rocksdb/db/memtable_list_test.cc
Yu Zhang 4ea7b796b7 Respect cutoff timestamp during flush (#11599)
Summary:
Make flush respect the cutoff timestamp `full_history_ts_low` as much as possible for the user-defined timestamps in Memtables only feature. We achieve this by not proceeding with the actual flushing but instead reschedule the same `FlushRequest` so a follow up flush job can continue with the check after some interval.

This approach doesn't work well for atomic flush, so this feature currently is not supported in combination with atomic flush. Furthermore, this approach also requires a customized method to get the next immediately bigger user-defined timestamp. So currently it's limited to comparator that use uint64_t as the user-defined timestamp format. This support can be extended when we add such a customized method to `AdvancedColumnFamilyOptions`.

For non atomic flush request, at any single time, a column family can only have as many as one FlushRequest for it in the `flush_queue_`. There is deduplication done at `FlushRequest` enqueueing(`SchedulePendingFlush`) and dequeueing time (`PopFirstFromFlushQueue`). We hold the db mutex between when a `FlushRequest` is popped from the queue and the same FlushRequest get rescheduled, so no other `FlushRequest` with a higher `max_memtable_id` can be added to the `flush_queue_` blocking us from re-enqueueing the same `FlushRequest`.

Flush is continued nevertheless if there is risk of entering write stall mode had the flush being postponed, e.g. due to accumulation of write buffers, exceeding the `max_write_buffer_number` setting. When this happens, the newest user-defined timestamp in the involved Memtables need to be tracked and we use it to increase the `full_history_ts_low`, which is an inclusive cutoff timestamp for which RocksDB promises to keep all user-defined timestamps equal to and newer than it.

Tet plan:
```
./column_family_test --gtest_filter="*RetainUDT*"
./memtable_list_test --gtest_filter="*WithTimestamp*"
./flush_job_test --gtest_filter="*WithTimestamp*"
```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11599

Reviewed By: ajkr

Differential Revision: D47561586

Pulled By: jowlyzhang

fbshipit-source-id: 9400445f983dd6eac489e9dd0fb5d9b99637fe89
2023-07-26 16:25:06 -07:00

1124 lines
42 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/memtable_list.h"
#include <algorithm>
#include <string>
#include <vector>
#include "db/merge_context.h"
#include "db/version_set.h"
#include "db/write_controller.h"
#include "rocksdb/db.h"
#include "rocksdb/status.h"
#include "rocksdb/write_buffer_manager.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
class MemTableListTest : public testing::Test {
public:
std::string dbname;
DB* db;
Options options;
std::vector<ColumnFamilyHandle*> handles;
std::atomic<uint64_t> file_number;
MemTableListTest() : db(nullptr), file_number(1) {
dbname = test::PerThreadDBPath("memtable_list_test");
options.create_if_missing = true;
EXPECT_OK(DestroyDB(dbname, options));
}
// Create a test db if not yet created
void CreateDB() {
if (db == nullptr) {
options.create_if_missing = true;
EXPECT_OK(DestroyDB(dbname, options));
// Open DB only with default column family
ColumnFamilyOptions cf_options;
std::vector<ColumnFamilyDescriptor> cf_descs;
if (udt_enabled_) {
cf_options.comparator = test::BytewiseComparatorWithU64TsWrapper();
}
cf_descs.emplace_back(kDefaultColumnFamilyName, cf_options);
Status s = DB::Open(options, dbname, cf_descs, &handles, &db);
EXPECT_OK(s);
ColumnFamilyOptions cf_opt1, cf_opt2;
cf_opt1.cf_paths.emplace_back(dbname + "_one_1",
std::numeric_limits<uint64_t>::max());
cf_opt2.cf_paths.emplace_back(dbname + "_two_1",
std::numeric_limits<uint64_t>::max());
int sz = static_cast<int>(handles.size());
handles.resize(sz + 2);
s = db->CreateColumnFamily(cf_opt1, "one", &handles[1]);
EXPECT_OK(s);
s = db->CreateColumnFamily(cf_opt2, "two", &handles[2]);
EXPECT_OK(s);
cf_descs.emplace_back("one", cf_options);
cf_descs.emplace_back("two", cf_options);
}
}
~MemTableListTest() override {
if (db) {
std::vector<ColumnFamilyDescriptor> cf_descs(handles.size());
for (int i = 0; i != static_cast<int>(handles.size()); ++i) {
EXPECT_OK(handles[i]->GetDescriptor(&cf_descs[i]));
}
for (auto h : handles) {
if (h) {
EXPECT_OK(db->DestroyColumnFamilyHandle(h));
}
}
handles.clear();
delete db;
db = nullptr;
EXPECT_OK(DestroyDB(dbname, options, cf_descs));
}
}
// Calls MemTableList::TryInstallMemtableFlushResults() and sets up all
// structures needed to call this function.
Status Mock_InstallMemtableFlushResults(
MemTableList* list, const MutableCFOptions& mutable_cf_options,
const autovector<MemTable*>& m, autovector<MemTable*>* to_delete) {
// Create a mock Logger
test::NullLogger logger;
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
CreateDB();
// Create a mock VersionSet
DBOptions db_options;
ImmutableDBOptions immutable_db_options(db_options);
EnvOptions env_options;
std::shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
WriteController write_controller(10000000u);
VersionSet versions(dbname, &immutable_db_options, env_options,
table_cache.get(), &write_buffer_manager,
&write_controller, /*block_cache_tracer=*/nullptr,
/*io_tracer=*/nullptr, /*db_id*/ "",
/*db_session_id*/ "");
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
cf_descs.emplace_back("one", ColumnFamilyOptions());
cf_descs.emplace_back("two", ColumnFamilyOptions());
EXPECT_OK(versions.Recover(cf_descs, false));
// Create mock default ColumnFamilyData
auto column_family_set = versions.GetColumnFamilySet();
LogsWithPrepTracker dummy_prep_tracker;
auto cfd = column_family_set->GetDefault();
EXPECT_TRUE(nullptr != cfd);
uint64_t file_num = file_number.fetch_add(1);
IOStatus io_s;
// Create dummy mutex.
InstrumentedMutex mutex;
InstrumentedMutexLock l(&mutex);
std::list<std::unique_ptr<FlushJobInfo>> flush_jobs_info;
Status s = list->TryInstallMemtableFlushResults(
cfd, mutable_cf_options, m, &dummy_prep_tracker, &versions, &mutex,
file_num, to_delete, nullptr, &log_buffer, &flush_jobs_info);
EXPECT_OK(io_s);
return s;
}
// Calls MemTableList::InstallMemtableFlushResults() and sets up all
// structures needed to call this function.
Status Mock_InstallMemtableAtomicFlushResults(
autovector<MemTableList*>& lists, const autovector<uint32_t>& cf_ids,
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
const autovector<const autovector<MemTable*>*>& mems_list,
autovector<MemTable*>* to_delete) {
// Create a mock Logger
test::NullLogger logger;
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
CreateDB();
// Create a mock VersionSet
DBOptions db_options;
ImmutableDBOptions immutable_db_options(db_options);
EnvOptions env_options;
std::shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
WriteController write_controller(10000000u);
VersionSet versions(dbname, &immutable_db_options, env_options,
table_cache.get(), &write_buffer_manager,
&write_controller, /*block_cache_tracer=*/nullptr,
/*io_tracer=*/nullptr, /*db_id*/ "",
/*db_session_id*/ "");
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
cf_descs.emplace_back("one", ColumnFamilyOptions());
cf_descs.emplace_back("two", ColumnFamilyOptions());
EXPECT_OK(versions.Recover(cf_descs, false));
// Create mock default ColumnFamilyData
auto column_family_set = versions.GetColumnFamilySet();
LogsWithPrepTracker dummy_prep_tracker;
autovector<ColumnFamilyData*> cfds;
for (int i = 0; i != static_cast<int>(cf_ids.size()); ++i) {
cfds.emplace_back(column_family_set->GetColumnFamily(cf_ids[i]));
EXPECT_NE(nullptr, cfds[i]);
}
std::vector<FileMetaData> file_metas;
file_metas.reserve(cf_ids.size());
for (size_t i = 0; i != cf_ids.size(); ++i) {
FileMetaData meta;
uint64_t file_num = file_number.fetch_add(1);
meta.fd = FileDescriptor(file_num, 0, 0);
file_metas.emplace_back(meta);
}
autovector<FileMetaData*> file_meta_ptrs;
for (auto& meta : file_metas) {
file_meta_ptrs.push_back(&meta);
}
std::vector<std::list<std::unique_ptr<FlushJobInfo>>>
committed_flush_jobs_info_storage(cf_ids.size());
autovector<std::list<std::unique_ptr<FlushJobInfo>>*>
committed_flush_jobs_info;
for (int i = 0; i < static_cast<int>(cf_ids.size()); ++i) {
committed_flush_jobs_info.push_back(
&committed_flush_jobs_info_storage[i]);
}
InstrumentedMutex mutex;
InstrumentedMutexLock l(&mutex);
return InstallMemtableAtomicFlushResults(
&lists, cfds, mutable_cf_options_list, mems_list, &versions,
nullptr /* prep_tracker */, &mutex, file_meta_ptrs,
committed_flush_jobs_info, to_delete, nullptr, &log_buffer);
}
protected:
bool udt_enabled_ = false;
};
TEST_F(MemTableListTest, Empty) {
// Create an empty MemTableList and validate basic functions.
MemTableList list(1, 0, 0);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
autovector<MemTable*> mems;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &mems);
ASSERT_EQ(0, mems.size());
autovector<MemTable*> to_delete;
list.current()->Unref(&to_delete);
ASSERT_EQ(0, to_delete.size());
}
TEST_F(MemTableListTest, GetTest) {
// Create MemTableList
int min_write_buffer_number_to_merge = 2;
int max_write_buffer_number_to_maintain = 0;
int64_t max_write_buffer_size_to_maintain = 0;
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
SequenceNumber seq = 1;
std::string value;
Status s;
MergeContext merge_context;
InternalKeyComparator ikey_cmp(options.comparator);
SequenceNumber max_covering_tombstone_seq = 0;
autovector<MemTable*> to_delete;
LookupKey lkey("key1", seq);
bool found = list.current()->Get(lkey, &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->Ref();
// Write some keys to this memtable.
ASSERT_OK(
mem->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", "value1",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2.2",
nullptr /* kv_prot_info */));
// Fetch the newly written keys
merge_context.Clear();
found = mem->Get(LookupKey("key1", seq), &value, /*columns*/ nullptr,
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value1");
merge_context.Clear();
found = mem->Get(LookupKey("key1", 2), &value, /*columns*/ nullptr,
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
// MemTable found out that this key is *not* found (at this sequence#)
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = mem->Get(LookupKey("key2", seq), &value, /*columns*/ nullptr,
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.2");
ASSERT_EQ(4, mem->num_entries());
ASSERT_EQ(1, mem->num_deletes());
// Add memtable to list
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem->ConstructFragmentedRangeTombstones();
list.Add(mem, &to_delete);
SequenceNumber saved_seq = seq;
// Create another memtable and write some keys to it
WriteBufferManager wb2(options.db_write_buffer_size);
MemTable* mem2 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb2,
kMaxSequenceNumber, 0 /* column_family_id */);
mem2->Ref();
ASSERT_OK(
mem2->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem2->Add(++seq, kTypeValue, "key2", "value2.3",
nullptr /* kv_prot_info */));
// Add second memtable to list
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem2->ConstructFragmentedRangeTombstones();
list.Add(mem2, &to_delete);
// Fetch keys via MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = list.current()->Get(LookupKey("key1", saved_seq), &value,
/*columns=*/nullptr, /*timestamp=*/nullptr, &s,
&merge_context, &max_covering_tombstone_seq,
ReadOptions());
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ("value1", value);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.3");
merge_context.Clear();
found = list.current()->Get(LookupKey("key2", 1), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
ASSERT_EQ(2, list.NumNotFlushed());
list.current()->Unref(&to_delete);
for (MemTable* m : to_delete) {
delete m;
}
}
TEST_F(MemTableListTest, GetFromHistoryTest) {
// Create MemTableList
int min_write_buffer_number_to_merge = 2;
int max_write_buffer_number_to_maintain = 2;
int64_t max_write_buffer_size_to_maintain = 2 * Arena::kInlineSize;
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
SequenceNumber seq = 1;
std::string value;
Status s;
MergeContext merge_context;
InternalKeyComparator ikey_cmp(options.comparator);
SequenceNumber max_covering_tombstone_seq = 0;
autovector<MemTable*> to_delete;
LookupKey lkey("key1", seq);
bool found = list.current()->Get(lkey, &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->Ref();
// Write some keys to this memtable.
ASSERT_OK(
mem->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2.2",
nullptr /* kv_prot_info */));
// Fetch the newly written keys
merge_context.Clear();
found = mem->Get(LookupKey("key1", seq), &value, /*columns*/ nullptr,
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
// MemTable found out that this key is *not* found (at this sequence#)
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = mem->Get(LookupKey("key2", seq), &value, /*columns*/ nullptr,
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.2");
// Add memtable to list
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem->ConstructFragmentedRangeTombstones();
list.Add(mem, &to_delete);
ASSERT_EQ(0, to_delete.size());
// Fetch keys via MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ("value2.2", value);
// Flush this memtable from the list.
// (It will then be a part of the memtable history).
autovector<MemTable*> to_flush;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(1, to_flush.size());
MutableCFOptions mutable_cf_options(options);
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
&to_delete);
ASSERT_OK(s);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_EQ(1, list.NumFlushed());
ASSERT_EQ(0, to_delete.size());
// Verify keys are no longer in MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
// Verify keys are present in history
merge_context.Clear();
found = list.current()->GetFromHistory(
LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = list.current()->GetFromHistory(
LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
ASSERT_TRUE(found);
ASSERT_EQ("value2.2", value);
// Create another memtable and write some keys to it
WriteBufferManager wb2(options.db_write_buffer_size);
MemTable* mem2 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb2,
kMaxSequenceNumber, 0 /* column_family_id */);
mem2->Ref();
ASSERT_OK(
mem2->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem2->Add(++seq, kTypeValue, "key3", "value3",
nullptr /* kv_prot_info */));
// Add second memtable to list
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem2->ConstructFragmentedRangeTombstones();
list.Add(mem2, &to_delete);
ASSERT_EQ(0, to_delete.size());
to_flush.clear();
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(1, to_flush.size());
// Flush second memtable
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
&to_delete);
ASSERT_OK(s);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_EQ(2, list.NumFlushed());
ASSERT_EQ(0, to_delete.size());
// Add a third memtable to push the first memtable out of the history
WriteBufferManager wb3(options.db_write_buffer_size);
MemTable* mem3 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb3,
kMaxSequenceNumber, 0 /* column_family_id */);
mem3->Ref();
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem3->ConstructFragmentedRangeTombstones();
list.Add(mem3, &to_delete);
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_EQ(1, list.NumFlushed());
ASSERT_EQ(1, to_delete.size());
// Verify keys are no longer in MemTableList
merge_context.Clear();
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
merge_context.Clear();
found =
list.current()->Get(LookupKey("key3", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
// Verify that the second memtable's keys are in the history
merge_context.Clear();
found = list.current()->GetFromHistory(
LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
found = list.current()->GetFromHistory(
LookupKey("key3", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
ASSERT_TRUE(found);
ASSERT_EQ("value3", value);
// Verify that key2 from the first memtable is no longer in the history
merge_context.Clear();
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
// Cleanup
list.current()->Unref(&to_delete);
ASSERT_EQ(3, to_delete.size());
for (MemTable* m : to_delete) {
delete m;
}
}
TEST_F(MemTableListTest, FlushPendingTest) {
const int num_tables = 6;
SequenceNumber seq = 1;
Status s;
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
InternalKeyComparator cmp(BytewiseComparator());
WriteBufferManager wb(options.db_write_buffer_size);
autovector<MemTable*> to_delete;
// Create MemTableList
int min_write_buffer_number_to_merge = 3;
int max_write_buffer_number_to_maintain = 7;
int64_t max_write_buffer_size_to_maintain =
7 * static_cast<int>(options.write_buffer_size);
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
// Create some MemTables
uint64_t memtable_id = 0;
std::vector<MemTable*> tables;
MutableCFOptions mutable_cf_options(options);
for (int i = 0; i < num_tables; i++) {
MemTable* mem = new MemTable(cmp, ioptions, mutable_cf_options, &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->SetID(memtable_id++);
mem->Ref();
std::string value;
MergeContext merge_context;
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", std::to_string(i),
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyN" + std::to_string(i), "valueN",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyX" + std::to_string(i), "value",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyM" + std::to_string(i), "valueM",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeDeletion, "keyX" + std::to_string(i), "",
nullptr /* kv_prot_info */));
tables.push_back(mem);
}
// Nothing to flush
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
autovector<MemTable*> to_flush;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(0, to_flush.size());
// Request a flush even though there is nothing to flush
list.FlushRequested();
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Attempt to 'flush' to clear request for flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(0, to_flush.size());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Request a flush again
list.FlushRequested();
// No flush pending since the list is empty.
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Add 2 tables
list.Add(tables[0], &to_delete);
list.Add(tables[1], &to_delete);
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_EQ(0, to_delete.size());
// Even though we have less than the minimum to flush, a flush is
// pending since we had previously requested a flush and never called
// PickMemtablesToFlush() to clear the flush.
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(2, to_flush.size());
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Revert flush
list.RollbackMemtableFlush(to_flush, 0);
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
to_flush.clear();
// Add another table
list.Add(tables[2], &to_delete);
// We now have the minimum to flush regardles of whether FlushRequested()
// was called.
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_EQ(0, to_delete.size());
// Pick tables to flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(3, to_flush.size());
ASSERT_EQ(3, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
autovector<MemTable*> to_flush2;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush2);
ASSERT_EQ(0, to_flush2.size());
ASSERT_EQ(3, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Add another table
list.Add(tables[3], &to_delete);
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_EQ(0, to_delete.size());
// Request a flush again
list.FlushRequested();
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush2);
ASSERT_EQ(1, to_flush2.size());
ASSERT_EQ(4, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Rollback first pick of tables
list.RollbackMemtableFlush(to_flush, 0);
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
to_flush.clear();
// Add another tables
list.Add(tables[4], &to_delete);
ASSERT_EQ(5, list.NumNotFlushed());
// We now have the minimum to flush regardles of whether FlushRequested()
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_EQ(0, to_delete.size());
// Pick tables to flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
// Picks three oldest memtables. The fourth oldest is picked in `to_flush2` so
// must be excluded. The newest (fifth oldest) is non-consecutive with the
// three oldest due to omitting the fourth oldest so must not be picked.
ASSERT_EQ(3, to_flush.size());
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
autovector<MemTable*> to_flush3;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush3);
// Picks newest (fifth oldest)
ASSERT_EQ(1, to_flush3.size());
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Nothing left to flush
autovector<MemTable*> to_flush4;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush4);
ASSERT_EQ(0, to_flush4.size());
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Flush the 3 memtables that were picked in to_flush
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
&to_delete);
ASSERT_OK(s);
// Note: now to_flush contains tables[0,1,2]. to_flush2 contains
// tables[3]. to_flush3 contains tables[4].
// Current implementation will only commit memtables in the order they were
// created. So TryInstallMemtableFlushResults will install the first 3 tables
// in to_flush and stop when it encounters a table not yet flushed.
ASSERT_EQ(2, list.NumNotFlushed());
int num_in_history =
std::min(3, static_cast<int>(max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size));
ASSERT_EQ(num_in_history, list.NumFlushed());
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
// Request a flush again. Should be nothing to flush
list.FlushRequested();
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Flush the 1 memtable (tables[4]) that was picked in to_flush3
s = MemTableListTest::Mock_InstallMemtableFlushResults(
&list, mutable_cf_options, to_flush3, &to_delete);
ASSERT_OK(s);
// This will install 0 tables since tables[4] flushed while tables[3] has not
// yet flushed.
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_EQ(0, to_delete.size());
// Flush the 1 memtable (tables[3]) that was picked in to_flush2
s = MemTableListTest::Mock_InstallMemtableFlushResults(
&list, mutable_cf_options, to_flush2, &to_delete);
ASSERT_OK(s);
// This will actually install 2 tables. The 1 we told it to flush, and also
// tables[4] which has been waiting for tables[3] to commit.
ASSERT_EQ(0, list.NumNotFlushed());
num_in_history =
std::min(5, static_cast<int>(max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size));
ASSERT_EQ(num_in_history, list.NumFlushed());
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling TryInstallMemtableFlushResults.
// Verify this, by Ref'ing then UnRef'ing:
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
to_delete.clear();
// Add another table
list.Add(tables[5], &to_delete);
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_EQ(5, list.GetLatestMemTableID());
memtable_id = 4;
// Pick tables to flush. The tables to pick must have ID smaller than or
// equal to 4. Therefore, no table will be selected in this case.
autovector<MemTable*> to_flush5;
list.FlushRequested();
ASSERT_TRUE(list.HasFlushRequested());
list.PickMemtablesToFlush(memtable_id, &to_flush5);
ASSERT_TRUE(to_flush5.empty());
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.HasFlushRequested());
// Pick tables to flush. The tables to pick must have ID smaller than or
// equal to 5. Therefore, only tables[5] will be selected.
memtable_id = 5;
list.FlushRequested();
list.PickMemtablesToFlush(memtable_id, &to_flush5);
ASSERT_EQ(1, static_cast<int>(to_flush5.size()));
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
to_delete.clear();
list.current()->Unref(&to_delete);
int to_delete_size =
std::min(num_tables, static_cast<int>(max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size));
ASSERT_EQ(to_delete_size, to_delete.size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling TryInstallMemtableFlushResults.
// Verify this, by Ref'ing then UnRef'ing:
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
to_delete.clear();
}
TEST_F(MemTableListTest, EmptyAtomicFlushTest) {
autovector<MemTableList*> lists;
autovector<uint32_t> cf_ids;
autovector<const MutableCFOptions*> options_list;
autovector<const autovector<MemTable*>*> to_flush;
autovector<MemTable*> to_delete;
Status s = Mock_InstallMemtableAtomicFlushResults(lists, cf_ids, options_list,
to_flush, &to_delete);
ASSERT_OK(s);
ASSERT_TRUE(to_delete.empty());
}
TEST_F(MemTableListTest, AtomicFlushTest) {
const int num_cfs = 3;
const int num_tables_per_cf = 2;
SequenceNumber seq = 1;
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
InternalKeyComparator cmp(BytewiseComparator());
WriteBufferManager wb(options.db_write_buffer_size);
// Create MemTableLists
int min_write_buffer_number_to_merge = 3;
int max_write_buffer_number_to_maintain = 7;
int64_t max_write_buffer_size_to_maintain =
7 * static_cast<int64_t>(options.write_buffer_size);
autovector<MemTableList*> lists;
for (int i = 0; i != num_cfs; ++i) {
lists.emplace_back(new MemTableList(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain));
}
autovector<uint32_t> cf_ids;
std::vector<std::vector<MemTable*>> tables(num_cfs);
autovector<const MutableCFOptions*> mutable_cf_options_list;
uint32_t cf_id = 0;
for (auto& elem : tables) {
mutable_cf_options_list.emplace_back(new MutableCFOptions(options));
uint64_t memtable_id = 0;
for (int i = 0; i != num_tables_per_cf; ++i) {
MemTable* mem =
new MemTable(cmp, ioptions, *(mutable_cf_options_list.back()), &wb,
kMaxSequenceNumber, cf_id);
mem->SetID(memtable_id++);
mem->Ref();
std::string value;
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", std::to_string(i),
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyN" + std::to_string(i),
"valueN", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyX" + std::to_string(i), "value",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyM" + std::to_string(i),
"valueM", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeDeletion, "keyX" + std::to_string(i), "",
nullptr /* kv_prot_info */));
elem.push_back(mem);
}
cf_ids.push_back(cf_id++);
}
std::vector<autovector<MemTable*>> flush_candidates(num_cfs);
// Nothing to flush
for (auto i = 0; i != num_cfs; ++i) {
auto* list = lists[i];
ASSERT_FALSE(list->IsFlushPending());
ASSERT_FALSE(list->imm_flush_needed.load(std::memory_order_acquire));
list->PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */,
&flush_candidates[i]);
ASSERT_EQ(0, flush_candidates[i].size());
}
// Request flush even though there is nothing to flush
for (auto i = 0; i != num_cfs; ++i) {
auto* list = lists[i];
list->FlushRequested();
ASSERT_FALSE(list->IsFlushPending());
ASSERT_FALSE(list->imm_flush_needed.load(std::memory_order_acquire));
}
autovector<MemTable*> to_delete;
// Add tables to the immutable memtalbe lists associated with column families
for (auto i = 0; i != num_cfs; ++i) {
for (auto j = 0; j != num_tables_per_cf; ++j) {
lists[i]->Add(tables[i][j], &to_delete);
}
ASSERT_EQ(num_tables_per_cf, lists[i]->NumNotFlushed());
ASSERT_TRUE(lists[i]->IsFlushPending());
ASSERT_TRUE(lists[i]->imm_flush_needed.load(std::memory_order_acquire));
}
std::vector<uint64_t> flush_memtable_ids = {1, 1, 0};
// +----+
// list[0]: |0 1|
// list[1]: |0 1|
// | +--+
// list[2]: |0| 1
// +-+
// Pick memtables to flush
for (auto i = 0; i != num_cfs; ++i) {
flush_candidates[i].clear();
lists[i]->PickMemtablesToFlush(flush_memtable_ids[i], &flush_candidates[i]);
ASSERT_EQ(flush_memtable_ids[i] - 0 + 1,
static_cast<uint64_t>(flush_candidates[i].size()));
}
autovector<MemTableList*> tmp_lists;
autovector<uint32_t> tmp_cf_ids;
autovector<const MutableCFOptions*> tmp_options_list;
autovector<const autovector<MemTable*>*> to_flush;
for (auto i = 0; i != num_cfs; ++i) {
if (!flush_candidates[i].empty()) {
to_flush.push_back(&flush_candidates[i]);
tmp_lists.push_back(lists[i]);
tmp_cf_ids.push_back(i);
tmp_options_list.push_back(mutable_cf_options_list[i]);
}
}
Status s = Mock_InstallMemtableAtomicFlushResults(
tmp_lists, tmp_cf_ids, tmp_options_list, to_flush, &to_delete);
ASSERT_OK(s);
for (auto i = 0; i != num_cfs; ++i) {
for (auto j = 0; j != num_tables_per_cf; ++j) {
if (static_cast<uint64_t>(j) <= flush_memtable_ids[i]) {
ASSERT_LT(0, tables[i][j]->GetFileNumber());
}
}
ASSERT_EQ(
static_cast<size_t>(num_tables_per_cf) - flush_candidates[i].size(),
lists[i]->NumNotFlushed());
}
to_delete.clear();
for (auto list : lists) {
list->current()->Unref(&to_delete);
delete list;
}
for (auto& mutable_cf_options : mutable_cf_options_list) {
if (mutable_cf_options != nullptr) {
delete mutable_cf_options;
mutable_cf_options = nullptr;
}
}
// All memtables in tables array must have been flushed, thus ready to be
// deleted.
ASSERT_EQ(to_delete.size(), tables.size() * tables.front().size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling InstallMemtableFlushResults.
// Verify this by Ref'ing and then Unref'ing.
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
}
class MemTableListWithTimestampTest : public MemTableListTest {
public:
MemTableListWithTimestampTest() : MemTableListTest() {}
void SetUp() override { udt_enabled_ = true; }
};
TEST_F(MemTableListWithTimestampTest, GetTableNewestUDT) {
const int num_tables = 3;
const int num_entries = 5;
SequenceNumber seq = 1;
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
options.persist_user_defined_timestamps = false;
ImmutableOptions ioptions(options);
const Comparator* ucmp = test::BytewiseComparatorWithU64TsWrapper();
InternalKeyComparator cmp(ucmp);
WriteBufferManager wb(options.db_write_buffer_size);
// Create MemTableList
int min_write_buffer_number_to_merge = 1;
int max_write_buffer_number_to_maintain = 4;
int64_t max_write_buffer_size_to_maintain =
4 * static_cast<int>(options.write_buffer_size);
MemTableList list(min_write_buffer_number_to_merge,
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
// Create some MemTables
uint64_t memtable_id = 0;
std::vector<MemTable*> tables;
MutableCFOptions mutable_cf_options(options);
uint64_t current_ts = 0;
autovector<MemTable*> to_delete;
std::vector<std::string> newest_udts;
std::string key;
std::string write_ts;
for (int i = 0; i < num_tables; i++) {
MemTable* mem = new MemTable(cmp, ioptions, mutable_cf_options, &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->SetID(memtable_id++);
mem->Ref();
std::string value;
MergeContext merge_context;
for (int j = 0; j < num_entries; j++) {
key = "key1";
write_ts.clear();
PutFixed64(&write_ts, current_ts);
key.append(write_ts);
ASSERT_OK(mem->Add(++seq, kTypeValue, key, std::to_string(i),
nullptr /* kv_prot_info */));
current_ts++;
}
tables.push_back(mem);
list.Add(tables.back(), &to_delete);
newest_udts.push_back(write_ts);
}
ASSERT_EQ(num_tables, list.NumNotFlushed());
ASSERT_TRUE(list.IsFlushPending());
std::vector<Slice> tables_newest_udts = list.GetTablesNewestUDT(num_tables);
ASSERT_EQ(newest_udts.size(), tables_newest_udts.size());
for (size_t i = 0; i < tables_newest_udts.size(); i++) {
const Slice& table_newest_udt = tables_newest_udts[i];
const Slice expected_newest_udt = newest_udts[i];
ASSERT_EQ(expected_newest_udt, table_newest_udt);
}
list.current()->Unref(&to_delete);
for (MemTable* m : to_delete) {
delete m;
}
to_delete.clear();
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}