output_level;
|
|
compaction_job_stats_->num_input_records = stats.num_input_records;
|
|
compaction_job_stats_->num_input_files =
|
|
stats.num_input_files_in_non_output_levels +
|
|
stats.num_input_files_in_output_level;
|
|
compaction_job_stats_->num_input_files_at_output_level =
|
|
stats.num_input_files_in_output_level;
|
|
|
|
// output information
|
|
compaction_job_stats_->total_output_bytes = stats.bytes_written;
|
|
compaction_job_stats_->num_output_records = compact_->num_output_records;
|
|
compaction_job_stats_->num_output_files = stats.num_output_files;
|
|
|
|
if (compact_->NumOutputFiles() > 0U) {
|
|
CopyPrefix(compact_->SmallestUserKey(),
|
|
CompactionJobStats::kMaxPrefixLength,
|
|
&compaction_job_stats_->smallest_output_key_prefix);
|
|
CopyPrefix(compact_->LargestUserKey(),
|
|
CompactionJobStats::kMaxPrefixLength,
|
|
&compaction_job_stats_->largest_output_key_prefix);
|
|
}
|
|
}
|
|
#else
|
|
(void)stats;
|
|
#endif // !ROCKSDB_LITE
|
|
}
|
|
|
|
void CompactionJob::LogCompaction() {
|
|
Compaction* compaction = compact_->compaction;
|
|
ColumnFamilyData* cfd = compaction->column_family_data();
|
|
|
|
// Let's check if anything will get logged. Don't prepare all the info if
|
|
// we're not logging
|
|
if (db_options_.info_log_level <= InfoLogLevel::INFO_LEVEL) {
|
|
Compaction::InputLevelSummaryBuffer inputs_summary;
|
|
ROCKS_LOG_INFO(
|
|
db_options_.info_log, "[%s] [JOB %d] Compacting %s, score %.2f",
|
|
cfd->GetName().c_str(), job_id_,
|
|
compaction->InputLevelSummary(&inputs_summary), compaction->score());
|
|
char scratch[2345];
|
|
compaction->Summary(scratch, sizeof(scratch));
|
|
ROCKS_LOG_INFO(db_options_.info_log, "[%s] Compaction start summary: %s\n",
|
|
cfd->GetName().c_str(), scratch);
|
|
// build event logger report
|
|
auto stream = event_logger_->Log();
|
|
stream << "job" << job_id_ << "event"
|
|
<< "compaction_started"
|
|
<< "compaction_reason"
|
|
<< GetCompactionReasonString(compaction->compaction_reason());
|
|
for (size_t i = 0; i < compaction->num_input_levels(); ++i) {
|
|
stream << ("files_L" + ToString(compaction->level(i)));
|
|
stream.StartArray();
|
|
for (auto f : *compaction->inputs(i)) {
|
|
stream << f->fd.GetNumber();
|
|
}
|
|
stream.EndArray();
|
|
}
|
|
stream << "score" << compaction->score() << "input_data_size"
|
|
<< compaction->CalculateTotalInputSize();
|
|
}
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|