rocksdb/db/multi_cf_iterator_impl.h
Levi Tamasi 3becc9409e Some small improvements around allow_unprepared_value and multi-CF iterators (#13113)
Summary:
Pull Request resolved: https://github.com/facebook/rocksdb/pull/13113

The patch makes some small improvements related to `allow_unprepared_value` and multi-CF iterators as groundwork for further changes:

1) Similarly to `BaseDeltaIterator`'s base iterator, `MultiCfIteratorImpl` gets passed its child iterators by the client. Even though they are currently guaranteed to have been created using the same read options as each other and the multi-CF iterator, it is safer to not assume this and call `PrepareValue` unconditionally before using any child iterator's `value()` or `columns()`.
2) Again similarly to `BaseDeltaIterator`, it makes sense to pass the entire `ReadOptions` structure to `MultiCfIteratorImpl` in case it turns out to require other read options in the future.
3) The constructors of the various multi-CF iterator classes now take an rvalue reference to a vector of column family handle + `unique_ptr` to child iterator pairs and use move semantics to take ownership of this vector (instead of taking two separate vectors of column family handles and raw iterator pointers).
4) Constructor arguments and the members of `MultiCfIteratorImpl` are reordered for consistency.

Reviewed By: jowlyzhang

Differential Revision: D65407521

fbshipit-source-id: 66c2c689ec8b036740bd98641b7b5c0ff7e777f2
2024-11-04 18:06:07 -08:00

355 lines
10 KiB
C++

// Copyright (c) Meta Platforms, Inc. and affiliates.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <functional>
#include <variant>
#include "rocksdb/comparator.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "util/heap.h"
namespace ROCKSDB_NAMESPACE {
struct MultiCfIteratorInfo {
ColumnFamilyHandle* cfh;
Iterator* iterator;
int order;
};
template <typename ResetFunc, typename PopulateFunc>
class MultiCfIteratorImpl {
public:
MultiCfIteratorImpl(
const ReadOptions& read_options, const Comparator* comparator,
std::vector<std::pair<ColumnFamilyHandle*, std::unique_ptr<Iterator>>>&&
cfh_iter_pairs,
ResetFunc reset_func, PopulateFunc populate_func)
: allow_unprepared_value_(read_options.allow_unprepared_value),
comparator_(comparator),
cfh_iter_pairs_(std::move(cfh_iter_pairs)),
reset_func_(std::move(reset_func)),
populate_func_(std::move(populate_func)),
heap_(MultiCfMinHeap(
MultiCfHeapItemComparator<std::greater<int>>(comparator_))) {}
~MultiCfIteratorImpl() { status_.PermitUncheckedError(); }
// No copy allowed
MultiCfIteratorImpl(const MultiCfIteratorImpl&) = delete;
MultiCfIteratorImpl& operator=(const MultiCfIteratorImpl&) = delete;
Slice key() const {
assert(Valid());
return current()->key();
}
bool Valid() const {
if (std::holds_alternative<MultiCfMaxHeap>(heap_)) {
auto& max_heap = std::get<MultiCfMaxHeap>(heap_);
return !max_heap.empty() && status_.ok();
}
auto& min_heap = std::get<MultiCfMinHeap>(heap_);
return !min_heap.empty() && status_.ok();
}
Status status() const { return status_; }
void SeekToFirst() {
auto& min_heap = GetHeap<MultiCfMinHeap>([this]() { InitMinHeap(); });
SeekCommon(min_heap, [](Iterator* iter) { iter->SeekToFirst(); });
}
void Seek(const Slice& target) {
auto& min_heap = GetHeap<MultiCfMinHeap>([this]() { InitMinHeap(); });
SeekCommon(min_heap, [&target](Iterator* iter) { iter->Seek(target); });
}
void SeekToLast() {
auto& max_heap = GetHeap<MultiCfMaxHeap>([this]() { InitMaxHeap(); });
SeekCommon(max_heap, [](Iterator* iter) { iter->SeekToLast(); });
}
void SeekForPrev(const Slice& target) {
auto& max_heap = GetHeap<MultiCfMaxHeap>([this]() { InitMaxHeap(); });
SeekCommon(max_heap,
[&target](Iterator* iter) { iter->SeekForPrev(target); });
}
void Next() {
assert(Valid());
auto& min_heap = GetHeap<MultiCfMinHeap>([this]() {
std::string target(key().data(), key().size());
InitMinHeap();
Seek(target);
});
AdvanceIterator(min_heap, [](Iterator* iter) { iter->Next(); });
}
void Prev() {
assert(Valid());
auto& max_heap = GetHeap<MultiCfMaxHeap>([this]() {
std::string target(key().data(), key().size());
InitMaxHeap();
SeekForPrev(target);
});
AdvanceIterator(max_heap, [](Iterator* iter) { iter->Prev(); });
}
bool PrepareValue() {
assert(Valid());
if (!allow_unprepared_value_) {
return true;
}
if (std::holds_alternative<MultiCfMaxHeap>(heap_)) {
return PopulateIterator(std::get<MultiCfMaxHeap>(heap_));
}
return PopulateIterator(std::get<MultiCfMinHeap>(heap_));
}
private:
Status status_;
bool allow_unprepared_value_;
const Comparator* comparator_;
std::vector<std::pair<ColumnFamilyHandle*, std::unique_ptr<Iterator>>>
cfh_iter_pairs_;
ResetFunc reset_func_;
PopulateFunc populate_func_;
template <typename CompareOp>
class MultiCfHeapItemComparator {
public:
explicit MultiCfHeapItemComparator(const Comparator* comparator)
: comparator_(comparator) {}
bool operator()(const MultiCfIteratorInfo& a,
const MultiCfIteratorInfo& b) const {
assert(a.iterator);
assert(b.iterator);
assert(a.iterator->Valid());
assert(b.iterator->Valid());
int c = comparator_->Compare(a.iterator->key(), b.iterator->key());
assert(c != 0 || a.order != b.order);
return c == 0 ? a.order - b.order > 0 : CompareOp()(c, 0);
}
private:
const Comparator* comparator_;
};
using MultiCfMinHeap =
BinaryHeap<MultiCfIteratorInfo,
MultiCfHeapItemComparator<std::greater<int>>>;
using MultiCfMaxHeap = BinaryHeap<MultiCfIteratorInfo,
MultiCfHeapItemComparator<std::less<int>>>;
using MultiCfIterHeap = std::variant<MultiCfMinHeap, MultiCfMaxHeap>;
MultiCfIterHeap heap_;
Iterator* current() const {
if (std::holds_alternative<MultiCfMaxHeap>(heap_)) {
auto& max_heap = std::get<MultiCfMaxHeap>(heap_);
return max_heap.top().iterator;
}
auto& min_heap = std::get<MultiCfMinHeap>(heap_);
return min_heap.top().iterator;
}
void considerStatus(Status s) {
if (!s.ok() && status_.ok()) {
status_ = std::move(s);
}
}
template <typename HeapType, typename InitFunc>
HeapType& GetHeap(InitFunc initFunc) {
if (!std::holds_alternative<HeapType>(heap_)) {
initFunc();
}
return std::get<HeapType>(heap_);
}
void InitMinHeap() {
heap_.template emplace<MultiCfMinHeap>(
MultiCfHeapItemComparator<std::greater<int>>(comparator_));
}
void InitMaxHeap() {
heap_.template emplace<MultiCfMaxHeap>(
MultiCfHeapItemComparator<std::less<int>>(comparator_));
}
template <typename BinaryHeap, typename ChildSeekFuncType>
void SeekCommon(BinaryHeap& heap, ChildSeekFuncType child_seek_func) {
reset_func_();
heap.clear();
int i = 0;
for (auto& [cfh, iter] : cfh_iter_pairs_) {
child_seek_func(iter.get());
if (iter->Valid()) {
assert(iter->status().ok());
heap.push(MultiCfIteratorInfo{cfh, iter.get(), i});
} else {
considerStatus(iter->status());
if (!status_.ok()) {
// Non-OK status from the iterator. Bail out early
heap.clear();
return;
}
}
++i;
}
if (!allow_unprepared_value_ && !heap.empty()) {
[[maybe_unused]] const bool result = PopulateIterator(heap);
assert(result || (!Valid() && !status_.ok()));
}
}
template <typename BinaryHeap, typename AdvanceFuncType>
void AdvanceIterator(BinaryHeap& heap, AdvanceFuncType advance_func) {
reset_func_();
// It is possible for one or more child iters are at invalid keys due to
// manual prefix iteration. For such cases, we consider the result of the
// multi-cf-iter is also undefined.
// https://github.com/facebook/rocksdb/wiki/Prefix-Seek#manual-prefix-iterating
// for details about manual prefix iteration
if (heap.empty()) {
return;
}
// 1. Keep the top iterator (by popping it from the heap)
// 2. Make sure all others have iterated past the top iterator key slice
// 3. Advance the top iterator, and add it back to the heap if valid
auto top = heap.top();
assert(top.iterator);
assert(top.iterator->Valid());
assert(top.iterator->status().ok());
heap.pop();
while (!heap.empty()) {
auto current = heap.top();
assert(current.iterator);
assert(current.iterator->Valid());
assert(current.iterator->status().ok());
if (comparator_->Compare(current.iterator->key(), top.iterator->key()) !=
0) {
break;
}
advance_func(current.iterator);
if (current.iterator->Valid()) {
assert(current.iterator->status().ok());
heap.replace_top(current);
} else {
considerStatus(current.iterator->status());
if (!status_.ok()) {
heap.clear();
return;
} else {
heap.pop();
}
}
}
advance_func(top.iterator);
if (top.iterator->Valid()) {
assert(top.iterator->status().ok());
heap.push(top);
} else {
considerStatus(top.iterator->status());
if (!status_.ok()) {
heap.clear();
return;
}
}
if (!allow_unprepared_value_ && !heap.empty()) {
[[maybe_unused]] const bool result = PopulateIterator(heap);
assert(result || (!Valid() && !status_.ok()));
}
}
template <typename BinaryHeap>
bool PopulateIterator(BinaryHeap& heap) {
// 1. Keep the top iterator (by popping it from the heap) and add it to list
// to populate
// 2. For all non-top iterators having the same key as top iter popped
// from the previous step, add them to the same list and pop it
// temporarily from the heap
// 3. Once no other iters have the same key as the top iter from step 1,
// populate the value/columns and attribute_groups from the list
// collected in step 1 and 2 and add all the iters back to the heap
assert(!heap.empty());
auto prepare_value = [this, &heap](Iterator* iterator) {
assert(iterator);
assert(iterator->Valid());
assert(iterator->status().ok());
if (!iterator->PrepareValue()) {
assert(!iterator->Valid());
assert(!iterator->status().ok());
considerStatus(iterator->status());
heap.clear();
assert(!Valid());
assert(!status_.ok());
return false;
}
return true;
};
auto top = heap.top();
assert(top.iterator);
assert(top.iterator->Valid());
assert(top.iterator->status().ok());
if (!prepare_value(top.iterator)) {
return false;
}
autovector<MultiCfIteratorInfo> to_populate;
to_populate.push_back(top);
heap.pop();
while (!heap.empty()) {
auto current = heap.top();
assert(current.iterator);
assert(current.iterator->Valid());
assert(current.iterator->status().ok());
if (comparator_->Compare(current.iterator->key(), top.iterator->key()) !=
0) {
break;
}
if (!prepare_value(current.iterator)) {
return false;
}
to_populate.push_back(current);
heap.pop();
}
// Add the items back to the heap
for (auto& item : to_populate) {
heap.push(item);
}
populate_func_(to_populate);
return true;
}
};
} // namespace ROCKSDB_NAMESPACE