rocksdb/db/db_block_cache_test.cc
Peter Dillinger ef6f025563 Placeholder for AutoHyperClockCache, more (#11692)
Summary:
* The plan is for AutoHyperClockCache to be selected when HyperClockCacheOptions::estimated_entry_charge == 0, and in that case to use a new configuration option min_avg_entry_charge for determining an extreme case maximum size for the hash table. For the placeholder, a hack is in place in HyperClockCacheOptions::MakeSharedCache() to make the unit tests happy despite the new options not really making sense with the current implementation.
* Mostly updating and refactoring tests to test both the current HCC (internal name FixedHyperClockCache) and a placeholder for the new version (internal name AutoHyperClockCache).
* Simplify some existing tests not to depend directly on cache type.
* Type-parameterize the shard-level unit tests, which unfortunately requires more syntax like `this->` in places for disambiguation.
* Added means of choosing auto_hyper_clock_cache to cache_bench, db_bench, and db_stress, including add to crash test.
* Add another templated class BaseHyperClockCache to reduce future copy-paste
* Added ReportProblems support to cache_bench
* Added a DEBUG-level diagnostic to ReportProblems for the variance in load factor throughout the table, which will become more of a concern with linear hashing to be used in the Auto implementation. Example with current Fixed HCC:
```
2023/08/10-13:41:41.602450 6ac36 [DEBUG] [che/clock_cache.cc:1507] Slot occupancy stats: Overall 49% (129008/262144), Min/Max/Window = 39%/60%/500, MaxRun{Pos/Neg} = 18/17
```

In other words, with overall occupancy of 49%, the lowest across any 500 contiguous cells is 39% and highest 60%. Longest run of occupied is 18 and longest run of unoccupied is 17. This seems consistent with random samples from a uniform distribution.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11692

Test Plan: Shouldn't be any meaningful changes yet to production code or to what is tested, but there is temporary redundancy in testing until the new implementation is plugged in.

Reviewed By: jowlyzhang

Differential Revision: D48247413

Pulled By: pdillinger

fbshipit-source-id: 11541f996d97af403c2e43c92fb67ff22dd0b5da
2023-08-11 16:27:38 -07:00

1978 lines
74 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <cstdlib>
#include <functional>
#include <memory>
#include <unordered_set>
#include "cache/cache_entry_roles.h"
#include "cache/cache_key.h"
#include "cache/lru_cache.h"
#include "cache/typed_cache.h"
#include "db/column_family.h"
#include "db/db_impl/db_impl.h"
#include "db/db_test_util.h"
#include "env/unique_id_gen.h"
#include "port/stack_trace.h"
#include "rocksdb/persistent_cache.h"
#include "rocksdb/statistics.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/unique_id_impl.h"
#include "util/compression.h"
#include "util/defer.h"
#include "util/hash.h"
#include "util/math.h"
#include "util/random.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
class DBBlockCacheTest : public DBTestBase {
private:
size_t miss_count_ = 0;
size_t hit_count_ = 0;
size_t insert_count_ = 0;
size_t failure_count_ = 0;
size_t compression_dict_miss_count_ = 0;
size_t compression_dict_hit_count_ = 0;
size_t compression_dict_insert_count_ = 0;
public:
const size_t kNumBlocks = 10;
const size_t kValueSize = 100;
DBBlockCacheTest()
: DBTestBase("db_block_cache_test", /*env_do_fsync=*/true) {}
BlockBasedTableOptions GetTableOptions() {
BlockBasedTableOptions table_options;
// Set a small enough block size so that each key-value get its own block.
table_options.block_size = 1;
return table_options;
}
Options GetOptions(const BlockBasedTableOptions& table_options) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.avoid_flush_during_recovery = false;
// options.compression = kNoCompression;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
return options;
}
void InitTable(const Options& /*options*/) {
std::string value(kValueSize, 'a');
for (size_t i = 0; i < kNumBlocks; i++) {
ASSERT_OK(Put(std::to_string(i), value.c_str()));
}
}
void RecordCacheCounters(const Options& options) {
miss_count_ = TestGetTickerCount(options, BLOCK_CACHE_MISS);
hit_count_ = TestGetTickerCount(options, BLOCK_CACHE_HIT);
insert_count_ = TestGetTickerCount(options, BLOCK_CACHE_ADD);
failure_count_ = TestGetTickerCount(options, BLOCK_CACHE_ADD_FAILURES);
}
void RecordCacheCountersForCompressionDict(const Options& options) {
compression_dict_miss_count_ =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_MISS);
compression_dict_hit_count_ =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_HIT);
compression_dict_insert_count_ =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_ADD);
}
void CheckCacheCounters(const Options& options, size_t expected_misses,
size_t expected_hits, size_t expected_inserts,
size_t expected_failures) {
size_t new_miss_count = TestGetTickerCount(options, BLOCK_CACHE_MISS);
size_t new_hit_count = TestGetTickerCount(options, BLOCK_CACHE_HIT);
size_t new_insert_count = TestGetTickerCount(options, BLOCK_CACHE_ADD);
size_t new_failure_count =
TestGetTickerCount(options, BLOCK_CACHE_ADD_FAILURES);
ASSERT_EQ(miss_count_ + expected_misses, new_miss_count);
ASSERT_EQ(hit_count_ + expected_hits, new_hit_count);
ASSERT_EQ(insert_count_ + expected_inserts, new_insert_count);
ASSERT_EQ(failure_count_ + expected_failures, new_failure_count);
miss_count_ = new_miss_count;
hit_count_ = new_hit_count;
insert_count_ = new_insert_count;
failure_count_ = new_failure_count;
}
void CheckCacheCountersForCompressionDict(
const Options& options, size_t expected_compression_dict_misses,
size_t expected_compression_dict_hits,
size_t expected_compression_dict_inserts) {
size_t new_compression_dict_miss_count =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_MISS);
size_t new_compression_dict_hit_count =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_HIT);
size_t new_compression_dict_insert_count =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_ADD);
ASSERT_EQ(compression_dict_miss_count_ + expected_compression_dict_misses,
new_compression_dict_miss_count);
ASSERT_EQ(compression_dict_hit_count_ + expected_compression_dict_hits,
new_compression_dict_hit_count);
ASSERT_EQ(
compression_dict_insert_count_ + expected_compression_dict_inserts,
new_compression_dict_insert_count);
compression_dict_miss_count_ = new_compression_dict_miss_count;
compression_dict_hit_count_ = new_compression_dict_hit_count;
compression_dict_insert_count_ = new_compression_dict_insert_count;
}
const std::array<size_t, kNumCacheEntryRoles> GetCacheEntryRoleCountsBg() {
// Verify in cache entry role stats
std::array<size_t, kNumCacheEntryRoles> cache_entry_role_counts;
std::map<std::string, std::string> values;
EXPECT_TRUE(db_->GetMapProperty(DB::Properties::kFastBlockCacheEntryStats,
&values));
for (size_t i = 0; i < kNumCacheEntryRoles; ++i) {
auto role = static_cast<CacheEntryRole>(i);
cache_entry_role_counts[i] =
ParseSizeT(values[BlockCacheEntryStatsMapKeys::EntryCount(role)]);
}
return cache_entry_role_counts;
}
};
TEST_F(DBBlockCacheTest, IteratorBlockCacheUsage) {
ReadOptions read_options;
read_options.fill_cache = false;
auto table_options = GetTableOptions();
auto options = GetOptions(table_options);
InitTable(options);
LRUCacheOptions co;
co.capacity = 0;
co.num_shard_bits = 0;
co.strict_capacity_limit = false;
// Needed not to count entry stats collector
co.metadata_charge_policy = kDontChargeCacheMetadata;
std::shared_ptr<Cache> cache = NewLRUCache(co);
table_options.block_cache = cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
RecordCacheCounters(options);
std::vector<std::unique_ptr<Iterator>> iterators(kNumBlocks - 1);
Iterator* iter = nullptr;
ASSERT_EQ(0, cache->GetUsage());
iter = db_->NewIterator(read_options);
iter->Seek(std::to_string(0));
ASSERT_LT(0, cache->GetUsage());
delete iter;
iter = nullptr;
ASSERT_EQ(0, cache->GetUsage());
}
TEST_F(DBBlockCacheTest, TestWithoutCompressedBlockCache) {
ReadOptions read_options;
auto table_options = GetTableOptions();
auto options = GetOptions(table_options);
InitTable(options);
LRUCacheOptions co;
co.capacity = 0;
co.num_shard_bits = 0;
co.strict_capacity_limit = false;
// Needed not to count entry stats collector
co.metadata_charge_policy = kDontChargeCacheMetadata;
std::shared_ptr<Cache> cache = NewLRUCache(co);
table_options.block_cache = cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
RecordCacheCounters(options);
std::vector<std::unique_ptr<Iterator>> iterators(kNumBlocks - 1);
Iterator* iter = nullptr;
// Load blocks into cache.
for (size_t i = 0; i + 1 < kNumBlocks; i++) {
iter = db_->NewIterator(read_options);
iter->Seek(std::to_string(i));
ASSERT_OK(iter->status());
CheckCacheCounters(options, 1, 0, 1, 0);
iterators[i].reset(iter);
}
size_t usage = cache->GetUsage();
ASSERT_LT(0, usage);
cache->SetCapacity(usage);
ASSERT_EQ(usage, cache->GetPinnedUsage());
// Test with strict capacity limit.
cache->SetStrictCapacityLimit(true);
iter = db_->NewIterator(read_options);
iter->Seek(std::to_string(kNumBlocks - 1));
ASSERT_TRUE(iter->status().IsMemoryLimit());
CheckCacheCounters(options, 1, 0, 0, 1);
delete iter;
iter = nullptr;
// Release iterators and access cache again.
for (size_t i = 0; i + 1 < kNumBlocks; i++) {
iterators[i].reset();
CheckCacheCounters(options, 0, 0, 0, 0);
}
ASSERT_EQ(0, cache->GetPinnedUsage());
for (size_t i = 0; i + 1 < kNumBlocks; i++) {
iter = db_->NewIterator(read_options);
iter->Seek(std::to_string(i));
ASSERT_OK(iter->status());
CheckCacheCounters(options, 0, 1, 0, 0);
iterators[i].reset(iter);
}
}
#ifdef SNAPPY
namespace {
class PersistentCacheFromCache : public PersistentCache {
public:
PersistentCacheFromCache(std::shared_ptr<Cache> cache, bool read_only)
: cache_(cache), read_only_(read_only) {}
Status Insert(const Slice& key, const char* data,
const size_t size) override {
if (read_only_) {
return Status::NotSupported();
}
std::unique_ptr<char[]> copy{new char[size]};
std::copy_n(data, size, copy.get());
Status s = cache_.Insert(key, copy.get(), size);
if (s.ok()) {
copy.release();
}
return s;
}
Status Lookup(const Slice& key, std::unique_ptr<char[]>* data,
size_t* size) override {
auto handle = cache_.Lookup(key);
if (handle) {
char* ptr = cache_.Value(handle);
*size = cache_.get()->GetCharge(handle);
data->reset(new char[*size]);
std::copy_n(ptr, *size, data->get());
cache_.Release(handle);
return Status::OK();
} else {
return Status::NotFound();
}
}
bool IsCompressed() override { return false; }
StatsType Stats() override { return StatsType(); }
std::string GetPrintableOptions() const override { return ""; }
uint64_t NewId() override { return cache_.get()->NewId(); }
private:
BasicTypedSharedCacheInterface<char[], CacheEntryRole::kMisc> cache_;
bool read_only_;
};
class ReadOnlyCacheWrapper : public CacheWrapper {
public:
using CacheWrapper::CacheWrapper;
const char* Name() const override { return "ReadOnlyCacheWrapper"; }
Status Insert(const Slice& /*key*/, Cache::ObjectPtr /*value*/,
const CacheItemHelper* /*helper*/, size_t /*charge*/,
Handle** /*handle*/, Priority /*priority*/) override {
return Status::NotSupported();
}
};
} // anonymous namespace
#endif // SNAPPY
// Make sure that when options.block_cache is set, after a new table is
// created its index/filter blocks are added to block cache.
TEST_F(DBBlockCacheTest, IndexAndFilterBlocksOfNewTableAddedToCache) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(20));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "key", "val"));
// Create a new table.
ASSERT_OK(Flush(1));
// index/filter blocks added to block cache right after table creation.
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(2, /* only index/filter were added */
TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_DATA_MISS));
uint64_t int_num;
ASSERT_TRUE(
dbfull()->GetIntProperty("rocksdb.estimate-table-readers-mem", &int_num));
ASSERT_EQ(int_num, 0U);
// Make sure filter block is in cache.
std::string value;
ReadOptions ropt;
db_->KeyMayExist(ReadOptions(), handles_[1], "key", &value);
// Miss count should remain the same.
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
db_->KeyMayExist(ReadOptions(), handles_[1], "key", &value);
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
// Make sure index block is in cache.
auto index_block_hit = TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT);
value = Get(1, "key");
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(index_block_hit + 1,
TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
value = Get(1, "key");
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(index_block_hit + 2,
TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
}
// With fill_cache = false, fills up the cache, then iterates over the entire
// db, verify dummy entries inserted in `BlockBasedTable::NewDataBlockIterator`
// does not cause heap-use-after-free errors in COMPILE_WITH_ASAN=1 runs
TEST_F(DBBlockCacheTest, FillCacheAndIterateDB) {
ReadOptions read_options;
read_options.fill_cache = false;
auto table_options = GetTableOptions();
auto options = GetOptions(table_options);
InitTable(options);
std::shared_ptr<Cache> cache = NewLRUCache(10, 0, true);
table_options.block_cache = cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_OK(Put("key1", "val1"));
ASSERT_OK(Put("key2", "val2"));
ASSERT_OK(Flush());
ASSERT_OK(Put("key3", "val3"));
ASSERT_OK(Put("key4", "val4"));
ASSERT_OK(Flush());
ASSERT_OK(Put("key5", "val5"));
ASSERT_OK(Put("key6", "val6"));
ASSERT_OK(Flush());
Iterator* iter = nullptr;
iter = db_->NewIterator(read_options);
iter->Seek(std::to_string(0));
while (iter->Valid()) {
iter->Next();
}
delete iter;
iter = nullptr;
}
TEST_F(DBBlockCacheTest, IndexAndFilterBlocksStats) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
LRUCacheOptions co;
// 500 bytes are enough to hold the first two blocks
co.capacity = 500;
co.num_shard_bits = 0;
co.strict_capacity_limit = false;
co.metadata_charge_policy = kDontChargeCacheMetadata;
std::shared_ptr<Cache> cache = NewLRUCache(co);
table_options.block_cache = cache;
table_options.filter_policy.reset(NewBloomFilterPolicy(20, true));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "longer_key", "val"));
// Create a new table
ASSERT_OK(Flush(1));
size_t index_bytes_insert =
TestGetTickerCount(options, BLOCK_CACHE_INDEX_BYTES_INSERT);
size_t filter_bytes_insert =
TestGetTickerCount(options, BLOCK_CACHE_FILTER_BYTES_INSERT);
ASSERT_GT(index_bytes_insert, 0);
ASSERT_GT(filter_bytes_insert, 0);
ASSERT_EQ(cache->GetUsage(), index_bytes_insert + filter_bytes_insert);
// set the cache capacity to the current usage
cache->SetCapacity(index_bytes_insert + filter_bytes_insert);
// Note that the second key needs to be no longer than the first one.
// Otherwise the second index block may not fit in cache.
ASSERT_OK(Put(1, "key", "val"));
// Create a new table
ASSERT_OK(Flush(1));
// cache evicted old index and block entries
ASSERT_GT(TestGetTickerCount(options, BLOCK_CACHE_INDEX_BYTES_INSERT),
index_bytes_insert);
ASSERT_GT(TestGetTickerCount(options, BLOCK_CACHE_FILTER_BYTES_INSERT),
filter_bytes_insert);
}
#if (defined OS_LINUX || defined OS_WIN)
TEST_F(DBBlockCacheTest, WarmCacheWithDataBlocksDuringFlush) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1 << 25, 0, false);
table_options.cache_index_and_filter_blocks = false;
table_options.prepopulate_block_cache =
BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
std::string value(kValueSize, 'a');
for (size_t i = 1; i <= kNumBlocks; i++) {
ASSERT_OK(Put(std::to_string(i), value));
ASSERT_OK(Flush());
ASSERT_EQ(i, options.statistics->getTickerCount(BLOCK_CACHE_DATA_ADD));
ASSERT_EQ(value, Get(std::to_string(i)));
ASSERT_EQ(0, options.statistics->getTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_EQ(i, options.statistics->getTickerCount(BLOCK_CACHE_DATA_HIT));
}
// Verify compaction not counted
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), /*begin=*/nullptr,
/*end=*/nullptr));
EXPECT_EQ(kNumBlocks,
options.statistics->getTickerCount(BLOCK_CACHE_DATA_ADD));
}
// This test cache data, index and filter blocks during flush.
class DBBlockCacheTest1 : public DBTestBase,
public ::testing::WithParamInterface<uint32_t> {
public:
const size_t kNumBlocks = 10;
const size_t kValueSize = 100;
DBBlockCacheTest1() : DBTestBase("db_block_cache_test1", true) {}
};
INSTANTIATE_TEST_CASE_P(DBBlockCacheTest1, DBBlockCacheTest1,
::testing::Values(1, 2));
TEST_P(DBBlockCacheTest1, WarmCacheWithBlocksDuringFlush) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1 << 25, 0, false);
uint32_t filter_type = GetParam();
switch (filter_type) {
case 1: // partition_filter
table_options.partition_filters = true;
table_options.index_type =
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
break;
case 2: // full filter
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
break;
default:
assert(false);
}
table_options.cache_index_and_filter_blocks = true;
table_options.prepopulate_block_cache =
BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
std::string value(kValueSize, 'a');
for (size_t i = 1; i <= kNumBlocks; i++) {
ASSERT_OK(Put(std::to_string(i), value));
ASSERT_OK(Flush());
ASSERT_EQ(i, options.statistics->getTickerCount(BLOCK_CACHE_DATA_ADD));
if (filter_type == 1) {
ASSERT_EQ(2 * i,
options.statistics->getTickerCount(BLOCK_CACHE_INDEX_ADD));
ASSERT_EQ(2 * i,
options.statistics->getTickerCount(BLOCK_CACHE_FILTER_ADD));
} else {
ASSERT_EQ(i, options.statistics->getTickerCount(BLOCK_CACHE_INDEX_ADD));
ASSERT_EQ(i, options.statistics->getTickerCount(BLOCK_CACHE_FILTER_ADD));
}
ASSERT_EQ(value, Get(std::to_string(i)));
ASSERT_EQ(0, options.statistics->getTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_EQ(i, options.statistics->getTickerCount(BLOCK_CACHE_DATA_HIT));
ASSERT_EQ(0, options.statistics->getTickerCount(BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(i * 3, options.statistics->getTickerCount(BLOCK_CACHE_INDEX_HIT));
if (filter_type == 1) {
ASSERT_EQ(i * 3,
options.statistics->getTickerCount(BLOCK_CACHE_FILTER_HIT));
} else {
ASSERT_EQ(i * 2,
options.statistics->getTickerCount(BLOCK_CACHE_FILTER_HIT));
}
ASSERT_EQ(0, options.statistics->getTickerCount(BLOCK_CACHE_FILTER_MISS));
}
// Verify compaction not counted
CompactRangeOptions cro;
// Ensure files are rewritten, not just trivially moved.
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(cro, /*begin=*/nullptr, /*end=*/nullptr));
EXPECT_EQ(kNumBlocks,
options.statistics->getTickerCount(BLOCK_CACHE_DATA_ADD));
// Index and filter blocks are automatically warmed when the new table file
// is automatically opened at the end of compaction. This is not easily
// disabled so results in the new index and filter blocks being warmed.
if (filter_type == 1) {
EXPECT_EQ(2 * (1 + kNumBlocks),
options.statistics->getTickerCount(BLOCK_CACHE_INDEX_ADD));
EXPECT_EQ(2 * (1 + kNumBlocks),
options.statistics->getTickerCount(BLOCK_CACHE_FILTER_ADD));
} else {
EXPECT_EQ(1 + kNumBlocks,
options.statistics->getTickerCount(BLOCK_CACHE_INDEX_ADD));
EXPECT_EQ(1 + kNumBlocks,
options.statistics->getTickerCount(BLOCK_CACHE_FILTER_ADD));
}
}
TEST_F(DBBlockCacheTest, DynamicallyWarmCacheDuringFlush) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1 << 25, 0, false);
table_options.cache_index_and_filter_blocks = false;
table_options.prepopulate_block_cache =
BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
std::string value(kValueSize, 'a');
for (size_t i = 1; i <= 5; i++) {
ASSERT_OK(Put(std::to_string(i), value));
ASSERT_OK(Flush());
ASSERT_EQ(1,
options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_ADD));
ASSERT_EQ(value, Get(std::to_string(i)));
ASSERT_EQ(0,
options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_ADD));
ASSERT_EQ(
0, options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_EQ(1,
options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_HIT));
}
ASSERT_OK(dbfull()->SetOptions(
{{"block_based_table_factory", "{prepopulate_block_cache=kDisable;}"}}));
for (size_t i = 6; i <= kNumBlocks; i++) {
ASSERT_OK(Put(std::to_string(i), value));
ASSERT_OK(Flush());
ASSERT_EQ(0,
options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_ADD));
ASSERT_EQ(value, Get(std::to_string(i)));
ASSERT_EQ(1,
options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_ADD));
ASSERT_EQ(
1, options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_EQ(0,
options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_HIT));
}
}
#endif
namespace {
// A mock cache wraps LRUCache, and record how many entries have been
// inserted for each priority.
class MockCache : public LRUCache {
public:
static uint32_t high_pri_insert_count;
static uint32_t low_pri_insert_count;
MockCache()
: LRUCache(LRUCacheOptions(
size_t{1} << 25 /*capacity*/, 0 /*num_shard_bits*/,
false /*strict_capacity_limit*/, 0.0 /*high_pri_pool_ratio*/)) {}
using ShardedCache::Insert;
Status Insert(const Slice& key, Cache::ObjectPtr value,
const Cache::CacheItemHelper* helper, size_t charge,
Handle** handle, Priority priority) override {
if (priority == Priority::LOW) {
low_pri_insert_count++;
} else {
high_pri_insert_count++;
}
return LRUCache::Insert(key, value, helper, charge, handle, priority);
}
};
uint32_t MockCache::high_pri_insert_count = 0;
uint32_t MockCache::low_pri_insert_count = 0;
} // anonymous namespace
TEST_F(DBBlockCacheTest, IndexAndFilterBlocksCachePriority) {
for (auto priority : {Cache::Priority::LOW, Cache::Priority::HIGH}) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.block_cache.reset(new MockCache());
table_options.filter_policy.reset(NewBloomFilterPolicy(20));
table_options.cache_index_and_filter_blocks_with_high_priority =
priority == Cache::Priority::HIGH ? true : false;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
MockCache::high_pri_insert_count = 0;
MockCache::low_pri_insert_count = 0;
// Create a new table.
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Put("bar", "value"));
ASSERT_OK(Flush());
ASSERT_EQ(1, NumTableFilesAtLevel(0));
// index/filter blocks added to block cache right after table creation.
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(2, /* only index/filter were added */
TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_DATA_MISS));
if (priority == Cache::Priority::LOW) {
ASSERT_EQ(0u, MockCache::high_pri_insert_count);
ASSERT_EQ(2u, MockCache::low_pri_insert_count);
} else {
ASSERT_EQ(2u, MockCache::high_pri_insert_count);
ASSERT_EQ(0u, MockCache::low_pri_insert_count);
}
// Access data block.
ASSERT_EQ("value", Get("foo"));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(3, /*adding data block*/
TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_DATA_MISS));
// Data block should be inserted with low priority.
if (priority == Cache::Priority::LOW) {
ASSERT_EQ(0u, MockCache::high_pri_insert_count);
ASSERT_EQ(3u, MockCache::low_pri_insert_count);
} else {
ASSERT_EQ(2u, MockCache::high_pri_insert_count);
ASSERT_EQ(1u, MockCache::low_pri_insert_count);
}
}
}
namespace {
// An LRUCache wrapper that can falsely report "not found" on Lookup.
// This allows us to manipulate BlockBasedTableReader into thinking
// another thread inserted the data in between Lookup and Insert,
// while mostly preserving the LRUCache interface/behavior.
class LookupLiarCache : public CacheWrapper {
int nth_lookup_not_found_ = 0;
public:
explicit LookupLiarCache(std::shared_ptr<Cache> target)
: CacheWrapper(std::move(target)) {}
const char* Name() const override { return "LookupLiarCache"; }
Handle* Lookup(const Slice& key, const CacheItemHelper* helper = nullptr,
CreateContext* create_context = nullptr,
Priority priority = Priority::LOW,
Statistics* stats = nullptr) override {
if (nth_lookup_not_found_ == 1) {
nth_lookup_not_found_ = 0;
return nullptr;
}
if (nth_lookup_not_found_ > 1) {
--nth_lookup_not_found_;
}
return CacheWrapper::Lookup(key, helper, create_context, priority, stats);
}
// 1 == next lookup, 2 == after next, etc.
void SetNthLookupNotFound(int n) { nth_lookup_not_found_ = n; }
};
} // anonymous namespace
TEST_F(DBBlockCacheTest, AddRedundantStats) {
const size_t capacity = size_t{1} << 25;
const int num_shard_bits = 0; // 1 shard
int iterations_tested = 0;
for (std::shared_ptr<Cache> base_cache :
{NewLRUCache(capacity, num_shard_bits),
// FixedHyperClockCache
HyperClockCacheOptions(
capacity,
BlockBasedTableOptions().block_size /*estimated_value_size*/,
num_shard_bits)
.MakeSharedCache(),
// AutoHyperClockCache
HyperClockCacheOptions(capacity, 0 /*estimated_value_size*/,
num_shard_bits)
.MakeSharedCache()}) {
if (!base_cache) {
// Skip clock cache when not supported
continue;
}
++iterations_tested;
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
std::shared_ptr<LookupLiarCache> cache =
std::make_shared<LookupLiarCache>(base_cache);
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.block_cache = cache;
table_options.filter_policy.reset(NewBloomFilterPolicy(50));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
// Create a new table.
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Put("bar", "value"));
ASSERT_OK(Flush());
ASSERT_EQ(1, NumTableFilesAtLevel(0));
// Normal access filter+index+data.
ASSERT_EQ("value", Get("foo"));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD));
// --------
ASSERT_EQ(3, TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD_REDUNDANT));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD_REDUNDANT));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD_REDUNDANT));
// --------
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_ADD_REDUNDANT));
// Againt access filter+index+data, but force redundant load+insert on index
cache->SetNthLookupNotFound(2);
ASSERT_EQ("value", Get("bar"));
ASSERT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD));
// --------
ASSERT_EQ(4, TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD_REDUNDANT));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD_REDUNDANT));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD_REDUNDANT));
// --------
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_ADD_REDUNDANT));
// Access just filter (with high probability), and force redundant
// load+insert
cache->SetNthLookupNotFound(1);
ASSERT_EQ("NOT_FOUND", Get("this key was not added"));
EXPECT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD));
EXPECT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD));
EXPECT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD));
// --------
EXPECT_EQ(5, TestGetTickerCount(options, BLOCK_CACHE_ADD));
EXPECT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD_REDUNDANT));
EXPECT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD_REDUNDANT));
EXPECT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD_REDUNDANT));
// --------
EXPECT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_ADD_REDUNDANT));
// Access just data, forcing redundant load+insert
ReadOptions read_options;
std::unique_ptr<Iterator> iter{db_->NewIterator(read_options)};
cache->SetNthLookupNotFound(1);
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->key(), "bar");
EXPECT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD));
EXPECT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD));
EXPECT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD));
// --------
EXPECT_EQ(6, TestGetTickerCount(options, BLOCK_CACHE_ADD));
EXPECT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_ADD_REDUNDANT));
EXPECT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_ADD_REDUNDANT));
EXPECT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_DATA_ADD_REDUNDANT));
// --------
EXPECT_EQ(3, TestGetTickerCount(options, BLOCK_CACHE_ADD_REDUNDANT));
}
EXPECT_GE(iterations_tested, 1);
}
TEST_F(DBBlockCacheTest, ParanoidFileChecks) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.level0_file_num_compaction_trigger = 2;
options.paranoid_file_checks = true;
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = false;
table_options.filter_policy.reset(NewBloomFilterPolicy(20));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "1_key", "val"));
ASSERT_OK(Put(1, "9_key", "val"));
// Create a new table.
ASSERT_OK(Flush(1));
ASSERT_EQ(1, /* read and cache data block */
TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_OK(Put(1, "1_key2", "val2"));
ASSERT_OK(Put(1, "9_key2", "val2"));
// Create a new SST file. This will further trigger a compaction
// and generate another file.
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(3, /* Totally 3 files created up to now */
TestGetTickerCount(options, BLOCK_CACHE_ADD));
// After disabling options.paranoid_file_checks. NO further block
// is added after generating a new file.
ASSERT_OK(
dbfull()->SetOptions(handles_[1], {{"paranoid_file_checks", "false"}}));
ASSERT_OK(Put(1, "1_key3", "val3"));
ASSERT_OK(Put(1, "9_key3", "val3"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "1_key4", "val4"));
ASSERT_OK(Put(1, "9_key4", "val4"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(3, /* Totally 3 files created up to now */
TestGetTickerCount(options, BLOCK_CACHE_ADD));
}
TEST_F(DBBlockCacheTest, CacheCompressionDict) {
const int kNumFiles = 4;
const int kNumEntriesPerFile = 128;
const int kNumBytesPerEntry = 1024;
// Try all the available libraries that support dictionary compression
std::vector<CompressionType> compression_types;
if (Zlib_Supported()) {
compression_types.push_back(kZlibCompression);
}
if (LZ4_Supported()) {
compression_types.push_back(kLZ4Compression);
compression_types.push_back(kLZ4HCCompression);
}
if (ZSTD_Supported()) {
compression_types.push_back(kZSTD);
} else if (ZSTDNotFinal_Supported()) {
compression_types.push_back(kZSTDNotFinalCompression);
}
Random rnd(301);
for (auto compression_type : compression_types) {
Options options = CurrentOptions();
options.bottommost_compression = compression_type;
options.bottommost_compression_opts.max_dict_bytes = 4096;
options.bottommost_compression_opts.enabled = true;
options.create_if_missing = true;
options.num_levels = 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.target_file_size_base = kNumEntriesPerFile * kNumBytesPerEntry;
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.block_cache.reset(new MockCache());
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
RecordCacheCountersForCompressionDict(options);
for (int i = 0; i < kNumFiles; ++i) {
ASSERT_EQ(i, NumTableFilesAtLevel(0, 0));
for (int j = 0; j < kNumEntriesPerFile; ++j) {
std::string value = rnd.RandomString(kNumBytesPerEntry);
ASSERT_OK(Put(Key(j * kNumFiles + i), value.c_str()));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(kNumFiles, NumTableFilesAtLevel(1));
// Compression dictionary blocks are preloaded.
CheckCacheCountersForCompressionDict(
options, kNumFiles /* expected_compression_dict_misses */,
0 /* expected_compression_dict_hits */,
kNumFiles /* expected_compression_dict_inserts */);
// Seek to a key in a file. It should cause the SST's dictionary meta-block
// to be read.
RecordCacheCounters(options);
RecordCacheCountersForCompressionDict(options);
ReadOptions read_options;
ASSERT_NE("NOT_FOUND", Get(Key(kNumFiles * kNumEntriesPerFile - 1)));
// Two block hits: index and dictionary since they are prefetched
// One block missed/added: data block
CheckCacheCounters(options, 1 /* expected_misses */, 2 /* expected_hits */,
1 /* expected_inserts */, 0 /* expected_failures */);
CheckCacheCountersForCompressionDict(
options, 0 /* expected_compression_dict_misses */,
1 /* expected_compression_dict_hits */,
0 /* expected_compression_dict_inserts */);
}
}
static void ClearCache(Cache* cache) {
std::deque<std::string> keys;
Cache::ApplyToAllEntriesOptions opts;
auto callback = [&](const Slice& key, Cache::ObjectPtr, size_t /*charge*/,
const Cache::CacheItemHelper* helper) {
if (helper && helper->role == CacheEntryRole::kMisc) {
// Keep the stats collector
return;
}
keys.push_back(key.ToString());
};
cache->ApplyToAllEntries(callback, opts);
for (auto& k : keys) {
cache->Erase(k);
}
}
TEST_F(DBBlockCacheTest, CacheEntryRoleStats) {
const size_t capacity = size_t{1} << 25;
int iterations_tested = 0;
for (bool partition : {false, true}) {
SCOPED_TRACE("Partition? " + std::to_string(partition));
for (std::shared_ptr<Cache> cache :
{NewLRUCache(capacity),
HyperClockCacheOptions(
capacity,
BlockBasedTableOptions().block_size /*estimated_value_size*/)
.MakeSharedCache()}) {
SCOPED_TRACE(std::string("Cache: ") + cache->Name());
++iterations_tested;
Options options = CurrentOptions();
SetTimeElapseOnlySleepOnReopen(&options);
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.max_open_files = 13;
options.table_cache_numshardbits = 0;
// If this wakes up, it could interfere with test
options.stats_dump_period_sec = 0;
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.cache_index_and_filter_blocks = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(50));
if (partition) {
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
table_options.partition_filters = true;
}
table_options.metadata_cache_options.top_level_index_pinning =
PinningTier::kNone;
table_options.metadata_cache_options.partition_pinning =
PinningTier::kNone;
table_options.metadata_cache_options.unpartitioned_pinning =
PinningTier::kNone;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
// Create a new table.
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Put("bar", "value"));
ASSERT_OK(Flush());
ASSERT_OK(Put("zfoo", "value"));
ASSERT_OK(Put("zbar", "value"));
ASSERT_OK(Flush());
ASSERT_EQ(2, NumTableFilesAtLevel(0));
// Fresh cache
ClearCache(cache.get());
std::array<size_t, kNumCacheEntryRoles> expected{};
// For CacheEntryStatsCollector
expected[static_cast<size_t>(CacheEntryRole::kMisc)] = 1;
EXPECT_EQ(expected, GetCacheEntryRoleCountsBg());
std::array<size_t, kNumCacheEntryRoles> prev_expected = expected;
// First access only filters
ASSERT_EQ("NOT_FOUND", Get("different from any key added"));
expected[static_cast<size_t>(CacheEntryRole::kFilterBlock)] += 2;
if (partition) {
expected[static_cast<size_t>(CacheEntryRole::kFilterMetaBlock)] += 2;
}
// Within some time window, we will get cached entry stats
EXPECT_EQ(prev_expected, GetCacheEntryRoleCountsBg());
// Not enough to force a miss
env_->MockSleepForSeconds(45);
EXPECT_EQ(prev_expected, GetCacheEntryRoleCountsBg());
// Enough to force a miss
env_->MockSleepForSeconds(601);
EXPECT_EQ(expected, GetCacheEntryRoleCountsBg());
// Now access index and data block
ASSERT_EQ("value", Get("foo"));
expected[static_cast<size_t>(CacheEntryRole::kIndexBlock)]++;
if (partition) {
// top-level
expected[static_cast<size_t>(CacheEntryRole::kIndexBlock)]++;
}
expected[static_cast<size_t>(CacheEntryRole::kDataBlock)]++;
// Enough to force a miss
env_->MockSleepForSeconds(601);
// But inject a simulated long scan so that we need a longer
// interval to force a miss next time.
SyncPoint::GetInstance()->SetCallBack(
"CacheEntryStatsCollector::GetStats:AfterApplyToAllEntries",
[this](void*) {
// To spend no more than 0.2% of time scanning, we would need
// interval of at least 10000s
env_->MockSleepForSeconds(20);
});
SyncPoint::GetInstance()->EnableProcessing();
EXPECT_EQ(expected, GetCacheEntryRoleCountsBg());
prev_expected = expected;
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
// The same for other file
ASSERT_EQ("value", Get("zfoo"));
expected[static_cast<size_t>(CacheEntryRole::kIndexBlock)]++;
if (partition) {
// top-level
expected[static_cast<size_t>(CacheEntryRole::kIndexBlock)]++;
}
expected[static_cast<size_t>(CacheEntryRole::kDataBlock)]++;
// Because of the simulated long scan, this is not enough to force
// a miss
env_->MockSleepForSeconds(601);
EXPECT_EQ(prev_expected, GetCacheEntryRoleCountsBg());
// But this is enough
env_->MockSleepForSeconds(10000);
EXPECT_EQ(expected, GetCacheEntryRoleCountsBg());
prev_expected = expected;
// Also check the GetProperty interface
std::map<std::string, std::string> values;
ASSERT_TRUE(
db_->GetMapProperty(DB::Properties::kBlockCacheEntryStats, &values));
for (size_t i = 0; i < kNumCacheEntryRoles; ++i) {
auto role = static_cast<CacheEntryRole>(i);
EXPECT_EQ(std::to_string(expected[i]),
values[BlockCacheEntryStatsMapKeys::EntryCount(role)]);
}
// Add one for kWriteBuffer
{
WriteBufferManager wbm(size_t{1} << 20, cache);
wbm.ReserveMem(1024);
expected[static_cast<size_t>(CacheEntryRole::kWriteBuffer)]++;
// Now we check that the GetProperty interface is more agressive about
// re-scanning stats, but not totally aggressive.
// Within some time window, we will get cached entry stats
env_->MockSleepForSeconds(1);
EXPECT_EQ(std::to_string(prev_expected[static_cast<size_t>(
CacheEntryRole::kWriteBuffer)]),
values[BlockCacheEntryStatsMapKeys::EntryCount(
CacheEntryRole::kWriteBuffer)]);
// Not enough for a "background" miss but enough for a "foreground" miss
env_->MockSleepForSeconds(45);
ASSERT_TRUE(db_->GetMapProperty(DB::Properties::kBlockCacheEntryStats,
&values));
EXPECT_EQ(
std::to_string(
expected[static_cast<size_t>(CacheEntryRole::kWriteBuffer)]),
values[BlockCacheEntryStatsMapKeys::EntryCount(
CacheEntryRole::kWriteBuffer)]);
}
prev_expected = expected;
// With collector pinned in cache, we should be able to hit
// even if the cache is full
ClearCache(cache.get());
Cache::Handle* h = nullptr;
if (strcmp(cache->Name(), "LRUCache") == 0) {
ASSERT_OK(cache->Insert("Fill-it-up", nullptr, &kNoopCacheItemHelper,
capacity + 1, &h, Cache::Priority::HIGH));
} else {
// For ClockCache we use a 16-byte key.
ASSERT_OK(cache->Insert("Fill-it-up-xxxxx", nullptr,
&kNoopCacheItemHelper, capacity + 1, &h,
Cache::Priority::HIGH));
}
ASSERT_GT(cache->GetUsage(), cache->GetCapacity());
expected = {};
// For CacheEntryStatsCollector
expected[static_cast<size_t>(CacheEntryRole::kMisc)] = 1;
// For Fill-it-up
expected[static_cast<size_t>(CacheEntryRole::kMisc)]++;
// Still able to hit on saved stats
EXPECT_EQ(prev_expected, GetCacheEntryRoleCountsBg());
// Enough to force a miss
env_->MockSleepForSeconds(1000);
EXPECT_EQ(expected, GetCacheEntryRoleCountsBg());
cache->Release(h);
// Now we test that the DB mutex is not held during scans, for the ways
// we know how to (possibly) trigger them. Without a better good way to
// check this, we simply inject an acquire & release of the DB mutex
// deep in the stat collection code. If we were already holding the
// mutex, that is UB that would at least be found by TSAN.
int scan_count = 0;
SyncPoint::GetInstance()->SetCallBack(
"CacheEntryStatsCollector::GetStats:AfterApplyToAllEntries",
[this, &scan_count](void*) {
dbfull()->TEST_LockMutex();
dbfull()->TEST_UnlockMutex();
++scan_count;
});
SyncPoint::GetInstance()->EnableProcessing();
// Different things that might trigger a scan, with mock sleeps to
// force a miss.
env_->MockSleepForSeconds(10000);
dbfull()->DumpStats();
ASSERT_EQ(scan_count, 1);
env_->MockSleepForSeconds(60);
ASSERT_TRUE(db_->GetMapProperty(DB::Properties::kFastBlockCacheEntryStats,
&values));
ASSERT_EQ(scan_count, 1);
ASSERT_TRUE(
db_->GetMapProperty(DB::Properties::kBlockCacheEntryStats, &values));
ASSERT_EQ(scan_count, 2);
env_->MockSleepForSeconds(10000);
ASSERT_TRUE(db_->GetMapProperty(DB::Properties::kFastBlockCacheEntryStats,
&values));
ASSERT_EQ(scan_count, 3);
env_->MockSleepForSeconds(60);
std::string value_str;
ASSERT_TRUE(db_->GetProperty(DB::Properties::kFastBlockCacheEntryStats,
&value_str));
ASSERT_EQ(scan_count, 3);
ASSERT_TRUE(
db_->GetProperty(DB::Properties::kBlockCacheEntryStats, &value_str));
ASSERT_EQ(scan_count, 4);
env_->MockSleepForSeconds(10000);
ASSERT_TRUE(db_->GetProperty(DB::Properties::kFastBlockCacheEntryStats,
&value_str));
ASSERT_EQ(scan_count, 5);
ASSERT_TRUE(db_->GetProperty(DB::Properties::kCFStats, &value_str));
// To match historical speed, querying this property no longer triggers
// a scan, even if results are old. But periodic dump stats should keep
// things reasonably updated.
ASSERT_EQ(scan_count, /*unchanged*/ 5);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
EXPECT_GE(iterations_tested, 1);
}
}
namespace {
void DummyFillCache(Cache& cache, size_t entry_size,
std::vector<CacheHandleGuard<void>>& handles) {
// fprintf(stderr, "Entry size: %zu\n", entry_size);
handles.clear();
cache.EraseUnRefEntries();
void* fake_value = &cache;
size_t capacity = cache.GetCapacity();
OffsetableCacheKey ck{"abc", "abc", 42};
for (size_t my_usage = 0; my_usage < capacity;) {
size_t charge = std::min(entry_size, capacity - my_usage);
Cache::Handle* handle;
Status st = cache.Insert(ck.WithOffset(my_usage).AsSlice(), fake_value,
&kNoopCacheItemHelper, charge, &handle);
ASSERT_OK(st);
handles.emplace_back(&cache, handle);
my_usage += charge;
}
}
class CountingLogger : public Logger {
public:
~CountingLogger() override {}
using Logger::Logv;
void Logv(const InfoLogLevel log_level, const char* format,
va_list /*ap*/) override {
if (std::strstr(format, "HyperClockCache") == nullptr) {
// Not a match
return;
}
// static StderrLogger debug;
// debug.Logv(log_level, format, ap);
if (log_level == InfoLogLevel::INFO_LEVEL) {
++info_count_;
} else if (log_level == InfoLogLevel::WARN_LEVEL) {
++warn_count_;
} else if (log_level == InfoLogLevel::ERROR_LEVEL) {
++error_count_;
}
}
std::array<int, 3> PopCounts() {
std::array<int, 3> rv{{info_count_, warn_count_, error_count_}};
info_count_ = warn_count_ = error_count_ = 0;
return rv;
}
private:
int info_count_{};
int warn_count_{};
int error_count_{};
};
} // namespace
TEST_F(DBBlockCacheTest, HyperClockCacheReportProblems) {
size_t capacity = 1024 * 1024;
size_t value_size_est = 8 * 1024;
HyperClockCacheOptions hcc_opts{capacity, value_size_est};
hcc_opts.num_shard_bits = 2; // 4 shards
hcc_opts.metadata_charge_policy = kDontChargeCacheMetadata;
hcc_opts.hash_seed = 0; // deterministic hashing
std::shared_ptr<Cache> cache = hcc_opts.MakeSharedCache();
std::shared_ptr<CountingLogger> logger = std::make_shared<CountingLogger>();
auto table_options = GetTableOptions();
auto options = GetOptions(table_options);
table_options.block_cache = cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.info_log = logger;
// Going to sample more directly
options.stats_dump_period_sec = 0;
Reopen(options);
std::vector<CacheHandleGuard<void>> handles;
// Clear anything from DB startup
logger->PopCounts();
// Fill cache based on expected size and check that when we
// don't report anything relevant in periodic stats dump
DummyFillCache(*cache, value_size_est, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 0, 0}}));
// Same, within reasonable bounds
DummyFillCache(*cache, value_size_est - value_size_est / 4, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 0, 0}}));
DummyFillCache(*cache, value_size_est + value_size_est / 3, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 0, 0}}));
// Estimate too high (value size too low) eventually reports ERROR
DummyFillCache(*cache, value_size_est / 2, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 1, 0}}));
DummyFillCache(*cache, value_size_est / 3, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 0, 1}}));
// Estimate too low (value size too high) starts with INFO
// and is only WARNING in the worst case
DummyFillCache(*cache, value_size_est * 2, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{1, 0, 0}}));
DummyFillCache(*cache, value_size_est * 3, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 1, 0}}));
DummyFillCache(*cache, value_size_est * 20, handles);
dbfull()->DumpStats();
EXPECT_EQ(logger->PopCounts(), (std::array<int, 3>{{0, 1, 0}}));
}
class DBBlockCacheKeyTest
: public DBTestBase,
public testing::WithParamInterface<std::tuple<bool, bool>> {
public:
DBBlockCacheKeyTest()
: DBTestBase("db_block_cache_test", /*env_do_fsync=*/false) {}
void SetUp() override {
use_compressed_cache_ = std::get<0>(GetParam());
exclude_file_numbers_ = std::get<1>(GetParam());
}
bool use_compressed_cache_;
bool exclude_file_numbers_;
};
// Disable LinkFile so that we can physically copy a DB using Checkpoint.
// Disable file GetUniqueId to enable stable cache keys.
class StableCacheKeyTestFS : public FaultInjectionTestFS {
public:
explicit StableCacheKeyTestFS(const std::shared_ptr<FileSystem>& base)
: FaultInjectionTestFS(base) {
SetFailGetUniqueId(true);
}
virtual ~StableCacheKeyTestFS() override {}
IOStatus LinkFile(const std::string&, const std::string&, const IOOptions&,
IODebugContext*) override {
return IOStatus::NotSupported("Disabled");
}
};
TEST_P(DBBlockCacheKeyTest, StableCacheKeys) {
std::shared_ptr<StableCacheKeyTestFS> test_fs{
new StableCacheKeyTestFS(env_->GetFileSystem())};
std::unique_ptr<CompositeEnvWrapper> test_env{
new CompositeEnvWrapper(env_, test_fs)};
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.env = test_env.get();
// Corrupting the table properties corrupts the unique id.
// Ignore the unique id recorded in the manifest.
options.verify_sst_unique_id_in_manifest = false;
BlockBasedTableOptions table_options;
int key_count = 0;
uint64_t expected_stat = 0;
std::function<void()> verify_stats;
table_options.cache_index_and_filter_blocks = true;
table_options.block_cache = NewLRUCache(1 << 25, 0, false);
verify_stats = [&options, &expected_stat] {
ASSERT_EQ(expected_stat,
options.statistics->getTickerCount(BLOCK_CACHE_DATA_ADD));
ASSERT_EQ(expected_stat,
options.statistics->getTickerCount(BLOCK_CACHE_INDEX_ADD));
ASSERT_EQ(expected_stat,
options.statistics->getTickerCount(BLOCK_CACHE_FILTER_ADD));
};
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"koko"}, options);
if (exclude_file_numbers_) {
// Simulate something like old behavior without file numbers in properties.
// This is a "control" side of the test that also ensures safely degraded
// behavior on old files.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTableBuilder::BlockBasedTableBuilder:PreSetupBaseCacheKey",
[&](void* arg) {
TableProperties* props = reinterpret_cast<TableProperties*>(arg);
props->orig_file_number = 0;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
}
std::function<void()> perform_gets = [&key_count, &expected_stat, this]() {
if (exclude_file_numbers_) {
// No cache key reuse should happen, because we can't rely on current
// file number being stable
expected_stat += key_count;
} else {
// Cache keys should be stable
expected_stat = key_count;
}
for (int i = 0; i < key_count; ++i) {
ASSERT_EQ(Get(1, Key(i)), "abc");
}
};
// Ordinary SST files with same session id
const std::string something_compressible(500U, 'x');
for (int i = 0; i < 2; ++i) {
ASSERT_OK(Put(1, Key(key_count), "abc"));
ASSERT_OK(Put(1, Key(key_count) + "a", something_compressible));
ASSERT_OK(Flush(1));
++key_count;
}
// Save an export of those ordinary SST files for later
std::string export_files_dir = dbname_ + "/exported";
ExportImportFilesMetaData* metadata_ptr_ = nullptr;
Checkpoint* checkpoint;
ASSERT_OK(Checkpoint::Create(db_, &checkpoint));
ASSERT_OK(checkpoint->ExportColumnFamily(handles_[1], export_files_dir,
&metadata_ptr_));
ASSERT_NE(metadata_ptr_, nullptr);
delete checkpoint;
checkpoint = nullptr;
// External SST files with same session id
SstFileWriter sst_file_writer(EnvOptions(), options);
std::vector<std::string> external;
for (int i = 0; i < 2; ++i) {
std::string f = dbname_ + "/external" + std::to_string(i) + ".sst";
external.push_back(f);
ASSERT_OK(sst_file_writer.Open(f));
ASSERT_OK(sst_file_writer.Put(Key(key_count), "abc"));
ASSERT_OK(
sst_file_writer.Put(Key(key_count) + "a", something_compressible));
++key_count;
ExternalSstFileInfo external_info;
ASSERT_OK(sst_file_writer.Finish(&external_info));
IngestExternalFileOptions ingest_opts;
ASSERT_OK(db_->IngestExternalFile(handles_[1], {f}, ingest_opts));
}
perform_gets();
verify_stats();
// Make sure we can cache hit after re-open
ReopenWithColumnFamilies({"default", "koko"}, options);
perform_gets();
verify_stats();
// Make sure we can cache hit even on a full copy of the DB. Using
// StableCacheKeyTestFS, Checkpoint will resort to full copy not hard link.
// (Checkpoint not available in LITE mode to test this.)
auto db_copy_name = dbname_ + "-copy";
ASSERT_OK(Checkpoint::Create(db_, &checkpoint));
ASSERT_OK(checkpoint->CreateCheckpoint(db_copy_name));
delete checkpoint;
Close();
Destroy(options);
// Switch to the DB copy
SaveAndRestore<std::string> save_dbname(&dbname_, db_copy_name);
ReopenWithColumnFamilies({"default", "koko"}, options);
perform_gets();
verify_stats();
// And ensure that re-importing + ingesting the same files into a
// different DB uses same cache keys
DestroyAndReopen(options);
ColumnFamilyHandle* cfh = nullptr;
ASSERT_OK(db_->CreateColumnFamilyWithImport(ColumnFamilyOptions(), "yoyo",
ImportColumnFamilyOptions(),
*metadata_ptr_, &cfh));
ASSERT_NE(cfh, nullptr);
delete cfh;
cfh = nullptr;
delete metadata_ptr_;
metadata_ptr_ = nullptr;
ASSERT_OK(DestroyDB(export_files_dir, options));
ReopenWithColumnFamilies({"default", "yoyo"}, options);
IngestExternalFileOptions ingest_opts;
ASSERT_OK(db_->IngestExternalFile(handles_[1], {external}, ingest_opts));
perform_gets();
verify_stats();
Close();
Destroy(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
class CacheKeyTest : public testing::Test {
public:
CacheKey GetBaseCacheKey() {
CacheKey rv = GetOffsetableCacheKey(0, /*min file_number*/ 1).WithOffset(0);
// Correct for file_number_ == 1
*reinterpret_cast<uint64_t*>(&rv) ^= ReverseBits(uint64_t{1});
return rv;
}
CacheKey GetCacheKey(uint64_t session_counter, uint64_t file_number,
uint64_t offset) {
OffsetableCacheKey offsetable =
GetOffsetableCacheKey(session_counter, file_number);
// * 4 to counteract optimization that strips lower 2 bits in encoding
// the offset in BlockBasedTable::GetCacheKey (which we prefer to include
// in unit tests to maximize functional coverage).
EXPECT_GE(offset * 4, offset); // no overflow
return BlockBasedTable::GetCacheKey(offsetable,
BlockHandle(offset * 4, /*size*/ 5));
}
protected:
OffsetableCacheKey GetOffsetableCacheKey(uint64_t session_counter,
uint64_t file_number) {
// Like SemiStructuredUniqueIdGen::GenerateNext
tp_.db_session_id = EncodeSessionId(base_session_upper_,
base_session_lower_ ^ session_counter);
tp_.db_id = std::to_string(db_id_);
tp_.orig_file_number = file_number;
bool is_stable;
std::string cur_session_id = ""; // ignored
uint64_t cur_file_number = 42; // ignored
OffsetableCacheKey rv;
BlockBasedTable::SetupBaseCacheKey(&tp_, cur_session_id, cur_file_number,
&rv, &is_stable);
EXPECT_TRUE(is_stable);
EXPECT_TRUE(!rv.IsEmpty());
// BEGIN some assertions in relation to SST unique IDs
std::string external_unique_id_str;
EXPECT_OK(GetUniqueIdFromTableProperties(tp_, &external_unique_id_str));
UniqueId64x2 sst_unique_id = {};
EXPECT_OK(DecodeUniqueIdBytes(external_unique_id_str, &sst_unique_id));
ExternalUniqueIdToInternal(&sst_unique_id);
OffsetableCacheKey ock =
OffsetableCacheKey::FromInternalUniqueId(&sst_unique_id);
EXPECT_EQ(rv.WithOffset(0).AsSlice(), ock.WithOffset(0).AsSlice());
EXPECT_EQ(ock.ToInternalUniqueId(), sst_unique_id);
// END some assertions in relation to SST unique IDs
return rv;
}
TableProperties tp_;
uint64_t base_session_upper_ = 0;
uint64_t base_session_lower_ = 0;
uint64_t db_id_ = 0;
};
TEST_F(CacheKeyTest, DBImplSessionIdStructure) {
// We have to generate our own session IDs for simulation purposes in other
// tests. Here we verify that the DBImpl implementation seems to match
// our construction here, by using lowest XORed-in bits for "session
// counter."
std::string session_id1 = DBImpl::GenerateDbSessionId(/*env*/ nullptr);
std::string session_id2 = DBImpl::GenerateDbSessionId(/*env*/ nullptr);
uint64_t upper1, upper2, lower1, lower2;
ASSERT_OK(DecodeSessionId(session_id1, &upper1, &lower1));
ASSERT_OK(DecodeSessionId(session_id2, &upper2, &lower2));
// Because generated in same process
ASSERT_EQ(upper1, upper2);
// Unless we generate > 4 billion session IDs in this process...
ASSERT_EQ(Upper32of64(lower1), Upper32of64(lower2));
// But they must be different somewhere
ASSERT_NE(Lower32of64(lower1), Lower32of64(lower2));
}
namespace {
// Deconstruct cache key, based on knowledge of implementation details.
void DeconstructNonemptyCacheKey(const CacheKey& key, uint64_t* file_num_etc64,
uint64_t* offset_etc64) {
*file_num_etc64 = *reinterpret_cast<const uint64_t*>(key.AsSlice().data());
*offset_etc64 = *reinterpret_cast<const uint64_t*>(key.AsSlice().data() + 8);
assert(*file_num_etc64 != 0);
if (*offset_etc64 == 0) {
std::swap(*file_num_etc64, *offset_etc64);
}
assert(*offset_etc64 != 0);
}
// Make a bit mask of 0 to 64 bits
uint64_t MakeMask64(int bits) {
if (bits >= 64) {
return uint64_t{0} - 1;
} else {
return (uint64_t{1} << bits) - 1;
}
}
// See CacheKeyTest::Encodings
struct CacheKeyDecoder {
// Inputs
uint64_t base_file_num_etc64, base_offset_etc64;
int session_counter_bits, file_number_bits, offset_bits;
// Derived
uint64_t session_counter_mask, file_number_mask, offset_mask;
// Outputs
uint64_t decoded_session_counter, decoded_file_num, decoded_offset;
void SetBaseCacheKey(const CacheKey& base) {
DeconstructNonemptyCacheKey(base, &base_file_num_etc64, &base_offset_etc64);
}
void SetRanges(int _session_counter_bits, int _file_number_bits,
int _offset_bits) {
session_counter_bits = _session_counter_bits;
session_counter_mask = MakeMask64(session_counter_bits);
file_number_bits = _file_number_bits;
file_number_mask = MakeMask64(file_number_bits);
offset_bits = _offset_bits;
offset_mask = MakeMask64(offset_bits);
}
void Decode(const CacheKey& key) {
uint64_t file_num_etc64, offset_etc64;
DeconstructNonemptyCacheKey(key, &file_num_etc64, &offset_etc64);
// First decode session counter
if (offset_bits + session_counter_bits <= 64) {
// fully recoverable from offset_etc64
decoded_session_counter =
ReverseBits((offset_etc64 ^ base_offset_etc64)) &
session_counter_mask;
} else if (file_number_bits + session_counter_bits <= 64) {
// fully recoverable from file_num_etc64
decoded_session_counter = DownwardInvolution(
(file_num_etc64 ^ base_file_num_etc64) & session_counter_mask);
} else {
// Need to combine parts from each word.
// Piece1 will contain some correct prefix of the bottom bits of
// session counter.
uint64_t piece1 =
ReverseBits((offset_etc64 ^ base_offset_etc64) & ~offset_mask);
int piece1_bits = 64 - offset_bits;
// Piece2 will contain involuded bits that we can combine with piece1
// to infer rest of session counter
int piece2_bits = std::min(64 - file_number_bits, 64 - piece1_bits);
ASSERT_LT(piece2_bits, 64);
uint64_t piece2_mask = MakeMask64(piece2_bits);
uint64_t piece2 = (file_num_etc64 ^ base_file_num_etc64) & piece2_mask;
// Cancel out the part of piece2 that we can infer from piece1
// (DownwardInvolution distributes over xor)
piece2 ^= DownwardInvolution(piece1) & piece2_mask;
// Now we need to solve for the unknown original bits in higher
// positions than piece1 provides. We use Gaussian elimination
// because we know that a piece2_bits X piece2_bits submatrix of
// the matrix underlying DownwardInvolution times the vector of
// unknown original bits equals piece2.
//
// Build an augmented row matrix for that submatrix, built column by
// column.
std::array<uint64_t, 64> aug_rows{};
for (int i = 0; i < piece2_bits; ++i) { // over columns
uint64_t col_i = DownwardInvolution(uint64_t{1} << piece1_bits << i);
ASSERT_NE(col_i & 1U, 0);
for (int j = 0; j < piece2_bits; ++j) { // over rows
aug_rows[j] |= (col_i & 1U) << i;
col_i >>= 1;
}
}
// Augment with right hand side
for (int j = 0; j < piece2_bits; ++j) { // over rows
aug_rows[j] |= (piece2 & 1U) << piece2_bits;
piece2 >>= 1;
}
// Run Gaussian elimination
for (int i = 0; i < piece2_bits; ++i) { // over columns
// Find a row that can be used to cancel others
uint64_t canceller = 0;
// Note: Rows 0 through i-1 contain 1s in columns already eliminated
for (int j = i; j < piece2_bits; ++j) { // over rows
if (aug_rows[j] & (uint64_t{1} << i)) {
// Swap into appropriate row
std::swap(aug_rows[i], aug_rows[j]);
// Keep a handy copy for row reductions
canceller = aug_rows[i];
break;
}
}
ASSERT_NE(canceller, 0);
for (int j = 0; j < piece2_bits; ++j) { // over rows
if (i != j && ((aug_rows[j] >> i) & 1) != 0) {
// Row reduction
aug_rows[j] ^= canceller;
}
}
}
// Extract result
decoded_session_counter = piece1;
for (int j = 0; j < piece2_bits; ++j) { // over rows
ASSERT_EQ(aug_rows[j] & piece2_mask, uint64_t{1} << j);
decoded_session_counter |= aug_rows[j] >> piece2_bits << piece1_bits
<< j;
}
}
decoded_offset =
offset_etc64 ^ base_offset_etc64 ^ ReverseBits(decoded_session_counter);
decoded_file_num = ReverseBits(file_num_etc64 ^ base_file_num_etc64 ^
DownwardInvolution(decoded_session_counter));
}
};
} // anonymous namespace
TEST_F(CacheKeyTest, Encodings) {
// This test primarily verifies this claim from cache_key.cc:
// // In fact, if DB ids were not involved, we would be guaranteed unique
// // cache keys for files generated in a single process until total bits for
// // biggest session_id_counter, orig_file_number, and offset_in_file
// // reach 128 bits.
//
// To demonstrate this, CacheKeyDecoder can reconstruct the structured inputs
// to the cache key when provided an output cache key, the unstructured
// inputs, and bounds on the structured inputs.
//
// See OffsetableCacheKey comments in cache_key.cc.
// We are going to randomly initialize some values that *should* not affect
// result
Random64 r{std::random_device{}()};
CacheKeyDecoder decoder;
db_id_ = r.Next();
base_session_upper_ = r.Next();
base_session_lower_ = r.Next();
if (base_session_lower_ == 0) {
base_session_lower_ = 1;
}
decoder.SetBaseCacheKey(GetBaseCacheKey());
// Loop over configurations and test those
for (int session_counter_bits = 0; session_counter_bits <= 64;
++session_counter_bits) {
for (int file_number_bits = 1; file_number_bits <= 64; ++file_number_bits) {
// 62 bits max because unoptimized offset will be 64 bits in that case
for (int offset_bits = 0; offset_bits <= 62; ++offset_bits) {
if (session_counter_bits + file_number_bits + offset_bits > 128) {
break;
}
decoder.SetRanges(session_counter_bits, file_number_bits, offset_bits);
uint64_t session_counter = r.Next() & decoder.session_counter_mask;
uint64_t file_number = r.Next() & decoder.file_number_mask;
if (file_number == 0) {
// Minimum
file_number = 1;
}
uint64_t offset = r.Next() & decoder.offset_mask;
decoder.Decode(GetCacheKey(session_counter, file_number, offset));
EXPECT_EQ(decoder.decoded_session_counter, session_counter);
EXPECT_EQ(decoder.decoded_file_num, file_number);
EXPECT_EQ(decoder.decoded_offset, offset);
}
}
}
}
INSTANTIATE_TEST_CASE_P(DBBlockCacheKeyTest, DBBlockCacheKeyTest,
::testing::Combine(::testing::Bool(),
::testing::Bool()));
class DBBlockCachePinningTest
: public DBTestBase,
public testing::WithParamInterface<
std::tuple<bool, PinningTier, PinningTier, PinningTier>> {
public:
DBBlockCachePinningTest()
: DBTestBase("db_block_cache_test", /*env_do_fsync=*/false) {}
void SetUp() override {
partition_index_and_filters_ = std::get<0>(GetParam());
top_level_index_pinning_ = std::get<1>(GetParam());
partition_pinning_ = std::get<2>(GetParam());
unpartitioned_pinning_ = std::get<3>(GetParam());
}
bool partition_index_and_filters_;
PinningTier top_level_index_pinning_;
PinningTier partition_pinning_;
PinningTier unpartitioned_pinning_;
};
TEST_P(DBBlockCachePinningTest, TwoLevelDB) {
// Creates one file in L0 and one file in L1. Both files have enough data that
// their index and filter blocks are partitioned. The L1 file will also have
// a compression dictionary (those are trained only during compaction), which
// must be unpartitioned.
const int kKeySize = 32;
const int kBlockSize = 128;
const int kNumBlocksPerFile = 128;
const int kNumKeysPerFile = kBlockSize * kNumBlocksPerFile / kKeySize;
Options options = CurrentOptions();
// `kNoCompression` makes the unit test more portable. But it relies on the
// current behavior of persisting/accessing dictionary even when there's no
// (de)compression happening, which seems fairly likely to change over time.
options.compression = kNoCompression;
options.compression_opts.max_dict_bytes = 4 << 10;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1 << 20 /* capacity */);
table_options.block_size = kBlockSize;
table_options.metadata_block_size = kBlockSize;
table_options.cache_index_and_filter_blocks = true;
table_options.metadata_cache_options.top_level_index_pinning =
top_level_index_pinning_;
table_options.metadata_cache_options.partition_pinning = partition_pinning_;
table_options.metadata_cache_options.unpartitioned_pinning =
unpartitioned_pinning_;
table_options.filter_policy.reset(
NewBloomFilterPolicy(10 /* bits_per_key */));
if (partition_index_and_filters_) {
table_options.index_type =
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
table_options.partition_filters = true;
}
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
Random rnd(301);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kKeySize)));
}
ASSERT_OK(Flush());
if (i == 0) {
// Prevent trivial move so file will be rewritten with dictionary and
// reopened with L1's pinning settings.
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
}
}
// Clear all unpinned blocks so unpinned blocks will show up as cache misses
// when reading a key from a file.
table_options.block_cache->EraseUnRefEntries();
// Get base cache values
uint64_t filter_misses = TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS);
uint64_t index_misses = TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS);
uint64_t compression_dict_misses =
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_MISS);
// Read a key from the L0 file
Get(Key(kNumKeysPerFile));
uint64_t expected_filter_misses = filter_misses;
uint64_t expected_index_misses = index_misses;
uint64_t expected_compression_dict_misses = compression_dict_misses;
if (partition_index_and_filters_) {
if (top_level_index_pinning_ == PinningTier::kNone) {
++expected_filter_misses;
++expected_index_misses;
}
if (partition_pinning_ == PinningTier::kNone) {
++expected_filter_misses;
++expected_index_misses;
}
} else {
if (unpartitioned_pinning_ == PinningTier::kNone) {
++expected_filter_misses;
++expected_index_misses;
}
}
if (unpartitioned_pinning_ == PinningTier::kNone) {
++expected_compression_dict_misses;
}
ASSERT_EQ(expected_filter_misses,
TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(expected_index_misses,
TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(expected_compression_dict_misses,
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_MISS));
// Clear all unpinned blocks so unpinned blocks will show up as cache misses
// when reading a key from a file.
table_options.block_cache->EraseUnRefEntries();
// Read a key from the L1 file
Get(Key(0));
if (partition_index_and_filters_) {
if (top_level_index_pinning_ == PinningTier::kNone ||
top_level_index_pinning_ == PinningTier::kFlushedAndSimilar) {
++expected_filter_misses;
++expected_index_misses;
}
if (partition_pinning_ == PinningTier::kNone ||
partition_pinning_ == PinningTier::kFlushedAndSimilar) {
++expected_filter_misses;
++expected_index_misses;
}
} else {
if (unpartitioned_pinning_ == PinningTier::kNone ||
unpartitioned_pinning_ == PinningTier::kFlushedAndSimilar) {
++expected_filter_misses;
++expected_index_misses;
}
}
if (unpartitioned_pinning_ == PinningTier::kNone ||
unpartitioned_pinning_ == PinningTier::kFlushedAndSimilar) {
++expected_compression_dict_misses;
}
ASSERT_EQ(expected_filter_misses,
TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(expected_index_misses,
TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(expected_compression_dict_misses,
TestGetTickerCount(options, BLOCK_CACHE_COMPRESSION_DICT_MISS));
}
INSTANTIATE_TEST_CASE_P(
DBBlockCachePinningTest, DBBlockCachePinningTest,
::testing::Combine(
::testing::Bool(),
::testing::Values(PinningTier::kNone, PinningTier::kFlushedAndSimilar,
PinningTier::kAll),
::testing::Values(PinningTier::kNone, PinningTier::kFlushedAndSimilar,
PinningTier::kAll),
::testing::Values(PinningTier::kNone, PinningTier::kFlushedAndSimilar,
PinningTier::kAll)));
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}