rocksdb/cache/cache_test.cc
Peter Dillinger fe3405e80f Automatic table sizing for HyperClockCache (AutoHCC) (#11738)
Summary:
This change add an experimental next-generation HyperClockCache (HCC) with automatic sizing of the underlying hash table. Both the existing version (stable) and the new version (experimental for now) of HCC are available depending on whether an estimated average entry charge is provided in HyperClockCacheOptions.

Internally, we call the two implementations AutoHyperClockCache (new) and FixedHyperClockCache (existing). The performance characteristics and much of the underlying logic are similar enough that AutoHCC is likely to make FixedHCC obsolete, and so it's best considered an evolution of the same technology or solution rather than an alternative. More specifically, both implementations share essentially the same logic for managing the state of individual entries in the cache, including metadata for reference counting and counting clocks for eviction. This metadata, which I like to call the "low-level HCC protocol," includes a read-write lock on entries, but relaxed consistency requirements on the cache (e.g. allowing rare duplication) means high-level cache operations never wait for these low-level per-entry locks. FixedHCC is fully wait-free.

AutoHCC is different in how entries are indexed into an efficient hash table. AutoHCC is "essentially wait-free" as there is no pattern of typical high-level operations on a large cache that can lead to one thread waiting on another to complete some work, though it can happen in some unusual/unlucky cases, or atypical uses such as erasing specific cache keys. Table growth and entry reclamation is more complex in AutoHCC compared to FixedHCC, so uses some localized locking to manage that. AutoHCC uses linear hashing to grow the table as needed, with low latency and to a precise size. AutoHCC depends on anonymous mmap support from the OS (currently verified working on Linux, MacOS, and Windows) to allow the array underlying a hash table to grow in place without wasting resident memory on space reserved but unused. AutoHCC uses a form of chaining while FixedHCC uses open addressing and double hashing.

More specifics:
* In developing this PR, a rare availability bug (minor) was noticed in the existing HCC implementation of Release()+erase_if_last_ref, which is now inherited into AutoHCC. Fixing this without a performance regression will not be simple, so is left for follow-up work.
* Some existing unit tests required adjustment of operational parameters or conditions to work with the new behaviors of AutoHCC. A number of bugs were found and fixed in the validation process, including getting unit tests in good working order.
* Added an option to cache_bench, `-degenerate_hash_bits` for correctness stress testing described below. For this, the tool uses the reverse-engineered hash function for HCC to generate keys in which the specified number of hash bits, in critical positions, have a fixed value. Essentially each degenerate hash bit will half the number of chain heads utilized and double the average chain length.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11738

Test Plan:
unit tests updated, and already added to db crash test. Also

## Correctness
The code includes generous assertions to check for unexpected states, especially at destruction time, so should be able to detect critical concurrency bugs. Less serious "availability bugs" in which cache data is hidden or cleanly lost are more difficult to detect, but also less scary for data correctness (as long as performance is good and the design is sound).

In average operation, the structure is extremely low stress and low contention (see next section) so stressing the corner case logic requires artificially stressing the operating conditions. First, we keep the structure small to increase the number of threads hitting the same chain or entry, and just one cache shard. Second, we artificially degrade the hashing so that chains are much longer than typical, using the new `-degenerate_hash_bits` option to cache_bench. Third, we re-create the structure from scratch frequently in order to exercise the Grow logic repeatedly and to get the benefit of the consistency checks in the structure's destructor in debug builds. For cache_bench this also means disabling the single-threaded "populate cache" step (normally used for steady state performance testing). And of course use many more threads than cores to have many preemptions.

An effective test for working out bugs was this (using debug build of course):
```
while ./cache_bench -cache_type=auto_hyper_clock_cache -histograms=0 -cache_size=8000000 -threads=100 -populate_cache=0 -ops_per_thread=10000 -degenerate_hash_bits=6 -num_shard_bits=0; do :; done
```

Or even smaller cases. This setup has around 27 utilized chains, with around 35 entries each, and yield-waits more than 1 million times per second (very high contention; see next section). I have let this run for hours searching for any lingering issues.

I've also run cache_bench under ASAN, UBSAN, and TSAN.

## Essentially wait free
There is a counter for number of yield() calls when one thread is waiting on another. When we pre-populate the structure in a single thread,
```
./cache_bench -cache_type=auto_hyper_clock_cache -histograms=0 -populate_cache=1 -ops_per_thread=200000 2>&1 | grep Yield
```
We see something on the order of 1 yield call per second across 16 threads, even when we load the system other other jobs (parallel compilation). With -populate_cache=0, there are more yield opportunities with parallel table growth. On an otherwise unloaded system, we still see very small (single digit) yield counts, with a chance of getting into the thousands, and getting into 10s of thousands per second during table growth phase if the system is loaded with other jobs. However, I am not worried about this if performance is still good (see next section).

## Overall performance
Although cache_bench initially suggested performance very close to FixedHCC, there was a very noticeable performance hit under a db_bench setup like used in validating https://github.com/facebook/rocksdb/issues/10626. Much of the difference has been reduced by optimizing Lookup with a "naive" pass that will almost always find entries quickly, and only falling back to the careful Lookup algorithm when not found in the first pass.

Setups (chosen to be sensitive to block cache performance), and compiled with USE_CLANG=1 JEMALLOC=1 PORTABLE=0 DEBUG_LEVEL=0:
```
TEST_TMPDIR=/dev/shm base/db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```

### No regression on FixedHCC
Running before & after builds at the same time on a 48 core machine.
```
TEST_TMPDIR=/dev/shm /usr/bin/time ./db_bench -benchmarks=readrandom[-X10],block_cache_entry_stats,cache_report_problems -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=610000000 -duration 20 -threads=24 -cache_type=fixed_hyper_clock_cache -seed=1234
```

Before:
readrandom [AVG    10 runs] : 847234 (± 8150) ops/sec;   59.2 (± 0.6) MB/sec
703MB max RSS

After:
readrandom [AVG    10 runs] : 851021 (± 7929) ops/sec;   59.5 (± 0.6) MB/sec
706MB max RSS

Probably no material difference.

### Single-threaded performance
Using `[-X2]` and `-threads=1` and `-duration=30`, running all three at the same time:

lru_cache: 55100 ops/sec, then 55862 ops/sec  (627MB max RSS)
fixed_hyper_clock_cache: 60496 ops/sec, then 61231 ops/sec (626MB max RSS)
auto_hyper_clock_cache: 47560 ops/sec, then 56081 ops/sec (626MB max RSS)

So AutoHCC has more ramp-up cost in the first pass as the cache grows to the appropriate size. (In single-threaded operation, the parallelizability and per-op low latency of table growth is overall slower.) However, once up to size, its performance is comparable to LRUCache. FixedHCC's lean operations still win overall when a good estimate is available.

If we look at HCC table stats, we can see that this configuration is not favorable to AutoHCC (and I have verified that other memory sizes do not yield substantially different results, until shards are under-sized for the full filters):

FixedHCC:
Slot occupancy stats: Overall 47% (124991/262144), Min/Max/Window = 28%/64%/500, MaxRun{Pos/Neg} = 17/22

AutoHCC:
Slot occupancy stats: Overall 59% (125781/209682), Min/Max/Window = 43%/82%/500, MaxRun{Pos/Neg} = 76/16
Head occupancy stats: Overall 43% (92259/209682), Min/Max/Window = 24%/74%/500, MaxRun{Pos/Neg} = 19/26
Entries at home count: 53350

FixedHCC configuration is relatively good for speed, and not ideal for space utilization. As is typical, AutoHCC has tighter control on metadata usage (209682 x 64 bytes rather than 262144 x 64 bytes), and the higher load factor is slightly worse for speed. LRUCache also has more metadata usage, at 199680 x 96 bytes of tracked metadata (plus roughly another 10% of that untracked in the head pointers), and that metadata is subject to fragmentation.

### Parallel performance, high hit rate
Now using `[-X10]` and `-threads=10`, all three at the same time

lru_cache: [AVG    10 runs] : 263629 (± 1425) ops/sec;   18.4 (± 0.1) MB/sec
655MB max RSS, 97.1% cache hit rate
fixed_hyper_clock_cache: [AVG    10 runs] : 479590 (± 8114) ops/sec;   33.5 (± 0.6) MB/sec
651MB max RSS, 97.1% cache hit rate
auto_hyper_clock_cache: [AVG    10 runs] : 418687 (± 5915) ops/sec;   29.3 (± 0.4) MB/sec
657MB max RSS, 97.1% cache hit rate

Even with just 10-way parallelism for each cache (though 30+/48 cores busy overall), LRUCache is already showing performance degradation, while AutoHCC is in the neighborhood of FixedHCC. And that brings us to the question of how AutoHCC holds up under extreme parallelism, so now independent runs with `-threads=100` (overloading 48 cores).

lru_cache: 438613 ops/sec, 827MB max RSS
fixed_hyper_clock_cache: 1651310 ops/sec, 812MB max RSS
auto_hyper_clock_cache: 1505875 ops/sec, 821MB max RSS (Yield count: 1089 over 30s)

Clearly, AutoHCC holds up extremely well under extreme parallelism, even closing some of the modest performance gap with  FixedHCC.

### Parallel performance, low hit rate
To get down to roughly 50% cache hit rate, we use `-cache_index_and_filter_blocks=0 -cache_size=1650000000` with `-threads=10`. Here the extra cost of running counting clock eviction, especially on the chains of AutoHCC, are evident, especially with the lower contention of cache_index_and_filter_blocks=0:

lru_cache: 725231 ops/sec, 1770MB max RSS, 51.3% hit rate
fixed_hyper_clock_cache: 638620 ops/sec, 1765MB max RSS, 50.2% hit rate
auto_hyper_clock_cache: 541018 ops/sec, 1777MB max RSS, 50.8% hit rate

Reviewed By: jowlyzhang

Differential Revision: D48784755

Pulled By: pdillinger

fbshipit-source-id: e79813dc087474ac427637dd282a14fa3011a6e4
2023-09-01 15:44:38 -07:00

1025 lines
32 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "rocksdb/cache.h"
#include <forward_list>
#include <functional>
#include <iostream>
#include <string>
#include <vector>
#include "cache/lru_cache.h"
#include "cache/typed_cache.h"
#include "port/stack_trace.h"
#include "test_util/secondary_cache_test_util.h"
#include "test_util/testharness.h"
#include "util/coding.h"
#include "util/hash_containers.h"
#include "util/string_util.h"
// HyperClockCache only supports 16-byte keys, so some of the tests
// originally written for LRUCache do not work on the other caches.
// Those tests were adapted to use 16-byte keys. We kept the original ones.
// TODO: Remove the original tests if they ever become unused.
namespace ROCKSDB_NAMESPACE {
namespace {
// Conversions between numeric keys/values and the types expected by Cache.
std::string EncodeKey16Bytes(int k) {
std::string result;
PutFixed32(&result, k);
result.append(std::string(12, 'a')); // Because we need a 16B output, we
// add a 12-byte padding.
return result;
}
int DecodeKey16Bytes(const Slice& k) {
assert(k.size() == 16);
return DecodeFixed32(k.data()); // Decodes only the first 4 bytes of k.
}
std::string EncodeKey32Bits(int k) {
std::string result;
PutFixed32(&result, k);
return result;
}
int DecodeKey32Bits(const Slice& k) {
assert(k.size() == 4);
return DecodeFixed32(k.data());
}
Cache::ObjectPtr EncodeValue(uintptr_t v) {
return reinterpret_cast<Cache::ObjectPtr>(v);
}
int DecodeValue(void* v) {
return static_cast<int>(reinterpret_cast<uintptr_t>(v));
}
const Cache::CacheItemHelper kDumbHelper{
CacheEntryRole::kMisc,
[](Cache::ObjectPtr /*value*/, MemoryAllocator* /*alloc*/) {}};
const Cache::CacheItemHelper kInvokeOnDeleteHelper{
CacheEntryRole::kMisc,
[](Cache::ObjectPtr value, MemoryAllocator* /*alloc*/) {
auto& fn = *static_cast<std::function<void()>*>(value);
fn();
}};
} // anonymous namespace
class CacheTest : public testing::Test,
public secondary_cache_test_util::WithCacheTypeParam {
public:
static CacheTest* current_;
static std::string type_;
static void Deleter(Cache::ObjectPtr v, MemoryAllocator*) {
current_->deleted_values_.push_back(DecodeValue(v));
}
static const Cache::CacheItemHelper kHelper;
static const int kCacheSize = 1000;
static const int kNumShardBits = 4;
static const int kCacheSize2 = 100;
static const int kNumShardBits2 = 2;
std::vector<int> deleted_values_;
std::shared_ptr<Cache> cache_;
std::shared_ptr<Cache> cache2_;
CacheTest()
: cache_(NewCache(kCacheSize, kNumShardBits, false)),
cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) {
current_ = this;
type_ = GetParam();
}
~CacheTest() override {}
// These functions encode/decode keys in tests cases that use
// int keys.
// Currently, HyperClockCache requires keys to be 16B long, whereas
// LRUCache doesn't, so the encoding depends on the cache type.
std::string EncodeKey(int k) {
if (IsHyperClock()) {
return EncodeKey16Bytes(k);
} else {
return EncodeKey32Bits(k);
}
}
int DecodeKey(const Slice& k) {
if (IsHyperClock()) {
return DecodeKey16Bytes(k);
} else {
return DecodeKey32Bits(k);
}
}
int Lookup(std::shared_ptr<Cache> cache, int key) {
Cache::Handle* handle = cache->Lookup(EncodeKey(key));
const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle));
if (handle != nullptr) {
cache->Release(handle);
}
return r;
}
void Insert(std::shared_ptr<Cache> cache, int key, int value,
int charge = 1) {
EXPECT_OK(cache->Insert(EncodeKey(key), EncodeValue(value), &kHelper,
charge, /*handle*/ nullptr, Cache::Priority::HIGH));
}
void Erase(std::shared_ptr<Cache> cache, int key) {
cache->Erase(EncodeKey(key));
}
int Lookup(int key) { return Lookup(cache_, key); }
void Insert(int key, int value, int charge = 1) {
Insert(cache_, key, value, charge);
}
void Erase(int key) { Erase(cache_, key); }
int Lookup2(int key) { return Lookup(cache2_, key); }
void Insert2(int key, int value, int charge = 1) {
Insert(cache2_, key, value, charge);
}
void Erase2(int key) { Erase(cache2_, key); }
};
const Cache::CacheItemHelper CacheTest::kHelper{CacheEntryRole::kMisc,
&CacheTest::Deleter};
CacheTest* CacheTest::current_;
std::string CacheTest::type_;
class LRUCacheTest : public CacheTest {};
TEST_P(CacheTest, UsageTest) {
// cache is std::shared_ptr and will be automatically cleaned up.
const size_t kCapacity = 100000;
auto cache = NewCache(kCapacity, 6, false, kDontChargeCacheMetadata);
auto precise_cache = NewCache(kCapacity, 0, false, kFullChargeCacheMetadata);
ASSERT_EQ(0, cache->GetUsage());
size_t baseline_meta_usage = precise_cache->GetUsage();
if (!IsHyperClock()) {
ASSERT_EQ(0, baseline_meta_usage);
}
size_t usage = 0;
char value[10] = "abcdef";
// make sure everything will be cached
for (int i = 1; i < 100; ++i) {
std::string key = EncodeKey(i);
auto kv_size = key.size() + 5;
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, kv_size));
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, kv_size));
usage += kv_size;
ASSERT_EQ(usage, cache->GetUsage());
if (GetParam() == kFixedHyperClock) {
ASSERT_EQ(baseline_meta_usage + usage, precise_cache->GetUsage());
} else {
// AutoHyperClockCache meta usage grows in proportion to lifetime
// max number of entries. LRUCache in proportion to resident number of
// entries, though there is an untracked component proportional to
// lifetime max number of entries.
ASSERT_LT(usage, precise_cache->GetUsage());
}
}
cache->EraseUnRefEntries();
precise_cache->EraseUnRefEntries();
ASSERT_EQ(0, cache->GetUsage());
if (GetParam() != kAutoHyperClock) {
// NOTE: AutoHyperClockCache meta usage grows in proportion to lifetime
// max number of entries.
ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage());
}
// make sure the cache will be overloaded
for (size_t i = 1; i < kCapacity; ++i) {
std::string key = EncodeKey(static_cast<int>(1000 + i));
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, key.size() + 5));
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, key.size() + 5));
}
// the usage should be close to the capacity
ASSERT_GT(kCapacity, cache->GetUsage());
ASSERT_GT(kCapacity, precise_cache->GetUsage());
ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
if (!IsHyperClock()) {
ASSERT_LT(kCapacity * 0.95, precise_cache->GetUsage());
} else {
// estimated value size of 1 is weird for clock cache, because
// almost all of the capacity will be used for metadata, and due to only
// using power of 2 table sizes, we might hit strict occupancy limit
// before hitting capacity limit.
ASSERT_LT(kCapacity * 0.80, precise_cache->GetUsage());
}
}
// TODO: This test takes longer than expected on FixedHyperClockCache.
// This is because the values size estimate at construction is too sloppy.
// Fix this.
// Why is it so slow? The cache is constructed with an estimate of 1, but
// then the charge is claimed to be 21. This will cause the hash table
// to be extremely sparse, which in turn means clock needs to scan too
// many slots to find victims.
TEST_P(CacheTest, PinnedUsageTest) {
// cache is std::shared_ptr and will be automatically cleaned up.
const size_t kCapacity = 200000;
auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata);
auto precise_cache = NewCache(kCapacity, 8, false, kFullChargeCacheMetadata);
size_t baseline_meta_usage = precise_cache->GetUsage();
if (!IsHyperClock()) {
ASSERT_EQ(0, baseline_meta_usage);
}
size_t pinned_usage = 0;
char value[10] = "abcdef";
std::forward_list<Cache::Handle*> unreleased_handles;
std::forward_list<Cache::Handle*> unreleased_handles_in_precise_cache;
// Add entries. Unpin some of them after insertion. Then, pin some of them
// again. Check GetPinnedUsage().
for (int i = 1; i < 100; ++i) {
std::string key = EncodeKey(i);
auto kv_size = key.size() + 5;
Cache::Handle* handle;
Cache::Handle* handle_in_precise_cache;
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, kv_size, &handle));
assert(handle);
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, kv_size,
&handle_in_precise_cache));
assert(handle_in_precise_cache);
pinned_usage += kv_size;
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
if (i % 2 == 0) {
cache->Release(handle);
precise_cache->Release(handle_in_precise_cache);
pinned_usage -= kv_size;
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
} else {
unreleased_handles.push_front(handle);
unreleased_handles_in_precise_cache.push_front(handle_in_precise_cache);
}
if (i % 3 == 0) {
unreleased_handles.push_front(cache->Lookup(key));
auto x = precise_cache->Lookup(key);
assert(x);
unreleased_handles_in_precise_cache.push_front(x);
// If i % 2 == 0, then the entry was unpinned before Lookup, so pinned
// usage increased
if (i % 2 == 0) {
pinned_usage += kv_size;
}
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
}
}
auto precise_cache_pinned_usage = precise_cache->GetPinnedUsage();
ASSERT_LT(pinned_usage, precise_cache_pinned_usage);
// check that overloading the cache does not change the pinned usage
for (size_t i = 1; i < 2 * kCapacity; ++i) {
std::string key = EncodeKey(static_cast<int>(1000 + i));
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, key.size() + 5));
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, key.size() + 5));
}
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage());
cache->EraseUnRefEntries();
precise_cache->EraseUnRefEntries();
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage());
// release handles for pinned entries to prevent memory leaks
for (auto handle : unreleased_handles) {
cache->Release(handle);
}
for (auto handle : unreleased_handles_in_precise_cache) {
precise_cache->Release(handle);
}
ASSERT_EQ(0, cache->GetPinnedUsage());
ASSERT_EQ(0, precise_cache->GetPinnedUsage());
cache->EraseUnRefEntries();
precise_cache->EraseUnRefEntries();
ASSERT_EQ(0, cache->GetUsage());
if (GetParam() != kAutoHyperClock) {
// NOTE: AutoHyperClockCache meta usage grows in proportion to lifetime
// max number of entries.
ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage());
}
}
TEST_P(CacheTest, HitAndMiss) {
ASSERT_EQ(-1, Lookup(100));
Insert(100, 101);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(200, 201);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(100, 102);
if (IsHyperClock()) {
// ClockCache usually doesn't overwrite on Insert
ASSERT_EQ(101, Lookup(100));
} else {
ASSERT_EQ(102, Lookup(100));
}
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
ASSERT_EQ(1U, deleted_values_.size());
if (IsHyperClock()) {
ASSERT_EQ(102, deleted_values_[0]);
} else {
ASSERT_EQ(101, deleted_values_[0]);
}
}
TEST_P(CacheTest, InsertSameKey) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS(
"ClockCache doesn't guarantee Insert overwrite same key.");
return;
}
Insert(1, 1);
Insert(1, 2);
ASSERT_EQ(2, Lookup(1));
}
TEST_P(CacheTest, Erase) {
Erase(200);
ASSERT_EQ(0U, deleted_values_.size());
Insert(100, 101);
Insert(200, 201);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1U, deleted_values_.size());
ASSERT_EQ(101, deleted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1U, deleted_values_.size());
}
TEST_P(CacheTest, EntriesArePinned) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS(
"ClockCache doesn't guarantee Insert overwrite same key.");
return;
}
Insert(100, 101);
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
ASSERT_EQ(1U, cache_->GetUsage());
Insert(100, 102);
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
ASSERT_EQ(0U, deleted_values_.size());
ASSERT_EQ(2U, cache_->GetUsage());
cache_->Release(h1);
ASSERT_EQ(1U, deleted_values_.size());
ASSERT_EQ(101, deleted_values_[0]);
ASSERT_EQ(1U, cache_->GetUsage());
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(1U, deleted_values_.size());
ASSERT_EQ(1U, cache_->GetUsage());
cache_->Release(h2);
ASSERT_EQ(2U, deleted_values_.size());
ASSERT_EQ(102, deleted_values_[1]);
ASSERT_EQ(0U, cache_->GetUsage());
}
TEST_P(CacheTest, EvictionPolicy) {
Insert(100, 101);
Insert(200, 201);
// Frequently used entry must be kept around
for (int i = 0; i < 2 * kCacheSize; i++) {
Insert(1000 + i, 2000 + i);
ASSERT_EQ(101, Lookup(100));
}
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
}
TEST_P(CacheTest, ExternalRefPinsEntries) {
Insert(100, 101);
Cache::Handle* h = cache_->Lookup(EncodeKey(100));
ASSERT_TRUE(cache_->Ref(h));
ASSERT_EQ(101, DecodeValue(cache_->Value(h)));
ASSERT_EQ(1U, cache_->GetUsage());
for (int i = 0; i < 3; ++i) {
if (i > 0) {
// First release (i == 1) corresponds to Ref(), second release (i == 2)
// corresponds to Lookup(). Then, since all external refs are released,
// the below insertions should push out the cache entry.
cache_->Release(h);
}
// double cache size because the usage bit in block cache prevents 100 from
// being evicted in the first kCacheSize iterations
for (int j = 0; j < 2 * kCacheSize + 100; j++) {
Insert(1000 + j, 2000 + j);
}
// Clock cache is even more stateful and needs more churn to evict
if (IsHyperClock()) {
for (int j = 0; j < kCacheSize; j++) {
Insert(11000 + j, 11000 + j);
}
}
if (i < 2) {
ASSERT_EQ(101, Lookup(100));
}
}
ASSERT_EQ(-1, Lookup(100));
}
TEST_P(CacheTest, EvictionPolicyRef) {
Insert(100, 101);
Insert(101, 102);
Insert(102, 103);
Insert(103, 104);
Insert(200, 101);
Insert(201, 102);
Insert(202, 103);
Insert(203, 104);
Cache::Handle* h201 = cache_->Lookup(EncodeKey(200));
Cache::Handle* h202 = cache_->Lookup(EncodeKey(201));
Cache::Handle* h203 = cache_->Lookup(EncodeKey(202));
Cache::Handle* h204 = cache_->Lookup(EncodeKey(203));
Insert(300, 101);
Insert(301, 102);
Insert(302, 103);
Insert(303, 104);
// Insert entries much more than cache capacity.
for (int i = 0; i < 100 * kCacheSize; i++) {
Insert(1000 + i, 2000 + i);
}
// Check whether the entries inserted in the beginning
// are evicted. Ones without extra ref are evicted and
// those with are not.
EXPECT_EQ(-1, Lookup(100));
EXPECT_EQ(-1, Lookup(101));
EXPECT_EQ(-1, Lookup(102));
EXPECT_EQ(-1, Lookup(103));
EXPECT_EQ(-1, Lookup(300));
EXPECT_EQ(-1, Lookup(301));
EXPECT_EQ(-1, Lookup(302));
EXPECT_EQ(-1, Lookup(303));
EXPECT_EQ(101, Lookup(200));
EXPECT_EQ(102, Lookup(201));
EXPECT_EQ(103, Lookup(202));
EXPECT_EQ(104, Lookup(203));
// Cleaning up all the handles
cache_->Release(h201);
cache_->Release(h202);
cache_->Release(h203);
cache_->Release(h204);
}
TEST_P(CacheTest, EvictEmptyCache) {
// Insert item large than capacity to trigger eviction on empty cache.
auto cache = NewCache(1, 0, false);
ASSERT_OK(cache->Insert(EncodeKey(1000), nullptr, &kDumbHelper, 10));
}
TEST_P(CacheTest, EraseFromDeleter) {
// Have deleter which will erase item from cache, which will re-enter
// the cache at that point.
std::shared_ptr<Cache> cache = NewCache(10, 0, false);
std::string foo = EncodeKey(1234);
std::string bar = EncodeKey(5678);
std::function<void()> erase_fn = [&]() { cache->Erase(foo); };
ASSERT_OK(cache->Insert(foo, nullptr, &kDumbHelper, 1));
ASSERT_OK(cache->Insert(bar, &erase_fn, &kInvokeOnDeleteHelper, 1));
cache->Erase(bar);
ASSERT_EQ(nullptr, cache->Lookup(foo));
ASSERT_EQ(nullptr, cache->Lookup(bar));
}
TEST_P(CacheTest, ErasedHandleState) {
// insert a key and get two handles
Insert(100, 1000);
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(h1, h2);
ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000);
ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000);
// delete the key from the cache
Erase(100);
// can no longer find in the cache
ASSERT_EQ(-1, Lookup(100));
// release one handle
cache_->Release(h1);
// still can't find in cache
ASSERT_EQ(-1, Lookup(100));
cache_->Release(h2);
}
TEST_P(CacheTest, HeavyEntries) {
// Add a bunch of light and heavy entries and then count the combined
// size of items still in the cache, which must be approximately the
// same as the total capacity.
const int kLight = 1;
const int kHeavy = 10;
int added = 0;
int index = 0;
while (added < 2 * kCacheSize) {
const int weight = (index & 1) ? kLight : kHeavy;
Insert(index, 1000 + index, weight);
added += weight;
index++;
}
int cached_weight = 0;
for (int i = 0; i < index; i++) {
const int weight = (i & 1 ? kLight : kHeavy);
int r = Lookup(i);
if (r >= 0) {
cached_weight += weight;
ASSERT_EQ(1000 + i, r);
}
}
ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10);
}
TEST_P(CacheTest, NewId) {
uint64_t a = cache_->NewId();
uint64_t b = cache_->NewId();
ASSERT_NE(a, b);
}
TEST_P(CacheTest, ReleaseAndErase) {
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
Cache::Handle* handle;
Status s =
cache->Insert(EncodeKey(100), EncodeValue(100), &kHelper, 1, &handle);
ASSERT_TRUE(s.ok());
ASSERT_EQ(5U, cache->GetCapacity());
ASSERT_EQ(1U, cache->GetUsage());
ASSERT_EQ(0U, deleted_values_.size());
auto erased = cache->Release(handle, true);
ASSERT_TRUE(erased);
// This tests that deleter has been called
ASSERT_EQ(1U, deleted_values_.size());
}
TEST_P(CacheTest, ReleaseWithoutErase) {
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
Cache::Handle* handle;
Status s =
cache->Insert(EncodeKey(100), EncodeValue(100), &kHelper, 1, &handle);
ASSERT_TRUE(s.ok());
ASSERT_EQ(5U, cache->GetCapacity());
ASSERT_EQ(1U, cache->GetUsage());
ASSERT_EQ(0U, deleted_values_.size());
auto erased = cache->Release(handle);
ASSERT_FALSE(erased);
// This tests that deleter is not called. When cache has free capacity it is
// not expected to immediately erase the released items.
ASSERT_EQ(0U, deleted_values_.size());
}
namespace {
class Value {
public:
explicit Value(int v) : v_(v) {}
int v_;
static constexpr auto kCacheEntryRole = CacheEntryRole::kMisc;
};
using SharedCache = BasicTypedSharedCacheInterface<Value>;
using TypedHandle = SharedCache::TypedHandle;
} // namespace
TEST_P(CacheTest, SetCapacity) {
if (IsHyperClock()) {
// TODO: update test & code for limited supoort
ROCKSDB_GTEST_BYPASS(
"HyperClockCache doesn't support arbitrary capacity "
"adjustments.");
return;
}
// test1: increase capacity
// lets create a cache with capacity 5,
// then, insert 5 elements, then increase capacity
// to 10, returned capacity should be 10, usage=5
SharedCache cache{NewCache(5, 0, false)};
std::vector<TypedHandle*> handles(10);
// Insert 5 entries, but not releasing.
for (int i = 0; i < 5; i++) {
std::string key = EncodeKey(i + 1);
Status s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
ASSERT_TRUE(s.ok());
}
ASSERT_EQ(5U, cache.get()->GetCapacity());
ASSERT_EQ(5U, cache.get()->GetUsage());
cache.get()->SetCapacity(10);
ASSERT_EQ(10U, cache.get()->GetCapacity());
ASSERT_EQ(5U, cache.get()->GetUsage());
// test2: decrease capacity
// insert 5 more elements to cache, then release 5,
// then decrease capacity to 7, final capacity should be 7
// and usage should be 7
for (int i = 5; i < 10; i++) {
std::string key = EncodeKey(i + 1);
Status s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
ASSERT_TRUE(s.ok());
}
ASSERT_EQ(10U, cache.get()->GetCapacity());
ASSERT_EQ(10U, cache.get()->GetUsage());
for (int i = 0; i < 5; i++) {
cache.Release(handles[i]);
}
ASSERT_EQ(10U, cache.get()->GetCapacity());
ASSERT_EQ(10U, cache.get()->GetUsage());
cache.get()->SetCapacity(7);
ASSERT_EQ(7, cache.get()->GetCapacity());
ASSERT_EQ(7, cache.get()->GetUsage());
// release remaining 5 to keep valgrind happy
for (int i = 5; i < 10; i++) {
cache.Release(handles[i]);
}
// Make sure this doesn't crash or upset ASAN/valgrind
cache.get()->DisownData();
}
TEST_P(LRUCacheTest, SetStrictCapacityLimit) {
// test1: set the flag to false. Insert more keys than capacity. See if they
// all go through.
SharedCache cache{NewCache(5, 0, false)};
std::vector<TypedHandle*> handles(10);
Status s;
for (int i = 0; i < 10; i++) {
std::string key = EncodeKey(i + 1);
s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
ASSERT_OK(s);
ASSERT_NE(nullptr, handles[i]);
}
ASSERT_EQ(10, cache.get()->GetUsage());
// test2: set the flag to true. Insert and check if it fails.
std::string extra_key = EncodeKey(100);
Value* extra_value = new Value(0);
cache.get()->SetStrictCapacityLimit(true);
TypedHandle* handle;
s = cache.Insert(extra_key, extra_value, 1, &handle);
ASSERT_TRUE(s.IsMemoryLimit());
ASSERT_EQ(nullptr, handle);
ASSERT_EQ(10, cache.get()->GetUsage());
for (int i = 0; i < 10; i++) {
cache.Release(handles[i]);
}
// test3: init with flag being true.
SharedCache cache2{NewCache(5, 0, true)};
for (int i = 0; i < 5; i++) {
std::string key = EncodeKey(i + 1);
s = cache2.Insert(key, new Value(i + 1), 1, &handles[i]);
ASSERT_OK(s);
ASSERT_NE(nullptr, handles[i]);
}
s = cache2.Insert(extra_key, extra_value, 1, &handle);
ASSERT_TRUE(s.IsMemoryLimit());
ASSERT_EQ(nullptr, handle);
// test insert without handle
s = cache2.Insert(extra_key, extra_value, 1);
// AS if the key have been inserted into cache but get evicted immediately.
ASSERT_OK(s);
ASSERT_EQ(5, cache2.get()->GetUsage());
ASSERT_EQ(nullptr, cache2.Lookup(extra_key));
for (int i = 0; i < 5; i++) {
cache2.Release(handles[i]);
}
}
TEST_P(CacheTest, OverCapacity) {
size_t n = 10;
// a LRUCache with n entries and one shard only
SharedCache cache{NewCache(n, 0, false)};
std::vector<TypedHandle*> handles(n + 1);
// Insert n+1 entries, but not releasing.
for (int i = 0; i < static_cast<int>(n + 1); i++) {
std::string key = EncodeKey(i + 1);
Status s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
ASSERT_TRUE(s.ok());
}
// Guess what's in the cache now?
for (int i = 0; i < static_cast<int>(n + 1); i++) {
std::string key = EncodeKey(i + 1);
auto h = cache.Lookup(key);
ASSERT_TRUE(h != nullptr);
if (h) cache.Release(h);
}
// the cache is over capacity since nothing could be evicted
ASSERT_EQ(n + 1U, cache.get()->GetUsage());
for (int i = 0; i < static_cast<int>(n + 1); i++) {
cache.Release(handles[i]);
}
if (IsHyperClock()) {
// Make sure eviction is triggered.
ASSERT_OK(cache.Insert(EncodeKey(-1), nullptr, 1, &handles[0]));
// cache is under capacity now since elements were released
ASSERT_GE(n, cache.get()->GetUsage());
// clean up
cache.Release(handles[0]);
} else {
// LRUCache checks for over-capacity in Release.
// cache is exactly at capacity now with minimal eviction
ASSERT_EQ(n, cache.get()->GetUsage());
// element 0 is evicted and the rest is there
// This is consistent with the LRU policy since the element 0
// was released first
for (int i = 0; i < static_cast<int>(n + 1); i++) {
std::string key = EncodeKey(i + 1);
auto h = cache.Lookup(key);
if (h) {
ASSERT_NE(static_cast<size_t>(i), 0U);
cache.Release(h);
} else {
ASSERT_EQ(static_cast<size_t>(i), 0U);
}
}
}
}
TEST_P(CacheTest, ApplyToAllEntriesTest) {
std::vector<std::string> callback_state;
const auto callback = [&](const Slice& key, Cache::ObjectPtr value,
size_t charge,
const Cache::CacheItemHelper* helper) {
callback_state.push_back(std::to_string(DecodeKey(key)) + "," +
std::to_string(DecodeValue(value)) + "," +
std::to_string(charge));
assert(helper == &CacheTest::kHelper);
};
std::vector<std::string> inserted;
callback_state.clear();
for (int i = 0; i < 10; ++i) {
Insert(i, i * 2, i + 1);
inserted.push_back(std::to_string(i) + "," + std::to_string(i * 2) + "," +
std::to_string(i + 1));
}
cache_->ApplyToAllEntries(callback, /*opts*/ {});
std::sort(inserted.begin(), inserted.end());
std::sort(callback_state.begin(), callback_state.end());
ASSERT_EQ(inserted.size(), callback_state.size());
for (int i = 0; i < static_cast<int>(inserted.size()); ++i) {
EXPECT_EQ(inserted[i], callback_state[i]);
}
}
TEST_P(CacheTest, ApplyToAllEntriesDuringResize) {
// This is a mini-stress test of ApplyToAllEntries, to ensure
// items in the cache that are neither added nor removed
// during ApplyToAllEntries are counted exactly once.
// Insert some entries that we expect to be seen exactly once
// during iteration.
constexpr int kSpecialCharge = 2;
constexpr int kNotSpecialCharge = 1;
constexpr int kSpecialCount = 100;
size_t expected_usage = 0;
for (int i = 0; i < kSpecialCount; ++i) {
Insert(i, i * 2, kSpecialCharge);
expected_usage += kSpecialCharge;
}
// For callback
int special_count = 0;
const auto callback = [&](const Slice&, Cache::ObjectPtr, size_t charge,
const Cache::CacheItemHelper*) {
if (charge == static_cast<size_t>(kSpecialCharge)) {
++special_count;
}
};
// Start counting
std::thread apply_thread([&]() {
// Use small average_entries_per_lock to make the problem difficult
Cache::ApplyToAllEntriesOptions opts;
opts.average_entries_per_lock = 2;
cache_->ApplyToAllEntries(callback, opts);
});
// In parallel, add more entries, enough to cause resize but not enough
// to cause ejections. (Note: if any cache shard is over capacity, there
// will be ejections)
for (int i = kSpecialCount * 1; i < kSpecialCount * 5; ++i) {
Insert(i, i * 2, kNotSpecialCharge);
expected_usage += kNotSpecialCharge;
}
apply_thread.join();
// verify no evictions
ASSERT_EQ(cache_->GetUsage(), expected_usage);
// verify everything seen in ApplyToAllEntries
ASSERT_EQ(special_count, kSpecialCount);
}
TEST_P(CacheTest, DefaultShardBits) {
// Prevent excessive allocation (to save time & space)
estimated_value_size_ = 100000;
// Implementations use different minimum shard sizes
size_t min_shard_size = (IsHyperClock() ? 32U * 1024U : 512U) * 1024U;
std::shared_ptr<Cache> cache = NewCache(32U * min_shard_size);
ShardedCacheBase* sc = dynamic_cast<ShardedCacheBase*>(cache.get());
ASSERT_EQ(5, sc->GetNumShardBits());
cache = NewCache(min_shard_size / 1000U * 999U);
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
ASSERT_EQ(0, sc->GetNumShardBits());
cache = NewCache(3U * 1024U * 1024U * 1024U);
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
// current maximum of 6
ASSERT_EQ(6, sc->GetNumShardBits());
if constexpr (sizeof(size_t) > 4) {
cache = NewCache(128U * min_shard_size);
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
// current maximum of 6
ASSERT_EQ(6, sc->GetNumShardBits());
}
}
TEST_P(CacheTest, GetChargeAndDeleter) {
Insert(1, 2);
Cache::Handle* h1 = cache_->Lookup(EncodeKey(1));
ASSERT_EQ(2, DecodeValue(cache_->Value(h1)));
ASSERT_EQ(1, cache_->GetCharge(h1));
ASSERT_EQ(&CacheTest::kHelper, cache_->GetCacheItemHelper(h1));
cache_->Release(h1);
}
namespace {
bool AreTwoCacheKeysOrdered(Cache* cache) {
std::vector<std::string> keys;
const auto callback = [&](const Slice& key, Cache::ObjectPtr /*value*/,
size_t /*charge*/,
const Cache::CacheItemHelper* /*helper*/) {
keys.push_back(key.ToString());
};
cache->ApplyToAllEntries(callback, /*opts*/ {});
EXPECT_EQ(keys.size(), 2U);
EXPECT_NE(keys[0], keys[1]);
return keys[0] < keys[1];
}
} // namespace
TEST_P(CacheTest, CacheUniqueSeeds) {
// kQuasiRandomHashSeed should generate unique seeds (up to 2 billion before
// repeating)
UnorderedSet<uint32_t> seeds_seen;
// Roughly sqrt(number of possible values) for a decent chance at detecting
// a random collision if it's possible (shouldn't be)
uint16_t kSamples = 20000;
seeds_seen.reserve(kSamples);
// Hash seed should affect ordering of entries in the table, so we should
// have extremely high chance of seeing two entries ordered both ways.
bool seen_forward_order = false;
bool seen_reverse_order = false;
for (int i = 0; i < kSamples; ++i) {
auto cache = NewCache(2, [=](ShardedCacheOptions& opts) {
opts.hash_seed = LRUCacheOptions::kQuasiRandomHashSeed;
opts.num_shard_bits = 0;
opts.metadata_charge_policy = kDontChargeCacheMetadata;
});
auto val = cache->GetHashSeed();
ASSERT_TRUE(seeds_seen.insert(val).second);
ASSERT_OK(cache->Insert(EncodeKey(1), nullptr, &kHelper, /*charge*/ 1));
ASSERT_OK(cache->Insert(EncodeKey(2), nullptr, &kHelper, /*charge*/ 1));
if (AreTwoCacheKeysOrdered(cache.get())) {
seen_forward_order = true;
} else {
seen_reverse_order = true;
}
}
ASSERT_TRUE(seen_forward_order);
ASSERT_TRUE(seen_reverse_order);
}
TEST_P(CacheTest, CacheHostSeed) {
// kHostHashSeed should generate a consistent seed within this process
// (and other processes on the same host, but not unit testing that).
// And we should be able to use that chosen seed as an explicit option
// (for debugging).
// And we should verify consistent ordering of entries.
uint32_t expected_seed = 0;
bool expected_order = false;
// 10 iterations -> chance of a random seed falsely appearing consistent
// should be low, just 1 in 2^9.
for (int i = 0; i < 10; ++i) {
auto cache = NewCache(2, [=](ShardedCacheOptions& opts) {
if (i != 5) {
opts.hash_seed = LRUCacheOptions::kHostHashSeed;
} else {
// Can be used as explicit seed
opts.hash_seed = static_cast<int32_t>(expected_seed);
ASSERT_GE(opts.hash_seed, 0);
}
opts.num_shard_bits = 0;
opts.metadata_charge_policy = kDontChargeCacheMetadata;
});
ASSERT_OK(cache->Insert(EncodeKey(1), nullptr, &kHelper, /*charge*/ 1));
ASSERT_OK(cache->Insert(EncodeKey(2), nullptr, &kHelper, /*charge*/ 1));
uint32_t val = cache->GetHashSeed();
bool order = AreTwoCacheKeysOrdered(cache.get());
if (i != 0) {
ASSERT_EQ(val, expected_seed);
ASSERT_EQ(order, expected_order);
} else {
expected_seed = val;
expected_order = order;
}
}
// Printed for reference in case it's needed to reproduce other unit test
// failures on another host
fprintf(stderr, "kHostHashSeed -> %u\n", (unsigned)expected_seed);
}
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest,
secondary_cache_test_util::GetTestingCacheTypes());
INSTANTIATE_TEST_CASE_P(CacheTestInstance, LRUCacheTest,
testing::Values(secondary_cache_test_util::kLRU));
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}