mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 11:43:49 +00:00
21f2fe4419
Summary: Test Plan: Reviewers: CC: Task ID: # Blame Rev:
572 lines
17 KiB
C++
572 lines
17 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Various stubs for the open-source version of Snappy.
|
|
|
|
#ifndef UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
|
|
#define UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef HAVE_SYS_MMAN_H
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#include "snappy-stubs-public.h"
|
|
|
|
#if defined(__x86_64__)
|
|
|
|
// Enable 64-bit optimized versions of some routines.
|
|
#define ARCH_K8 1
|
|
|
|
#endif
|
|
|
|
// Needed by OS X, among others.
|
|
#ifndef MAP_ANONYMOUS
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
// Pull in std::min, std::ostream, and the likes. This is safe because this
|
|
// header file is never used from any public header files.
|
|
using namespace std;
|
|
|
|
// The size of an array, if known at compile-time.
|
|
// Will give unexpected results if used on a pointer.
|
|
// We undefine it first, since some compilers already have a definition.
|
|
#ifdef ARRAYSIZE
|
|
#undef ARRAYSIZE
|
|
#endif
|
|
#define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a)))
|
|
|
|
// Static prediction hints.
|
|
#ifdef HAVE_BUILTIN_EXPECT
|
|
#define PREDICT_FALSE(x) (__builtin_expect(x, 0))
|
|
#define PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
|
|
#else
|
|
#define PREDICT_FALSE(x) x
|
|
#define PREDICT_TRUE(x) x
|
|
#endif
|
|
|
|
// This is only used for recomputing the tag byte table used during
|
|
// decompression; for simplicity we just remove it from the open-source
|
|
// version (anyone who wants to regenerate it can just do the call
|
|
// themselves within main()).
|
|
#define DEFINE_bool(flag_name, default_value, description) \
|
|
bool FLAGS_ ## flag_name = default_value
|
|
#define DECLARE_bool(flag_name) \
|
|
extern bool FLAGS_ ## flag_name
|
|
|
|
namespace snappy {
|
|
|
|
static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF);
|
|
static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL);
|
|
|
|
// Logging.
|
|
|
|
#define LOG(level) LogMessage()
|
|
#define VLOG(level) true ? (void)0 : \
|
|
snappy::LogMessageVoidify() & snappy::LogMessage()
|
|
|
|
class LogMessage {
|
|
public:
|
|
LogMessage() { }
|
|
~LogMessage() {
|
|
cerr << endl;
|
|
}
|
|
|
|
LogMessage& operator<<(const std::string& msg) {
|
|
cerr << msg;
|
|
return *this;
|
|
}
|
|
LogMessage& operator<<(int x) {
|
|
cerr << x;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
// Asserts, both versions activated in debug mode only,
|
|
// and ones that are always active.
|
|
|
|
#define CRASH_UNLESS(condition) \
|
|
PREDICT_TRUE(condition) ? (void)0 : \
|
|
snappy::LogMessageVoidify() & snappy::LogMessageCrash()
|
|
|
|
class LogMessageCrash : public LogMessage {
|
|
public:
|
|
LogMessageCrash() { }
|
|
~LogMessageCrash() {
|
|
cerr << endl;
|
|
abort();
|
|
}
|
|
};
|
|
|
|
// This class is used to explicitly ignore values in the conditional
|
|
// logging macros. This avoids compiler warnings like "value computed
|
|
// is not used" and "statement has no effect".
|
|
|
|
class LogMessageVoidify {
|
|
public:
|
|
LogMessageVoidify() { }
|
|
// This has to be an operator with a precedence lower than << but
|
|
// higher than ?:
|
|
void operator&(const LogMessage&) { }
|
|
};
|
|
|
|
#define CHECK(cond) CRASH_UNLESS(cond)
|
|
#define CHECK_LE(a, b) CRASH_UNLESS((a) <= (b))
|
|
#define CHECK_GE(a, b) CRASH_UNLESS((a) >= (b))
|
|
#define CHECK_EQ(a, b) CRASH_UNLESS((a) == (b))
|
|
#define CHECK_NE(a, b) CRASH_UNLESS((a) != (b))
|
|
#define CHECK_LT(a, b) CRASH_UNLESS((a) < (b))
|
|
#define CHECK_GT(a, b) CRASH_UNLESS((a) > (b))
|
|
|
|
#ifdef NDEBUG
|
|
|
|
#define DCHECK(cond) CRASH_UNLESS(true)
|
|
#define DCHECK_LE(a, b) CRASH_UNLESS(true)
|
|
#define DCHECK_GE(a, b) CRASH_UNLESS(true)
|
|
#define DCHECK_EQ(a, b) CRASH_UNLESS(true)
|
|
#define DCHECK_NE(a, b) CRASH_UNLESS(true)
|
|
#define DCHECK_LT(a, b) CRASH_UNLESS(true)
|
|
#define DCHECK_GT(a, b) CRASH_UNLESS(true)
|
|
|
|
#else
|
|
|
|
#define DCHECK(cond) CHECK(cond)
|
|
#define DCHECK_LE(a, b) CHECK_LE(a, b)
|
|
#define DCHECK_GE(a, b) CHECK_GE(a, b)
|
|
#define DCHECK_EQ(a, b) CHECK_EQ(a, b)
|
|
#define DCHECK_NE(a, b) CHECK_NE(a, b)
|
|
#define DCHECK_LT(a, b) CHECK_LT(a, b)
|
|
#define DCHECK_GT(a, b) CHECK_GT(a, b)
|
|
|
|
#endif
|
|
|
|
// Potentially unaligned loads and stores.
|
|
|
|
// x86 and PowerPC can simply do these loads and stores native.
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__)
|
|
|
|
#define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p))
|
|
#define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p))
|
|
#define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p))
|
|
|
|
#define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val))
|
|
#define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val))
|
|
#define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val))
|
|
|
|
// ARMv7 and newer support native unaligned accesses, but only of 16-bit
|
|
// and 32-bit values (not 64-bit); older versions either raise a fatal signal,
|
|
// do an unaligned read and rotate the words around a bit, or do the reads very
|
|
// slowly (trip through kernel mode). There's no simple #define that says just
|
|
// “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6
|
|
// sub-architectures.
|
|
//
|
|
// This is a mess, but there's not much we can do about it.
|
|
|
|
#elif defined(__arm__) && \
|
|
!defined(__ARM_ARCH_5__) && \
|
|
!defined(__ARM_ARCH_5T__) && \
|
|
!defined(__ARM_ARCH_5TE__) && \
|
|
!defined(__ARM_ARCH_5TEJ__) && \
|
|
!defined(__ARM_ARCH_6__) && \
|
|
!defined(__ARM_ARCH_6J__) && \
|
|
!defined(__ARM_ARCH_6K__) && \
|
|
!defined(__ARM_ARCH_6Z__) && \
|
|
!defined(__ARM_ARCH_6ZK__) && \
|
|
!defined(__ARM_ARCH_6T2__)
|
|
|
|
#define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p))
|
|
#define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p))
|
|
|
|
#define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val))
|
|
#define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val))
|
|
|
|
// TODO(user): NEON supports unaligned 64-bit loads and stores.
|
|
// See if that would be more efficient on platforms supporting it,
|
|
// at least for copies.
|
|
|
|
inline uint64 UNALIGNED_LOAD64(const void *p) {
|
|
uint64 t;
|
|
memcpy(&t, p, sizeof t);
|
|
return t;
|
|
}
|
|
|
|
inline void UNALIGNED_STORE64(void *p, uint64 v) {
|
|
memcpy(p, &v, sizeof v);
|
|
}
|
|
|
|
#else
|
|
|
|
// These functions are provided for architectures that don't support
|
|
// unaligned loads and stores.
|
|
|
|
inline uint16 UNALIGNED_LOAD16(const void *p) {
|
|
uint16 t;
|
|
memcpy(&t, p, sizeof t);
|
|
return t;
|
|
}
|
|
|
|
inline uint32 UNALIGNED_LOAD32(const void *p) {
|
|
uint32 t;
|
|
memcpy(&t, p, sizeof t);
|
|
return t;
|
|
}
|
|
|
|
inline uint64 UNALIGNED_LOAD64(const void *p) {
|
|
uint64 t;
|
|
memcpy(&t, p, sizeof t);
|
|
return t;
|
|
}
|
|
|
|
inline void UNALIGNED_STORE16(void *p, uint16 v) {
|
|
memcpy(p, &v, sizeof v);
|
|
}
|
|
|
|
inline void UNALIGNED_STORE32(void *p, uint32 v) {
|
|
memcpy(p, &v, sizeof v);
|
|
}
|
|
|
|
inline void UNALIGNED_STORE64(void *p, uint64 v) {
|
|
memcpy(p, &v, sizeof v);
|
|
}
|
|
|
|
#endif
|
|
|
|
// This can be more efficient than UNALIGNED_LOAD64 + UNALIGNED_STORE64
|
|
// on some platforms, in particular ARM.
|
|
inline void UnalignedCopy64(const void *src, void *dst) {
|
|
if (sizeof(void *) == 8) {
|
|
UNALIGNED_STORE64(dst, UNALIGNED_LOAD64(src));
|
|
} else {
|
|
const char *src_char = reinterpret_cast<const char *>(src);
|
|
char *dst_char = reinterpret_cast<char *>(dst);
|
|
|
|
UNALIGNED_STORE32(dst_char, UNALIGNED_LOAD32(src_char));
|
|
UNALIGNED_STORE32(dst_char + 4, UNALIGNED_LOAD32(src_char + 4));
|
|
}
|
|
}
|
|
|
|
// The following guarantees declaration of the byte swap functions.
|
|
#ifdef WORDS_BIGENDIAN
|
|
|
|
#ifdef HAVE_SYS_BYTEORDER_H
|
|
#include <sys/byteorder.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_ENDIAN_H
|
|
#include <sys/endian.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#include <stdlib.h>
|
|
#define bswap_16(x) _byteswap_ushort(x)
|
|
#define bswap_32(x) _byteswap_ulong(x)
|
|
#define bswap_64(x) _byteswap_uint64(x)
|
|
|
|
#elif defined(__APPLE__)
|
|
// Mac OS X / Darwin features
|
|
#include <libkern/OSByteOrder.h>
|
|
#define bswap_16(x) OSSwapInt16(x)
|
|
#define bswap_32(x) OSSwapInt32(x)
|
|
#define bswap_64(x) OSSwapInt64(x)
|
|
|
|
#elif defined(HAVE_BYTESWAP_H)
|
|
#include <byteswap.h>
|
|
|
|
#elif defined(bswap32)
|
|
// FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included).
|
|
#define bswap_16(x) bswap16(x)
|
|
#define bswap_32(x) bswap32(x)
|
|
#define bswap_64(x) bswap64(x)
|
|
|
|
#elif defined(BSWAP_64)
|
|
// Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included).
|
|
#define bswap_16(x) BSWAP_16(x)
|
|
#define bswap_32(x) BSWAP_32(x)
|
|
#define bswap_64(x) BSWAP_64(x)
|
|
|
|
#else
|
|
|
|
inline uint16 bswap_16(uint16 x) {
|
|
return (x << 8) | (x >> 8);
|
|
}
|
|
|
|
inline uint32 bswap_32(uint32 x) {
|
|
x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8);
|
|
return (x >> 16) | (x << 16);
|
|
}
|
|
|
|
inline uint64 bswap_64(uint64 x) {
|
|
x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8);
|
|
x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16);
|
|
return (x >> 32) | (x << 32);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif // WORDS_BIGENDIAN
|
|
|
|
// Convert to little-endian storage, opposite of network format.
|
|
// Convert x from host to little endian: x = LittleEndian.FromHost(x);
|
|
// convert x from little endian to host: x = LittleEndian.ToHost(x);
|
|
//
|
|
// Store values into unaligned memory converting to little endian order:
|
|
// LittleEndian.Store16(p, x);
|
|
//
|
|
// Load unaligned values stored in little endian converting to host order:
|
|
// x = LittleEndian.Load16(p);
|
|
class LittleEndian {
|
|
public:
|
|
// Conversion functions.
|
|
#ifdef WORDS_BIGENDIAN
|
|
|
|
static uint16 FromHost16(uint16 x) { return bswap_16(x); }
|
|
static uint16 ToHost16(uint16 x) { return bswap_16(x); }
|
|
|
|
static uint32 FromHost32(uint32 x) { return bswap_32(x); }
|
|
static uint32 ToHost32(uint32 x) { return bswap_32(x); }
|
|
|
|
static bool IsLittleEndian() { return false; }
|
|
|
|
#else // !defined(WORDS_BIGENDIAN)
|
|
|
|
static uint16 FromHost16(uint16 x) { return x; }
|
|
static uint16 ToHost16(uint16 x) { return x; }
|
|
|
|
static uint32 FromHost32(uint32 x) { return x; }
|
|
static uint32 ToHost32(uint32 x) { return x; }
|
|
|
|
static bool IsLittleEndian() { return true; }
|
|
|
|
#endif // !defined(WORDS_BIGENDIAN)
|
|
|
|
// Functions to do unaligned loads and stores in little-endian order.
|
|
static uint16 Load16(const void *p) {
|
|
return ToHost16(UNALIGNED_LOAD16(p));
|
|
}
|
|
|
|
static void Store16(void *p, uint16 v) {
|
|
UNALIGNED_STORE16(p, FromHost16(v));
|
|
}
|
|
|
|
static uint32 Load32(const void *p) {
|
|
return ToHost32(UNALIGNED_LOAD32(p));
|
|
}
|
|
|
|
static void Store32(void *p, uint32 v) {
|
|
UNALIGNED_STORE32(p, FromHost32(v));
|
|
}
|
|
};
|
|
|
|
// Some bit-manipulation functions.
|
|
class Bits {
|
|
public:
|
|
// Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0.
|
|
static int Log2Floor(uint32 n);
|
|
|
|
// Return the first set least / most significant bit, 0-indexed. Returns an
|
|
// undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except
|
|
// that it's 0-indexed.
|
|
static int FindLSBSetNonZero(uint32 n);
|
|
static int FindLSBSetNonZero64(uint64 n);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(Bits);
|
|
};
|
|
|
|
#ifdef HAVE_BUILTIN_CTZ
|
|
|
|
inline int Bits::Log2Floor(uint32 n) {
|
|
return n == 0 ? -1 : 31 ^ __builtin_clz(n);
|
|
}
|
|
|
|
inline int Bits::FindLSBSetNonZero(uint32 n) {
|
|
return __builtin_ctz(n);
|
|
}
|
|
|
|
inline int Bits::FindLSBSetNonZero64(uint64 n) {
|
|
return __builtin_ctzll(n);
|
|
}
|
|
|
|
#else // Portable versions.
|
|
|
|
inline int Bits::Log2Floor(uint32 n) {
|
|
if (n == 0)
|
|
return -1;
|
|
int log = 0;
|
|
uint32 value = n;
|
|
for (int i = 4; i >= 0; --i) {
|
|
int shift = (1 << i);
|
|
uint32 x = value >> shift;
|
|
if (x != 0) {
|
|
value = x;
|
|
log += shift;
|
|
}
|
|
}
|
|
assert(value == 1);
|
|
return log;
|
|
}
|
|
|
|
inline int Bits::FindLSBSetNonZero(uint32 n) {
|
|
int rc = 31;
|
|
for (int i = 4, shift = 1 << 4; i >= 0; --i) {
|
|
const uint32 x = n << shift;
|
|
if (x != 0) {
|
|
n = x;
|
|
rc -= shift;
|
|
}
|
|
shift >>= 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
// FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero().
|
|
inline int Bits::FindLSBSetNonZero64(uint64 n) {
|
|
const uint32 bottombits = static_cast<uint32>(n);
|
|
if (bottombits == 0) {
|
|
// Bottom bits are zero, so scan in top bits
|
|
return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32));
|
|
} else {
|
|
return FindLSBSetNonZero(bottombits);
|
|
}
|
|
}
|
|
|
|
#endif // End portable versions.
|
|
|
|
// Variable-length integer encoding.
|
|
class Varint {
|
|
public:
|
|
// Maximum lengths of varint encoding of uint32.
|
|
static const int kMax32 = 5;
|
|
|
|
// Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
|
|
// Never reads a character at or beyond limit. If a valid/terminated varint32
|
|
// was found in the range, stores it in *OUTPUT and returns a pointer just
|
|
// past the last byte of the varint32. Else returns NULL. On success,
|
|
// "result <= limit".
|
|
static const char* Parse32WithLimit(const char* ptr, const char* limit,
|
|
uint32* OUTPUT);
|
|
|
|
// REQUIRES "ptr" points to a buffer of length sufficient to hold "v".
|
|
// EFFECTS Encodes "v" into "ptr" and returns a pointer to the
|
|
// byte just past the last encoded byte.
|
|
static char* Encode32(char* ptr, uint32 v);
|
|
|
|
// EFFECTS Appends the varint representation of "value" to "*s".
|
|
static void Append32(string* s, uint32 value);
|
|
};
|
|
|
|
inline const char* Varint::Parse32WithLimit(const char* p,
|
|
const char* l,
|
|
uint32* OUTPUT) {
|
|
const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p);
|
|
const unsigned char* limit = reinterpret_cast<const unsigned char*>(l);
|
|
uint32 b, result;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result = b & 127; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done;
|
|
return NULL; // Value is too long to be a varint32
|
|
done:
|
|
*OUTPUT = result;
|
|
return reinterpret_cast<const char*>(ptr);
|
|
}
|
|
|
|
inline char* Varint::Encode32(char* sptr, uint32 v) {
|
|
// Operate on characters as unsigneds
|
|
unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr);
|
|
static const int B = 128;
|
|
if (v < (1<<7)) {
|
|
*(ptr++) = v;
|
|
} else if (v < (1<<14)) {
|
|
*(ptr++) = v | B;
|
|
*(ptr++) = v>>7;
|
|
} else if (v < (1<<21)) {
|
|
*(ptr++) = v | B;
|
|
*(ptr++) = (v>>7) | B;
|
|
*(ptr++) = v>>14;
|
|
} else if (v < (1<<28)) {
|
|
*(ptr++) = v | B;
|
|
*(ptr++) = (v>>7) | B;
|
|
*(ptr++) = (v>>14) | B;
|
|
*(ptr++) = v>>21;
|
|
} else {
|
|
*(ptr++) = v | B;
|
|
*(ptr++) = (v>>7) | B;
|
|
*(ptr++) = (v>>14) | B;
|
|
*(ptr++) = (v>>21) | B;
|
|
*(ptr++) = v>>28;
|
|
}
|
|
return reinterpret_cast<char*>(ptr);
|
|
}
|
|
|
|
// If you know the internal layout of the std::string in use, you can
|
|
// replace this function with one that resizes the string without
|
|
// filling the new space with zeros (if applicable) --
|
|
// it will be non-portable but faster.
|
|
inline void STLStringResizeUninitialized(string* s, size_t new_size) {
|
|
s->resize(new_size);
|
|
}
|
|
|
|
// Return a mutable char* pointing to a string's internal buffer,
|
|
// which may not be null-terminated. Writing through this pointer will
|
|
// modify the string.
|
|
//
|
|
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
|
|
// next call to a string method that invalidates iterators.
|
|
//
|
|
// As of 2006-04, there is no standard-blessed way of getting a
|
|
// mutable reference to a string's internal buffer. However, issue 530
|
|
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530)
|
|
// proposes this as the method. It will officially be part of the standard
|
|
// for C++0x. This should already work on all current implementations.
|
|
inline char* string_as_array(string* str) {
|
|
return str->empty() ? NULL : &*str->begin();
|
|
}
|
|
|
|
} // namespace snappy
|
|
|
|
#endif // UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
|