mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-29 18:33:58 +00:00
cd9404bb77
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/4607 Reviewed By: siying Differential Revision: D12836696 Pulled By: jsjhoubo fbshipit-source-id: 7122ccb712d0b0f1cd998aa4477e0da1401bd870
1075 lines
33 KiB
C++
1075 lines
33 KiB
C++
/*
|
|
xxHash - Fast Hash algorithm
|
|
Copyright (C) 2012-2014, Yann Collet.
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- xxHash source repository : http://code.google.com/p/xxhash/
|
|
*/
|
|
|
|
|
|
//**************************************
|
|
// Tuning parameters
|
|
//**************************************
|
|
/*!XXH_FORCE_MEMORY_ACCESS :
|
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is
|
|
* safe and portable. Unfortunately, on some target/compiler combinations, the
|
|
* generated assembly is sub-optimal. The below switch allow to select different
|
|
* access method for improved performance. Method 0 (default) : use `memcpy()`.
|
|
* Safe and portable. Method 1 : `__packed` statement. It depends on compiler
|
|
* extension (ie, not portable). This method is safe if your compiler supports
|
|
* it, and *generally* as fast or faster than `memcpy`. Method 2 : direct
|
|
* access. This method doesn't depend on compiler but violate C standard. It can
|
|
* generate buggy code on targets which do not support unaligned memory
|
|
* accesses. But in some circumstances, it's the only known way to get the most
|
|
* performance (ie GCC + ARMv6) See http://stackoverflow.com/a/32095106/646947
|
|
* for details. Prefer these methods in priority order (0 > 1 > 2)
|
|
*/
|
|
|
|
#include "util/util.h"
|
|
|
|
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line \
|
|
for example */
|
|
#if defined(__GNUC__) && \
|
|
(defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
|
|
defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
|
|
defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__))
|
|
#define XXH_FORCE_MEMORY_ACCESS 2
|
|
#elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
|
|
(defined(__GNUC__) && \
|
|
(defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
|
|
defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
|
|
defined(__ARM_ARCH_7S__)))
|
|
#define XXH_FORCE_MEMORY_ACCESS 1
|
|
#endif
|
|
#endif
|
|
|
|
// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
|
|
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
|
|
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
|
|
// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
|
|
#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
|
# define XXH_USE_UNALIGNED_ACCESS 1
|
|
#endif
|
|
|
|
// XXH_ACCEPT_NULL_INPUT_POINTER :
|
|
// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
|
|
// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
|
|
// This option has a very small performance cost (only measurable on small inputs).
|
|
// By default, this option is disabled. To enable it, uncomment below define :
|
|
//#define XXH_ACCEPT_NULL_INPUT_POINTER 1
|
|
|
|
// XXH_FORCE_NATIVE_FORMAT :
|
|
// By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
|
|
// Results are therefore identical for little-endian and big-endian CPU.
|
|
// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
|
|
// Should endian-independence be of no importance for your application, you may set the #define below to 1.
|
|
// It will improve speed for Big-endian CPU.
|
|
// This option has no impact on Little_Endian CPU.
|
|
#define XXH_FORCE_NATIVE_FORMAT 0
|
|
|
|
/*!XXH_FORCE_ALIGN_CHECK :
|
|
* This is a minor performance trick, only useful with lots of very small keys.
|
|
* It means : check for aligned/unaligned input.
|
|
* The check costs one initial branch per hash;
|
|
* set it to 0 when the input is guaranteed to be aligned,
|
|
* or when alignment doesn't matter for performance.
|
|
*/
|
|
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
|
|
#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || \
|
|
defined(_M_X64)
|
|
#define XXH_FORCE_ALIGN_CHECK 0
|
|
#else
|
|
#define XXH_FORCE_ALIGN_CHECK 1
|
|
#endif
|
|
#endif
|
|
|
|
//**************************************
|
|
// Compiler Specific Options
|
|
//**************************************
|
|
// Disable some Visual warning messages
|
|
#ifdef _MSC_VER // Visual Studio
|
|
# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
|
|
# pragma warning(disable : 4804) // disable: C4804: 'operation' : unsafe use of type 'bool' in operation (static assert line 313)
|
|
#endif
|
|
|
|
#ifdef _MSC_VER // Visual Studio
|
|
# define FORCE_INLINE static __forceinline
|
|
#else
|
|
# ifdef __GNUC__
|
|
# define FORCE_INLINE static inline __attribute__((always_inline))
|
|
# else
|
|
# define FORCE_INLINE static inline
|
|
# endif
|
|
#endif
|
|
|
|
|
|
//**************************************
|
|
// Includes & Memory related functions
|
|
//**************************************
|
|
#include "xxhash.h"
|
|
// Modify the local functions below should you wish to use some other memory related routines
|
|
// for malloc(), free()
|
|
#include <stdlib.h>
|
|
FORCE_INLINE void* XXH_malloc(size_t s) { return malloc(s); }
|
|
FORCE_INLINE void XXH_free (void* p) { free(p); }
|
|
// for memcpy()
|
|
#include <string.h>
|
|
FORCE_INLINE void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
|
|
#include <assert.h> /* assert */
|
|
|
|
namespace rocksdb {
|
|
//**************************************
|
|
// Basic Types
|
|
//**************************************
|
|
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
|
|
# include <stdint.h>
|
|
typedef uint8_t BYTE;
|
|
typedef uint16_t U16;
|
|
typedef uint32_t U32;
|
|
typedef int32_t S32;
|
|
typedef uint64_t U64;
|
|
#else
|
|
typedef unsigned char BYTE;
|
|
typedef unsigned short U16;
|
|
typedef unsigned int U32;
|
|
typedef signed int S32;
|
|
typedef unsigned long long U64;
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
|
|
# define _PACKED __attribute__ ((packed))
|
|
#else
|
|
# define _PACKED
|
|
#endif
|
|
|
|
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
|
|
# ifdef __IBMC__
|
|
# pragma pack(1)
|
|
# else
|
|
# pragma pack(push, 1)
|
|
# endif
|
|
#endif
|
|
|
|
typedef struct _U32_S { U32 v; } _PACKED U32_S;
|
|
|
|
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
|
|
# pragma pack(pop)
|
|
#endif
|
|
|
|
#define A32(x) (((U32_S *)(x))->v)
|
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2))
|
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory
|
|
* access in hardware */
|
|
static U32 XXH_read32(const void* memPtr) { return *(const U32*)memPtr; }
|
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1))
|
|
|
|
/* __pack instructions are safer, but compiler specific, hence potentially
|
|
* problematic for some compilers */
|
|
/* currently only defined for gcc and icc */
|
|
typedef union {
|
|
U32 u32;
|
|
} __attribute__((packed)) unalign;
|
|
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
|
|
|
#else
|
|
|
|
/* portable and safe solution. Generally efficient.
|
|
* see : http://stackoverflow.com/a/32095106/646947
|
|
*/
|
|
static U32 XXH_read32(const void* memPtr) {
|
|
U32 val;
|
|
memcpy(&val, memPtr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
|
//***************************************
|
|
// Compiler-specific Functions and Macros
|
|
//***************************************
|
|
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
|
|
// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
|
|
#if defined(_MSC_VER)
|
|
# define XXH_rotl32(x,r) _rotl(x,r)
|
|
#define XXH_rotl64(x, r) _rotl64(x, r)
|
|
#else
|
|
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
|
|
#define XXH_rotl64(x, r) ((x << r) | (x >> (64 - r)))
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) // Visual Studio
|
|
# define XXH_swap32 _byteswap_ulong
|
|
#elif GCC_VERSION >= 403
|
|
# define XXH_swap32 __builtin_bswap32
|
|
#else
|
|
static inline U32 XXH_swap32 (U32 x) {
|
|
return ((x << 24) & 0xff000000 ) |
|
|
((x << 8) & 0x00ff0000 ) |
|
|
((x >> 8) & 0x0000ff00 ) |
|
|
((x >> 24) & 0x000000ff );}
|
|
#endif
|
|
|
|
|
|
//**************************************
|
|
// Constants
|
|
//**************************************
|
|
#define PRIME32_1 2654435761U
|
|
#define PRIME32_2 2246822519U
|
|
#define PRIME32_3 3266489917U
|
|
#define PRIME32_4 668265263U
|
|
#define PRIME32_5 374761393U
|
|
|
|
|
|
//**************************************
|
|
// Architecture Macros
|
|
//**************************************
|
|
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
|
|
#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
|
|
static const int one = 1;
|
|
# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
|
|
#endif
|
|
|
|
|
|
//**************************************
|
|
// Macros
|
|
//**************************************
|
|
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
|
|
|
|
|
|
//****************************
|
|
// Memory reads
|
|
//****************************
|
|
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
|
|
|
|
FORCE_INLINE U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_alignment align)
|
|
{
|
|
if (align==XXH_unaligned)
|
|
return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
|
|
else
|
|
return endian==XXH_littleEndian ? *ptr : XXH_swap32(*ptr);
|
|
}
|
|
|
|
FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian,
|
|
XXH_alignment align) {
|
|
if (align == XXH_unaligned)
|
|
return endian == XXH_littleEndian ? XXH_read32(ptr)
|
|
: XXH_swap32(XXH_read32(ptr));
|
|
else
|
|
return endian == XXH_littleEndian ? *(const U32*)ptr
|
|
: XXH_swap32(*(const U32*)ptr);
|
|
}
|
|
|
|
FORCE_INLINE U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) {
|
|
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
|
|
}
|
|
|
|
//****************************
|
|
// Simple Hash Functions
|
|
//****************************
|
|
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
|
|
|
|
FORCE_INLINE U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_endianess endian, XXH_alignment align)
|
|
{
|
|
const BYTE* p = (const BYTE*)input;
|
|
const BYTE* const bEnd = p + len;
|
|
U32 h32;
|
|
|
|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
|
if (p==NULL) { len=0; p=(const BYTE*)(size_t)16; }
|
|
#endif
|
|
|
|
if (len>=16)
|
|
{
|
|
const BYTE* const limit = bEnd - 16;
|
|
U32 v1 = seed + PRIME32_1 + PRIME32_2;
|
|
U32 v2 = seed + PRIME32_2;
|
|
U32 v3 = seed + 0;
|
|
U32 v4 = seed - PRIME32_1;
|
|
|
|
do
|
|
{
|
|
v1 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
|
|
v2 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
|
|
v3 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
|
|
v4 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
|
|
} while (p<=limit);
|
|
|
|
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
|
}
|
|
else
|
|
{
|
|
h32 = seed + PRIME32_5;
|
|
}
|
|
|
|
h32 += (U32) len;
|
|
|
|
while (p<=bEnd-4)
|
|
{
|
|
h32 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_3;
|
|
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
|
|
p+=4;
|
|
}
|
|
|
|
while (p<bEnd)
|
|
{
|
|
h32 += (*p) * PRIME32_5;
|
|
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
|
|
p++;
|
|
}
|
|
|
|
h32 ^= h32 >> 15;
|
|
h32 *= PRIME32_2;
|
|
h32 ^= h32 >> 13;
|
|
h32 *= PRIME32_3;
|
|
h32 ^= h32 >> 16;
|
|
|
|
return h32;
|
|
}
|
|
|
|
|
|
U32 XXH32(const void* input, int len, U32 seed)
|
|
{
|
|
#if 0
|
|
// Simple version, good for code maintenance, but unfortunately slow for small inputs
|
|
void* state = XXH32_init(seed);
|
|
XXH32_update(state, input, len);
|
|
return XXH32_digest(state);
|
|
#else
|
|
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
|
# if !defined(XXH_USE_UNALIGNED_ACCESS)
|
|
if ((((size_t)input) & 3)) // Input is aligned, let's leverage the speed advantage
|
|
{
|
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
|
else
|
|
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
|
}
|
|
# endif
|
|
|
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
|
else
|
|
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
|
#endif
|
|
}
|
|
|
|
|
|
//****************************
|
|
// Advanced Hash Functions
|
|
//****************************
|
|
|
|
struct XXH_state32_t
|
|
{
|
|
U64 total_len;
|
|
U32 seed;
|
|
U32 v1;
|
|
U32 v2;
|
|
U32 v3;
|
|
U32 v4;
|
|
int memsize;
|
|
char memory[16];
|
|
};
|
|
|
|
|
|
int XXH32_sizeofState()
|
|
{
|
|
XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough
|
|
return sizeof(struct XXH_state32_t);
|
|
}
|
|
|
|
|
|
XXH_errorcode XXH32_resetState(void* state_in, U32 seed)
|
|
{
|
|
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
|
|
state->seed = seed;
|
|
state->v1 = seed + PRIME32_1 + PRIME32_2;
|
|
state->v2 = seed + PRIME32_2;
|
|
state->v3 = seed + 0;
|
|
state->v4 = seed - PRIME32_1;
|
|
state->total_len = 0;
|
|
state->memsize = 0;
|
|
return XXH_OK;
|
|
}
|
|
|
|
|
|
void* XXH32_init (U32 seed)
|
|
{
|
|
void* state = XXH_malloc (sizeof(struct XXH_state32_t));
|
|
XXH32_resetState(state, seed);
|
|
return state;
|
|
}
|
|
|
|
|
|
FORCE_INLINE XXH_errorcode XXH32_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)
|
|
{
|
|
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
|
|
const BYTE* p = (const BYTE*)input;
|
|
const BYTE* const bEnd = p + len;
|
|
|
|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
|
if (input==NULL) return XXH_ERROR;
|
|
#endif
|
|
|
|
state->total_len += len;
|
|
|
|
if (state->memsize + len < 16) // fill in tmp buffer
|
|
{
|
|
XXH_memcpy(state->memory + state->memsize, input, len);
|
|
state->memsize += len;
|
|
return XXH_OK;
|
|
}
|
|
|
|
if (state->memsize) // some data left from previous update
|
|
{
|
|
XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize);
|
|
{
|
|
const U32* p32 = (const U32*)state->memory;
|
|
state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++;
|
|
state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++;
|
|
state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++;
|
|
state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++;
|
|
}
|
|
p += 16-state->memsize;
|
|
state->memsize = 0;
|
|
}
|
|
|
|
if (p <= bEnd-16)
|
|
{
|
|
const BYTE* const limit = bEnd - 16;
|
|
U32 v1 = state->v1;
|
|
U32 v2 = state->v2;
|
|
U32 v3 = state->v3;
|
|
U32 v4 = state->v4;
|
|
|
|
do
|
|
{
|
|
v1 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
|
|
v2 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
|
|
v3 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
|
|
v4 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
|
|
} while (p<=limit);
|
|
|
|
state->v1 = v1;
|
|
state->v2 = v2;
|
|
state->v3 = v3;
|
|
state->v4 = v4;
|
|
}
|
|
|
|
if (p < bEnd)
|
|
{
|
|
XXH_memcpy(state->memory, p, bEnd-p);
|
|
state->memsize = (int)(bEnd-p);
|
|
}
|
|
|
|
return XXH_OK;
|
|
}
|
|
|
|
XXH_errorcode XXH32_update (void* state_in, const void* input, int len)
|
|
{
|
|
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
|
|
else
|
|
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
|
|
}
|
|
|
|
|
|
|
|
FORCE_INLINE U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess endian)
|
|
{
|
|
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
|
|
const BYTE * p = (const BYTE*)state->memory;
|
|
BYTE* bEnd = (BYTE*)state->memory + state->memsize;
|
|
U32 h32;
|
|
|
|
if (state->total_len >= 16)
|
|
{
|
|
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
|
|
}
|
|
else
|
|
{
|
|
h32 = state->seed + PRIME32_5;
|
|
}
|
|
|
|
h32 += (U32) state->total_len;
|
|
|
|
while (p<=bEnd-4)
|
|
{
|
|
h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3;
|
|
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
|
|
p+=4;
|
|
}
|
|
|
|
while (p<bEnd)
|
|
{
|
|
h32 += (*p) * PRIME32_5;
|
|
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
|
|
p++;
|
|
}
|
|
|
|
h32 ^= h32 >> 15;
|
|
h32 *= PRIME32_2;
|
|
h32 ^= h32 >> 13;
|
|
h32 *= PRIME32_3;
|
|
h32 ^= h32 >> 16;
|
|
|
|
return h32;
|
|
}
|
|
|
|
|
|
U32 XXH32_intermediateDigest (void* state_in)
|
|
{
|
|
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH32_intermediateDigest_endian(state_in, XXH_littleEndian);
|
|
else
|
|
return XXH32_intermediateDigest_endian(state_in, XXH_bigEndian);
|
|
}
|
|
|
|
|
|
U32 XXH32_digest (void* state_in)
|
|
{
|
|
U32 h32 = XXH32_intermediateDigest(state_in);
|
|
|
|
XXH_free(state_in);
|
|
|
|
return h32;
|
|
}
|
|
|
|
/* *******************************************************************
|
|
* 64-bit hash functions
|
|
*********************************************************************/
|
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
|
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
|
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
|
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
|
/* currently only defined for gcc and icc */
|
|
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
|
|
static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
|
|
|
|
#else
|
|
|
|
/* portable and safe solution. Generally efficient.
|
|
* see : http://stackoverflow.com/a/32095106/646947
|
|
*/
|
|
|
|
static U64 XXH_read64(const void* memPtr)
|
|
{
|
|
U64 val;
|
|
memcpy(&val, memPtr, sizeof(val));
|
|
return val;
|
|
}
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
|
#if defined(_MSC_VER) /* Visual Studio */
|
|
#define XXH_swap64 _byteswap_uint64
|
|
#elif XXH_GCC_VERSION >= 403
|
|
#define XXH_swap64 __builtin_bswap64
|
|
#else
|
|
static U64 XXH_swap64(U64 x) {
|
|
return ((x << 56) & 0xff00000000000000ULL) |
|
|
((x << 40) & 0x00ff000000000000ULL) |
|
|
((x << 24) & 0x0000ff0000000000ULL) |
|
|
((x << 8) & 0x000000ff00000000ULL) |
|
|
((x >> 8) & 0x00000000ff000000ULL) |
|
|
((x >> 24) & 0x0000000000ff0000ULL) |
|
|
((x >> 40) & 0x000000000000ff00ULL) |
|
|
((x >> 56) & 0x00000000000000ffULL);
|
|
}
|
|
#endif
|
|
|
|
FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian,
|
|
XXH_alignment align) {
|
|
if (align == XXH_unaligned)
|
|
return endian == XXH_littleEndian ? XXH_read64(ptr)
|
|
: XXH_swap64(XXH_read64(ptr));
|
|
else
|
|
return endian == XXH_littleEndian ? *(const U64*)ptr
|
|
: XXH_swap64(*(const U64*)ptr);
|
|
}
|
|
|
|
FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) {
|
|
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
|
|
}
|
|
|
|
static U64 XXH_readBE64(const void* ptr) {
|
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
|
|
}
|
|
|
|
/*====== xxh64 ======*/
|
|
|
|
static const U64 PRIME64_1 =
|
|
11400714785074694791ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111
|
|
*/
|
|
static const U64 PRIME64_2 =
|
|
14029467366897019727ULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111
|
|
*/
|
|
static const U64 PRIME64_3 =
|
|
1609587929392839161ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001
|
|
*/
|
|
static const U64 PRIME64_4 =
|
|
9650029242287828579ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011
|
|
*/
|
|
static const U64 PRIME64_5 =
|
|
2870177450012600261ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101
|
|
*/
|
|
|
|
static U64 XXH64_round(U64 acc, U64 input) {
|
|
acc += input * PRIME64_2;
|
|
acc = XXH_rotl64(acc, 31);
|
|
acc *= PRIME64_1;
|
|
return acc;
|
|
}
|
|
|
|
static U64 XXH64_mergeRound(U64 acc, U64 val) {
|
|
val = XXH64_round(0, val);
|
|
acc ^= val;
|
|
acc = acc * PRIME64_1 + PRIME64_4;
|
|
return acc;
|
|
}
|
|
|
|
static U64 XXH64_avalanche(U64 h64) {
|
|
h64 ^= h64 >> 33;
|
|
h64 *= PRIME64_2;
|
|
h64 ^= h64 >> 29;
|
|
h64 *= PRIME64_3;
|
|
h64 ^= h64 >> 32;
|
|
return h64;
|
|
}
|
|
|
|
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
|
|
|
|
static U64 XXH64_finalize(U64 h64, const void* ptr, size_t len,
|
|
XXH_endianess endian, XXH_alignment align) {
|
|
const BYTE* p = (const BYTE*)ptr;
|
|
|
|
#define PROCESS1_64 \
|
|
h64 ^= (*p++) * PRIME64_5; \
|
|
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
|
|
|
|
#define PROCESS4_64 \
|
|
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \
|
|
p += 4; \
|
|
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
|
|
|
|
#define PROCESS8_64 \
|
|
{ \
|
|
U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \
|
|
p += 8; \
|
|
h64 ^= k1; \
|
|
h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; \
|
|
}
|
|
|
|
switch (len & 31) {
|
|
case 24:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 16:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 8:
|
|
PROCESS8_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 28:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 20:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 12:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 4:
|
|
PROCESS4_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 25:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 17:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 9:
|
|
PROCESS8_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 29:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 21:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 13:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 5:
|
|
PROCESS4_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 26:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 18:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 10:
|
|
PROCESS8_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 30:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 22:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 14:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 6:
|
|
PROCESS4_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 27:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 19:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 11:
|
|
PROCESS8_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 31:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 23:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 15:
|
|
PROCESS8_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 7:
|
|
PROCESS4_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 3:
|
|
PROCESS1_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 2:
|
|
PROCESS1_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 1:
|
|
PROCESS1_64;
|
|
FALLTHROUGH_INTENDED;
|
|
/* fallthrough */
|
|
case 0:
|
|
return XXH64_avalanche(h64);
|
|
}
|
|
|
|
/* impossible to reach */
|
|
assert(0);
|
|
return 0; /* unreachable, but some compilers complain without it */
|
|
}
|
|
|
|
FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed,
|
|
XXH_endianess endian, XXH_alignment align) {
|
|
const BYTE* p = (const BYTE*)input;
|
|
const BYTE* bEnd = p + len;
|
|
U64 h64;
|
|
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \
|
|
(XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
|
|
if (p == NULL) {
|
|
len = 0;
|
|
bEnd = p = (const BYTE*)(size_t)32;
|
|
}
|
|
#endif
|
|
|
|
if (len >= 32) {
|
|
const BYTE* const limit = bEnd - 32;
|
|
U64 v1 = seed + PRIME64_1 + PRIME64_2;
|
|
U64 v2 = seed + PRIME64_2;
|
|
U64 v3 = seed + 0;
|
|
U64 v4 = seed - PRIME64_1;
|
|
|
|
do {
|
|
v1 = XXH64_round(v1, XXH_get64bits(p));
|
|
p += 8;
|
|
v2 = XXH64_round(v2, XXH_get64bits(p));
|
|
p += 8;
|
|
v3 = XXH64_round(v3, XXH_get64bits(p));
|
|
p += 8;
|
|
v4 = XXH64_round(v4, XXH_get64bits(p));
|
|
p += 8;
|
|
} while (p <= limit);
|
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) +
|
|
XXH_rotl64(v4, 18);
|
|
h64 = XXH64_mergeRound(h64, v1);
|
|
h64 = XXH64_mergeRound(h64, v2);
|
|
h64 = XXH64_mergeRound(h64, v3);
|
|
h64 = XXH64_mergeRound(h64, v4);
|
|
|
|
} else {
|
|
h64 = seed + PRIME64_5;
|
|
}
|
|
|
|
h64 += (U64)len;
|
|
|
|
return XXH64_finalize(h64, p, len, endian, align);
|
|
}
|
|
|
|
unsigned long long XXH64(const void* input, size_t len,
|
|
unsigned long long seed) {
|
|
#if 0
|
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
XXH64_state_t state;
|
|
XXH64_reset(&state, seed);
|
|
XXH64_update(&state, input, len);
|
|
return XXH64_digest(&state);
|
|
#else
|
|
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
|
if (XXH_FORCE_ALIGN_CHECK) {
|
|
if ((((size_t)input) & 7) ==
|
|
0) { /* Input is aligned, let's leverage the speed advantage */
|
|
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH64_endian_align(input, len, seed, XXH_littleEndian,
|
|
XXH_aligned);
|
|
else
|
|
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
|
}
|
|
}
|
|
|
|
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH64_endian_align(input, len, seed, XXH_littleEndian,
|
|
XXH_unaligned);
|
|
else
|
|
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
|
#endif
|
|
}
|
|
|
|
/*====== Hash Streaming ======*/
|
|
|
|
XXH64_state_t* XXH64_createState(void) {
|
|
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
|
|
}
|
|
XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) {
|
|
XXH_free(statePtr);
|
|
return XXH_OK;
|
|
}
|
|
|
|
void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) {
|
|
memcpy(dstState, srcState, sizeof(*dstState));
|
|
}
|
|
|
|
XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) {
|
|
XXH64_state_t state; /* using a local state to memcpy() in order to avoid
|
|
strict-aliasing warnings */
|
|
memset(&state, 0, sizeof(state));
|
|
state.v1 = seed + PRIME64_1 + PRIME64_2;
|
|
state.v2 = seed + PRIME64_2;
|
|
state.v3 = seed + 0;
|
|
state.v4 = seed - PRIME64_1;
|
|
/* do not write into reserved, planned to be removed in a future version */
|
|
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
|
|
return XXH_OK;
|
|
}
|
|
|
|
FORCE_INLINE XXH_errorcode XXH64_update_endian(XXH64_state_t* state,
|
|
const void* input, size_t len,
|
|
XXH_endianess endian) {
|
|
if (input == NULL)
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \
|
|
(XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
|
|
return XXH_OK;
|
|
#else
|
|
return XXH_ERROR;
|
|
#endif
|
|
|
|
{
|
|
const BYTE* p = (const BYTE*)input;
|
|
const BYTE* const bEnd = p + len;
|
|
|
|
state->total_len += len;
|
|
|
|
if (state->memsize + len < 32) { /* fill in tmp buffer */
|
|
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
|
|
state->memsize += (U32)len;
|
|
return XXH_OK;
|
|
}
|
|
|
|
if (state->memsize) { /* tmp buffer is full */
|
|
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input,
|
|
32 - state->memsize);
|
|
state->v1 =
|
|
XXH64_round(state->v1, XXH_readLE64(state->mem64 + 0, endian));
|
|
state->v2 =
|
|
XXH64_round(state->v2, XXH_readLE64(state->mem64 + 1, endian));
|
|
state->v3 =
|
|
XXH64_round(state->v3, XXH_readLE64(state->mem64 + 2, endian));
|
|
state->v4 =
|
|
XXH64_round(state->v4, XXH_readLE64(state->mem64 + 3, endian));
|
|
p += 32 - state->memsize;
|
|
state->memsize = 0;
|
|
}
|
|
|
|
if (p + 32 <= bEnd) {
|
|
const BYTE* const limit = bEnd - 32;
|
|
U64 v1 = state->v1;
|
|
U64 v2 = state->v2;
|
|
U64 v3 = state->v3;
|
|
U64 v4 = state->v4;
|
|
|
|
do {
|
|
v1 = XXH64_round(v1, XXH_readLE64(p, endian));
|
|
p += 8;
|
|
v2 = XXH64_round(v2, XXH_readLE64(p, endian));
|
|
p += 8;
|
|
v3 = XXH64_round(v3, XXH_readLE64(p, endian));
|
|
p += 8;
|
|
v4 = XXH64_round(v4, XXH_readLE64(p, endian));
|
|
p += 8;
|
|
} while (p <= limit);
|
|
|
|
state->v1 = v1;
|
|
state->v2 = v2;
|
|
state->v3 = v3;
|
|
state->v4 = v4;
|
|
}
|
|
|
|
if (p < bEnd) {
|
|
XXH_memcpy(state->mem64, p, (size_t)(bEnd - p));
|
|
state->memsize = (unsigned)(bEnd - p);
|
|
}
|
|
}
|
|
|
|
return XXH_OK;
|
|
}
|
|
|
|
XXH_errorcode XXH64_update(XXH64_state_t* state_in, const void* input,
|
|
size_t len) {
|
|
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
|
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
|
|
else
|
|
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
|
|
}
|
|
|
|
FORCE_INLINE U64 XXH64_digest_endian(const XXH64_state_t* state,
|
|
XXH_endianess endian) {
|
|
U64 h64;
|
|
|
|
if (state->total_len >= 32) {
|
|
U64 const v1 = state->v1;
|
|
U64 const v2 = state->v2;
|
|
U64 const v3 = state->v3;
|
|
U64 const v4 = state->v4;
|
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) +
|
|
XXH_rotl64(v4, 18);
|
|
h64 = XXH64_mergeRound(h64, v1);
|
|
h64 = XXH64_mergeRound(h64, v2);
|
|
h64 = XXH64_mergeRound(h64, v3);
|
|
h64 = XXH64_mergeRound(h64, v4);
|
|
} else {
|
|
h64 = state->v3 /*seed*/ + PRIME64_5;
|
|
}
|
|
|
|
h64 += (U64)state->total_len;
|
|
|
|
return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, endian,
|
|
XXH_aligned);
|
|
}
|
|
|
|
unsigned long long XXH64_digest(const XXH64_state_t* state_in) {
|
|
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
|
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
|
return XXH64_digest_endian(state_in, XXH_littleEndian);
|
|
else
|
|
return XXH64_digest_endian(state_in, XXH_bigEndian);
|
|
}
|
|
|
|
/*====== Canonical representation ======*/
|
|
|
|
void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) {
|
|
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
|
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
|
|
memcpy(dst, &hash, sizeof(*dst));
|
|
}
|
|
|
|
XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) {
|
|
return XXH_readBE64(src);
|
|
}
|
|
} // namespace rocksdb
|