rocksdb/cache/clock_cache.h

454 lines
15 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <array>
#include <memory>
#include <string>
#include "cache/cache_key.h"
#include "cache/sharded_cache.h"
#include "port/lang.h"
#include "port/malloc.h"
#include "port/port.h"
#include "rocksdb/cache.h"
#include "rocksdb/secondary_cache.h"
#include "util/autovector.h"
#include "util/distributed_mutex.h"
namespace ROCKSDB_NAMESPACE {
namespace clock_cache {
// Clock cache implementation. This is based on FastLRUCache's open-addressed
// hash table. Importantly, it stores elements in an array, and resolves
// collision using a probing strategy. Visibility and referenceability of
// elements works as usual. See fast_lru_cache.h for a detailed description.
//
// The main difference with FastLRUCache is, not surprisingly, the eviction
// algorithm
// ---instead of an LRU list, we maintain a circular list with the elements
// available for eviction, which the clock algorithm traverses to pick the next
// victim. The clock list is represented using the array of handles, and we
// simply mark those elements that are present in the list. This is done using
// different clock flags, namely NONE, LOW, MEDIUM, HIGH, that represent
// priorities: NONE means that the element is not part of the clock list, and
// LOW to HIGH represent how close an element is from being evictable (LOW being
// immediately evictable). When the clock pointer steps on an element that is
// not immediately evictable, it decreases its priority.
constexpr double kLoadFactor = 0.35; // See fast_lru_cache.h.
constexpr double kStrictLoadFactor = 0.7; // See fast_lru_cache.h.
// Arbitrary seeds.
constexpr uint32_t kProbingSeed1 = 0xbc9f1d34;
constexpr uint32_t kProbingSeed2 = 0x7a2bb9d5;
// An experimental (under development!) alternative to LRUCache
struct ClockHandle {
void* value;
Cache::DeleterFn deleter;
uint32_t hash;
size_t total_charge; // TODO(opt): Only allow uint32_t?
// The number of external refs to this entry.
uint32_t refs;
static constexpr int kIsVisibleOffset = 0;
static constexpr int kIsElementOffset = 1;
static constexpr int kClockPriorityOffset = 2;
enum Flags : uint8_t {
// Whether the handle is visible to Lookups.
IS_VISIBLE = (1 << kIsVisibleOffset),
// Whether the slot is in use by an element.
IS_ELEMENT = (1 << kIsElementOffset),
// Clock priorities. Represents how close a handle is from
// being evictable.
CLOCK_PRIORITY = (3 << kClockPriorityOffset),
};
uint8_t flags;
enum ClockPriority : uint8_t {
NONE = (0 << kClockPriorityOffset), // Not an element in the eyes of clock.
LOW = (1 << kClockPriorityOffset), // Immediately evictable.
MEDIUM = (2 << kClockPriorityOffset),
HIGH = (3 << kClockPriorityOffset)
// Priority is CLOCK_NONE if and only if
// (i) the handle is not an element, or
// (ii) the handle is an element but it is being referenced.
};
// The number of elements that hash to this slot or a lower one,
// but wind up in a higher slot.
uint32_t displacements;
std::array<char, kCacheKeySize> key_data;
ClockHandle() {
value = nullptr;
deleter = nullptr;
hash = 0;
total_charge = 0;
refs = 0;
flags = 0;
SetIsVisible(false);
SetIsElement(false);
SetPriority(ClockPriority::NONE);
displacements = 0;
key_data.fill(0);
}
Slice key() const { return Slice(key_data.data(), kCacheKeySize); }
// Increase the reference count by 1.
void Ref() { refs++; }
// Just reduce the reference count by 1. Return true if it was last reference.
bool Unref() {
assert(refs > 0);
refs--;
return refs == 0;
}
// Return true if there are external refs, false otherwise.
bool HasRefs() const { return refs > 0; }
bool IsVisible() const { return flags & IS_VISIBLE; }
void SetIsVisible(bool is_visible) {
if (is_visible) {
flags |= IS_VISIBLE;
} else {
flags &= ~IS_VISIBLE;
}
}
bool IsElement() const { return flags & IS_ELEMENT; }
void SetIsElement(bool is_element) {
if (is_element) {
flags |= IS_ELEMENT;
} else {
flags &= ~IS_ELEMENT;
}
}
ClockPriority GetPriority() const {
return static_cast<ClockPriority>(flags & Flags::CLOCK_PRIORITY);
}
bool IsInClockList() const {
return GetPriority() != ClockHandle::ClockPriority::NONE;
}
void SetPriority(ClockPriority priority) {
flags &= ~Flags::CLOCK_PRIORITY;
flags |= priority;
}
void DecreasePriority() {
uint8_t p = static_cast<uint8_t>(flags & Flags::CLOCK_PRIORITY) >>
kClockPriorityOffset;
assert(p > 0);
p--;
flags &= ~Flags::CLOCK_PRIORITY;
ClockPriority new_priority =
static_cast<ClockPriority>(p << kClockPriorityOffset);
flags |= new_priority;
}
void FreeData() {
assert(refs == 0);
if (deleter) {
(*deleter)(key(), value);
}
}
// Calculate the memory usage by metadata.
inline size_t CalcMetaCharge(
CacheMetadataChargePolicy metadata_charge_policy) const {
if (metadata_charge_policy != kFullChargeCacheMetadata) {
return 0;
} else {
// #ifdef ROCKSDB_MALLOC_USABLE_SIZE
// return malloc_usable_size(
// const_cast<void*>(static_cast<const void*>(this)));
// #else
// TODO(Guido) malloc_usable_size only works when we call it on
// a pointer allocated with malloc. Because our handles are all
// allocated in a single shot as an array, the user can't call
// CalcMetaCharge (or CalcTotalCharge or GetCharge) on a handle
// pointer returned by the cache. Moreover, malloc_usable_size
// expects a heap-allocated handle, but sometimes in our code we
// wish to pass a stack-allocated handle (this is only a performance
// concern).
// What is the right way to compute metadata charges with pre-allocated
// handles?
return sizeof(ClockHandle);
// #endif
}
}
inline void CalcTotalCharge(
size_t charge, CacheMetadataChargePolicy metadata_charge_policy) {
total_charge = charge + CalcMetaCharge(metadata_charge_policy);
}
inline size_t GetCharge(
CacheMetadataChargePolicy metadata_charge_policy) const {
size_t meta_charge = CalcMetaCharge(metadata_charge_policy);
assert(total_charge >= meta_charge);
return total_charge - meta_charge;
}
inline bool IsEmpty() {
return !this->IsElement() && this->displacements == 0;
}
inline bool IsTombstone() {
return !this->IsElement() && this->displacements > 0;
}
inline bool Matches(const Slice& some_key) {
return this->IsElement() && this->key() == some_key;
}
}; // struct ClockHandle
class ClockHandleTable {
public:
explicit ClockHandleTable(int hash_bits);
~ClockHandleTable();
// Returns a pointer to a visible element matching the key/hash, or
// nullptr if not present.
ClockHandle* Lookup(const Slice& key);
// Inserts a copy of h into the hash table.
// Returns a pointer to the inserted handle, or nullptr if no slot
// available was found. If an existing visible element matching the
// key/hash is already present in the hash table, the argument old
// is set to pointe to it; otherwise, it's set to nullptr.
ClockHandle* Insert(ClockHandle* h, ClockHandle** old);
// Removes h from the hash table. The handle must already be off
// the clock list.
void Remove(ClockHandle* h);
// Turns a visible element h into a ghost (i.e., not visible).
void Exclude(ClockHandle* h);
// Assigns a copy of h to the given slot.
void Assign(int slot, ClockHandle* h);
template <typename T>
void ApplyToEntriesRange(T func, uint32_t index_begin, uint32_t index_end) {
for (uint32_t i = index_begin; i < index_end; i++) {
ClockHandle* h = &array_[i];
if (h->IsVisible()) {
func(h);
}
}
}
uint32_t GetTableSize() const { return uint32_t{1} << length_bits_; }
int GetLengthBits() const { return length_bits_; }
uint32_t GetOccupancyLimit() const { return occupancy_limit_; }
uint32_t GetOccupancy() const { return occupancy_; }
// Returns x mod 2^{length_bits_}.
uint32_t ModTableSize(uint32_t x) { return x & length_bits_mask_; }
private:
friend class ClockCacheShard;
int FindVisibleElement(const Slice& key, int& probe, int displacement);
int FindAvailableSlot(const Slice& key, int& probe, int displacement);
int FindVisibleElementOrAvailableSlot(const Slice& key, int& probe,
int displacement);
// Returns the index of the first slot probed (hashing with
// the given key) with a handle e such that cond(e) is true.
// Otherwise, if no match is found, returns -1.
// For every handle e probed except the final slot, updates
// e->displacements += displacement.
// The argument probe is modified such that consecutive calls
// to FindSlot continue probing right after where the previous
// call left.
int FindSlot(const Slice& key, std::function<bool(ClockHandle*)> cond,
int& probe, int displacement);
// Number of hash bits used for table index.
// The size of the table is 1 << length_bits_.
int length_bits_;
const uint32_t length_bits_mask_;
// Number of elements in the table.
uint32_t occupancy_;
// Maximum number of elements the user can store in the table.
uint32_t occupancy_limit_;
std::unique_ptr<ClockHandle[]> array_;
}; // class ClockHandleTable
// A single shard of sharded cache.
class ALIGN_AS(CACHE_LINE_SIZE) ClockCacheShard final : public CacheShard {
public:
ClockCacheShard(size_t capacity, size_t estimated_value_size,
bool strict_capacity_limit,
CacheMetadataChargePolicy metadata_charge_policy);
~ClockCacheShard() override = default;
// Separate from constructor so caller can easily make an array of ClockCache
// if current usage is more than new capacity, the function will attempt to
// free the needed space.
void SetCapacity(size_t capacity) override;
// Set the flag to reject insertion if cache if full.
void SetStrictCapacityLimit(bool strict_capacity_limit) override;
// Like Cache methods, but with an extra "hash" parameter.
// Insert an item into the hash table and, if handle is null, insert into
// the clock list. Older items are evicted as necessary. If the cache is full
// and free_handle_on_fail is true, the item is deleted and handle is set to
// nullptr.
Status Insert(const Slice& key, uint32_t hash, void* value, size_t charge,
Cache::DeleterFn deleter, Cache::Handle** handle,
Cache::Priority priority) override;
Status Insert(const Slice& key, uint32_t hash, void* value,
const Cache::CacheItemHelper* helper, size_t charge,
Cache::Handle** handle, Cache::Priority priority) override {
return Insert(key, hash, value, charge, helper->del_cb, handle, priority);
}
Cache::Handle* Lookup(const Slice& key, uint32_t hash,
const Cache::CacheItemHelper* /*helper*/,
const Cache::CreateCallback& /*create_cb*/,
Cache::Priority /*priority*/, bool /*wait*/,
Statistics* /*stats*/) override {
return Lookup(key, hash);
}
Cache::Handle* Lookup(const Slice& key, uint32_t hash) override;
bool Release(Cache::Handle* handle, bool /*useful*/,
bool erase_if_last_ref) override {
return Release(handle, erase_if_last_ref);
}
bool IsReady(Cache::Handle* /*handle*/) override { return true; }
void Wait(Cache::Handle* /*handle*/) override {}
bool Ref(Cache::Handle* handle) override;
bool Release(Cache::Handle* handle, bool erase_if_last_ref = false) override;
void Erase(const Slice& key, uint32_t hash) override;
size_t GetUsage() const override;
size_t GetPinnedUsage() const override;
void ApplyToSomeEntries(
const std::function<void(const Slice& key, void* value, size_t charge,
DeleterFn deleter)>& callback,
uint32_t average_entries_per_lock, uint32_t* state) override;
void EraseUnRefEntries() override;
std::string GetPrintableOptions() const override;
private:
friend class ClockCache;
void ClockRemove(ClockHandle* e);
void ClockInsert(ClockHandle* e);
// Free some space following strict clock policy until enough space
// to hold (usage_ + charge) is freed or the clock list is empty
// This function is not thread safe - it needs to be executed while
// holding the mutex_.
void EvictFromClock(size_t charge, autovector<ClockHandle>* deleted);
// Returns the charge of a single handle.
static size_t CalcEstimatedHandleCharge(
size_t estimated_value_size,
CacheMetadataChargePolicy metadata_charge_policy);
// Returns the number of bits used to hash an element in the hash
// table.
static int CalcHashBits(size_t capacity, size_t estimated_value_size,
CacheMetadataChargePolicy metadata_charge_policy);
// Initialized before use.
size_t capacity_;
// Whether to reject insertion if cache reaches its full capacity.
bool strict_capacity_limit_;
uint32_t clock_pointer_;
// ------------^^^^^^^^^^^^^-----------
// Not frequently modified data members
// ------------------------------------
//
// We separate data members that are updated frequently from the ones that
// are not frequently updated so that they don't share the same cache line
// which will lead into false cache sharing
//
// ------------------------------------
// Frequently modified data members
// ------------vvvvvvvvvvvvv-----------
ClockHandleTable table_;
// Memory size for entries residing in the cache.
size_t usage_;
// Memory size for unpinned entries in the clock list.
size_t clock_usage_;
// mutex_ protects the following state.
// We don't count mutex_ as the cache's internal state so semantically we
// don't mind mutex_ invoking the non-const actions.
mutable DMutex mutex_;
}; // class ClockCacheShard
class ClockCache
#ifdef NDEBUG
final
#endif
: public ShardedCache {
public:
ClockCache(size_t capacity, size_t estimated_value_size, int num_shard_bits,
bool strict_capacity_limit,
CacheMetadataChargePolicy metadata_charge_policy =
kDontChargeCacheMetadata);
~ClockCache() override;
const char* Name() const override { return "ClockCache"; }
CacheShard* GetShard(uint32_t shard) override;
const CacheShard* GetShard(uint32_t shard) const override;
void* Value(Handle* handle) override;
size_t GetCharge(Handle* handle) const override;
uint32_t GetHash(Handle* handle) const override;
DeleterFn GetDeleter(Handle* handle) const override;
void DisownData() override;
private:
ClockCacheShard* shards_ = nullptr;
int num_shards_ = 0;
}; // class ClockCache
} // namespace clock_cache
} // namespace ROCKSDB_NAMESPACE