rocksdb/db/db_wal_test.cc
Changyu Bi f97e33454f Fix a bug with auto recovery on WAL write error (#12995)
Summary:
A recent crash test failure shows that auto recovery from WAL write failure can cause CFs to be inconsistent. A unit test repro in P1569398553. The following is an example sequence of events:

```
0. manual_wal_flush is true. There are multiple CFs in a DB.
1. Submit a write batch with updates to multiple CF
2. A FlushWAL or a memtable swtich that will try to write the buffered WAL data. Fail this write so that buffered WAL data is dropped: 4b1d595306/file/writable_file_writer.cc (L624)
The error needs to be retryable to start background auto recovery.
3. One CF successfully flushes its memtable during auto recovery.
4. Crash the process.
5. Reopen the DB, one CF will have the update as a result of successful flush. Other CFs will miss all the updates in the write batch since WAL does not have them.
```

This can happen if a users configures manual_wal_flush, uses more than one CF, and can hit retryable error for WAL writes. This PR is a short-term fix that upgrades WAL related errors to fatal and not trigger auto recovery.

A long-term fix may be not drop buffered WAL data by checking how much data is actually written, or require atomically flushing all column families during error recovery from this kind of errors.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12995

Test Plan:
added unit test to check error severity and if recovery is triggered. A crash test repro command that fails in a few runs before this PR:
```
python3 ./tools/db_crashtest.py blackbox --interval=60 --metadata_write_fault_one_in=1000 --column_families=10 --exclude_wal_from_write_fault_injection=0 --manual_wal_flush_one_in=1000 --WAL_size_limit_MB=10240 --WAL_ttl_seconds=0 --acquire_snapshot_one_in=10000 --adaptive_readahead=1 --adm_policy=1 --advise_random_on_open=1 --allow_data_in_errors=True --allow_fallocate=1 --async_io=0 --auto_readahead_size=0 --avoid_flush_during_recovery=1 --avoid_flush_during_shutdown=1 --avoid_unnecessary_blocking_io=0 --backup_max_size=104857600 --backup_one_in=0 --batch_protection_bytes_per_key=0 --bgerror_resume_retry_interval=100 --block_align=1 --block_protection_bytes_per_key=0 --block_size=16384 --bloom_before_level=2147483647 --bottommost_compression_type=none --bottommost_file_compaction_delay=0 --bytes_per_sync=0 --cache_index_and_filter_blocks=1 --cache_index_and_filter_blocks_with_high_priority=1 --cache_size=33554432 --cache_type=auto_hyper_clock_cache --charge_compression_dictionary_building_buffer=0 --charge_file_metadata=1 --charge_filter_construction=1 --charge_table_reader=0 --check_multiget_consistency=0 --check_multiget_entity_consistency=0 --checkpoint_one_in=0 --checksum_type=kxxHash64 --clear_column_family_one_in=0 --compact_files_one_in=0 --compact_range_one_in=0 --compaction_pri=1 --compaction_readahead_size=1048576 --compaction_ttl=0 --compress_format_version=1 --compressed_secondary_cache_size=8388608 --compression_checksum=0 --compression_max_dict_buffer_bytes=0 --compression_max_dict_bytes=0 --compression_parallel_threads=4 --compression_type=none --compression_use_zstd_dict_trainer=1 --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --daily_offpeak_time_utc= --data_block_index_type=0  --db_write_buffer_size=0 --decouple_partitioned_filters=1 --default_temperature=kCold --default_write_temperature=kWarm --delete_obsolete_files_period_micros=30000000 --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --detect_filter_construct_corruption=0 --disable_file_deletions_one_in=1000000 --disable_manual_compaction_one_in=1000000 --disable_wal=0 --dump_malloc_stats=1 --enable_checksum_handoff=1 --enable_compaction_filter=0 --enable_custom_split_merge=0 --enable_do_not_compress_roles=0 --enable_index_compression=0 --enable_memtable_insert_with_hint_prefix_extractor=0 --enable_pipelined_write=1 --enable_sst_partitioner_factory=0 --enable_thread_tracking=1 --enable_write_thread_adaptive_yield=1 --error_recovery_with_no_fault_injection=1 --fail_if_options_file_error=1 --fifo_allow_compaction=1 --file_checksum_impl=big --fill_cache=1 --flush_one_in=1000000 --format_version=6 --get_all_column_family_metadata_one_in=1000000 --get_current_wal_file_one_in=0 --get_live_files_apis_one_in=10000 --get_properties_of_all_tables_one_in=1000000 --get_property_one_in=100000 --get_sorted_wal_files_one_in=0 --hard_pending_compaction_bytes_limit=274877906944  --index_block_restart_interval=4 --index_shortening=1 --index_type=0 --ingest_external_file_one_in=0 --initial_auto_readahead_size=16384 --inplace_update_support=0 --iterpercent=10 --key_len_percent_dist=1,30,69 --key_may_exist_one_in=100000 --last_level_temperature=kWarm --level_compaction_dynamic_level_bytes=0 --lock_wal_one_in=10000 --log_file_time_to_roll=0 --log_readahead_size=0 --long_running_snapshots=0 --lowest_used_cache_tier=2 --manifest_preallocation_size=5120 --mark_for_compaction_one_file_in=10 --max_auto_readahead_size=0 --max_background_compactions=20 --max_bytes_for_level_base=10485760 --max_key=100000 --max_key_len=3 --max_log_file_size=0 --max_manifest_file_size=1073741824 --max_sequential_skip_in_iterations=16 --max_total_wal_size=0 --max_write_batch_group_size_bytes=16777216 --max_write_buffer_number=10 --max_write_buffer_size_to_maintain=2097152 --memtable_insert_hint_per_batch=1 --memtable_max_range_deletions=0 --memtable_prefix_bloom_size_ratio=0.001 --memtable_protection_bytes_per_key=2 --memtable_whole_key_filtering=0 --memtablerep=skip_list --metadata_charge_policy=1 --metadata_read_fault_one_in=0 --min_write_buffer_number_to_merge=1 --mmap_read=1 --mock_direct_io=False --nooverwritepercent=1 --num_file_reads_for_auto_readahead=2 --open_files=100 --open_metadata_read_fault_one_in=0 --open_metadata_write_fault_one_in=0 --open_read_fault_one_in=0 --open_write_fault_one_in=0 --optimize_filters_for_hits=0 --optimize_filters_for_memory=0 --optimize_multiget_for_io=0 --paranoid_file_checks=1 --paranoid_memory_checks=0 --partition_filters=0 --partition_pinning=2 --pause_background_one_in=10000 --periodic_compaction_seconds=0 --prefix_size=8 --prefixpercent=5 --prepopulate_block_cache=0 --preserve_internal_time_seconds=0 --progress_reports=0 --promote_l0_one_in=0 --read_amp_bytes_per_bit=0 --read_fault_one_in=0 --readahead_size=524288 --readpercent=45 --recycle_log_file_num=0 --reopen=0 --report_bg_io_stats=0 --reset_stats_one_in=10000 --sample_for_compression=5 --secondary_cache_fault_one_in=0 --secondary_cache_uri= --set_options_one_in=10000 --skip_stats_update_on_db_open=1 --snapshot_hold_ops=100000 --soft_pending_compaction_bytes_limit=1048576 --sqfc_name=bar --sqfc_version=1 --sst_file_manager_bytes_per_sec=0 --sst_file_manager_bytes_per_truncate=0 --stats_dump_period_sec=600 --stats_history_buffer_size=1048576 --strict_bytes_per_sync=1 --subcompactions=2 --sync=0 --sync_fault_injection=1 --table_cache_numshardbits=6 --target_file_size_base=524288 --target_file_size_multiplier=2 --test_batches_snapshots=0 --top_level_index_pinning=3 --uncache_aggressiveness=8 --universal_max_read_amp=-1 --unpartitioned_pinning=2 --use_adaptive_mutex=1 --use_adaptive_mutex_lru=0 --use_attribute_group=1 --use_delta_encoding=0 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --use_full_merge_v1=0 --use_get_entity=0 --use_merge=1 --use_multi_cf_iterator=1 --use_multi_get_entity=0 --use_multiget=0 --use_put_entity_one_in=1 --use_sqfc_for_range_queries=0 --use_timed_put_one_in=0 --use_write_buffer_manager=0 --user_timestamp_size=0 --value_size_mult=32 --verification_only=0 --verify_checksum=1 --verify_checksum_one_in=1000000 --verify_compression=1 --verify_db_one_in=100000 --verify_file_checksums_one_in=1000000 --verify_iterator_with_expected_state_one_in=5 --verify_sst_unique_id_in_manifest=1 --wal_bytes_per_sync=0 --wal_compression=none --write_buffer_size=4194304 --write_dbid_to_manifest=0 --write_fault_one_in=50 --writepercent=35 --ops_per_thread=100000 --preserve_unverified_changes=1
```

Reviewed By: hx235

Differential Revision: D62888510

Pulled By: cbi42

fbshipit-source-id: 308bdbbb8d897cc8eba950155cd0e37cf7eb76fe
2024-09-17 14:10:33 -07:00

2964 lines
106 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_test_util.h"
#include "db/db_with_timestamp_test_util.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/file_system.h"
#include "test_util/sync_point.h"
#include "util/defer.h"
#include "util/udt_util.h"
#include "utilities/fault_injection_env.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
class DBWALTestBase : public DBTestBase {
protected:
explicit DBWALTestBase(const std::string& dir_name)
: DBTestBase(dir_name, /*env_do_fsync=*/true) {}
#if defined(ROCKSDB_PLATFORM_POSIX)
public:
#if defined(ROCKSDB_FALLOCATE_PRESENT)
bool IsFallocateSupported() {
// Test fallocate support of running file system.
// Skip this test if fallocate is not supported.
std::string fname_test_fallocate = dbname_ + "/preallocate_testfile";
int fd = -1;
do {
fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
} while (fd < 0 && errno == EINTR);
assert(fd > 0);
int alloc_status = fallocate(fd, 0, 0, 1);
int err_number = errno;
close(fd);
assert(env_->DeleteFile(fname_test_fallocate) == Status::OK());
if (err_number == ENOSYS || err_number == EOPNOTSUPP) {
fprintf(stderr, "Skipped preallocated space check: %s\n",
errnoStr(err_number).c_str());
return false;
}
assert(alloc_status == 0);
return true;
}
#endif // ROCKSDB_FALLOCATE_PRESENT
uint64_t GetAllocatedFileSize(std::string file_name) {
struct stat sbuf;
int err = stat(file_name.c_str(), &sbuf);
assert(err == 0);
return sbuf.st_blocks * 512;
}
#endif // ROCKSDB_PLATFORM_POSIX
};
class DBWALTest : public DBWALTestBase {
public:
DBWALTest() : DBWALTestBase("/db_wal_test") {}
};
// A SpecialEnv enriched to give more insight about deleted files
class EnrichedSpecialEnv : public SpecialEnv {
public:
explicit EnrichedSpecialEnv(Env* base) : SpecialEnv(base) {}
Status NewSequentialFile(const std::string& f,
std::unique_ptr<SequentialFile>* r,
const EnvOptions& soptions) override {
InstrumentedMutexLock l(&env_mutex_);
if (f == skipped_wal) {
deleted_wal_reopened = true;
if (IsWAL(f) && largest_deleted_wal.size() != 0 &&
f.compare(largest_deleted_wal) <= 0) {
gap_in_wals = true;
}
}
return SpecialEnv::NewSequentialFile(f, r, soptions);
}
Status DeleteFile(const std::string& fname) override {
if (IsWAL(fname)) {
deleted_wal_cnt++;
InstrumentedMutexLock l(&env_mutex_);
// If this is the first WAL, remember its name and skip deleting it. We
// remember its name partly because the application might attempt to
// delete the file again.
if (skipped_wal.size() != 0 && skipped_wal != fname) {
if (largest_deleted_wal.size() == 0 ||
largest_deleted_wal.compare(fname) < 0) {
largest_deleted_wal = fname;
}
} else {
skipped_wal = fname;
return Status::OK();
}
}
return SpecialEnv::DeleteFile(fname);
}
bool IsWAL(const std::string& fname) {
// printf("iswal %s\n", fname.c_str());
return fname.compare(fname.size() - 3, 3, "log") == 0;
}
InstrumentedMutex env_mutex_;
// the wal whose actual delete was skipped by the env
std::string skipped_wal;
// the largest WAL that was requested to be deleted
std::string largest_deleted_wal;
// number of WALs that were successfully deleted
std::atomic<size_t> deleted_wal_cnt = {0};
// the WAL whose delete from fs was skipped is reopened during recovery
std::atomic<bool> deleted_wal_reopened = {false};
// whether a gap in the WALs was detected during recovery
std::atomic<bool> gap_in_wals = {false};
};
class DBWALTestWithEnrichedEnv : public DBTestBase {
public:
DBWALTestWithEnrichedEnv()
: DBTestBase("db_wal_test", /*env_do_fsync=*/true) {
enriched_env_ = new EnrichedSpecialEnv(env_->target());
auto options = CurrentOptions();
options.env = enriched_env_;
options.allow_2pc = true;
Reopen(options);
delete env_;
// to be deleted by the parent class
env_ = enriched_env_;
}
protected:
EnrichedSpecialEnv* enriched_env_;
};
// Test that the recovery would successfully avoid the gaps between the logs.
// One known scenario that could cause this is that the application issue the
// WAL deletion out of order. For the sake of simplicity in the test, here we
// create the gap by manipulating the env to skip deletion of the first WAL but
// not the ones after it.
TEST_F(DBWALTestWithEnrichedEnv, SkipDeletedWALs) {
auto options = last_options_;
// To cause frequent WAL deletion
options.write_buffer_size = 128;
Reopen(options);
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::PurgeObsoleteFiles:End",
"DBWALTestWithEnrichedEnv.SkipDeletedWALs:AfterFlush"}});
SyncPoint::GetInstance()->EnableProcessing();
WriteOptions writeOpt = WriteOptions();
for (int i = 0; i < 128 * 5; i++) {
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v1"));
}
FlushOptions fo;
fo.wait = true;
ASSERT_OK(db_->Flush(fo));
TEST_SYNC_POINT("DBWALTestWithEnrichedEnv.SkipDeletedWALs:AfterFlush");
// some wals are deleted
ASSERT_NE(0, enriched_env_->deleted_wal_cnt);
// but not the first one
ASSERT_NE(0, enriched_env_->skipped_wal.size());
// Test that the WAL that was not deleted will be skipped during recovery
options = last_options_;
Reopen(options);
ASSERT_FALSE(enriched_env_->deleted_wal_reopened);
ASSERT_FALSE(enriched_env_->gap_in_wals);
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBWALTest, WAL) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v2"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v2"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
// Both value's should be present.
ASSERT_EQ("v2", Get(1, "bar"));
ASSERT_EQ("v2", Get(1, "foo"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v3"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v3"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
// again both values should be present.
ASSERT_EQ("v3", Get(1, "foo"));
ASSERT_EQ("v3", Get(1, "bar"));
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, RollLog) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Put(1, "baz", "v5"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
for (int i = 0; i < 10; i++) {
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
}
ASSERT_OK(Put(1, "foo", "v4"));
for (int i = 0; i < 10; i++) {
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
}
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, SyncWALNotBlockWrite) {
Options options = CurrentOptions();
options.max_write_buffer_number = 4;
DestroyAndReopen(options);
ASSERT_OK(Put("foo1", "bar1"));
ASSERT_OK(Put("foo5", "bar5"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"WritableFileWriter::SyncWithoutFlush:1",
"DBWALTest::SyncWALNotBlockWrite:1"},
{"DBWALTest::SyncWALNotBlockWrite:2",
"WritableFileWriter::SyncWithoutFlush:2"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread thread([&]() { ASSERT_OK(db_->SyncWAL()); });
TEST_SYNC_POINT("DBWALTest::SyncWALNotBlockWrite:1");
ASSERT_OK(Put("foo2", "bar2"));
ASSERT_OK(Put("foo3", "bar3"));
FlushOptions fo;
fo.wait = false;
ASSERT_OK(db_->Flush(fo));
ASSERT_OK(Put("foo4", "bar4"));
TEST_SYNC_POINT("DBWALTest::SyncWALNotBlockWrite:2");
thread.join();
ASSERT_EQ(Get("foo1"), "bar1");
ASSERT_EQ(Get("foo2"), "bar2");
ASSERT_EQ(Get("foo3"), "bar3");
ASSERT_EQ(Get("foo4"), "bar4");
ASSERT_EQ(Get("foo5"), "bar5");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBWALTest, SyncWALNotWaitWrite) {
ASSERT_OK(Put("foo1", "bar1"));
ASSERT_OK(Put("foo3", "bar3"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"SpecialEnv::SpecialWalFile::Append:1",
"DBWALTest::SyncWALNotWaitWrite:1"},
{"DBWALTest::SyncWALNotWaitWrite:2",
"SpecialEnv::SpecialWalFile::Append:2"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread thread(
[&]() { ASSERT_OK(Put("foo2", "bar2")); });
// Moving this to SyncWAL before the actual fsync
// TEST_SYNC_POINT("DBWALTest::SyncWALNotWaitWrite:1");
ASSERT_OK(db_->SyncWAL());
// Moving this to SyncWAL after actual fsync
// TEST_SYNC_POINT("DBWALTest::SyncWALNotWaitWrite:2");
thread.join();
ASSERT_EQ(Get("foo1"), "bar1");
ASSERT_EQ(Get("foo2"), "bar2");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBWALTest, Recover) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Put(1, "baz", "v5"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v5", Get(1, "baz"));
ASSERT_OK(Put(1, "bar", "v2"));
ASSERT_OK(Put(1, "foo", "v3"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v3", Get(1, "foo"));
ASSERT_OK(Put(1, "foo", "v4"));
ASSERT_EQ("v4", Get(1, "foo"));
ASSERT_EQ("v2", Get(1, "bar"));
ASSERT_EQ("v5", Get(1, "baz"));
} while (ChangeWalOptions());
}
class DBWALTestWithTimestamp
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<test::UserDefinedTimestampTestMode> {
public:
DBWALTestWithTimestamp()
: DBBasicTestWithTimestampBase("db_wal_test_with_timestamp") {}
Status CreateAndReopenWithTs(const std::vector<std::string>& cfs,
const Options& ts_options, bool persist_udt,
bool avoid_flush_during_recovery = false) {
Options default_options = CurrentOptions();
default_options.allow_concurrent_memtable_write =
persist_udt ? true : false;
DestroyAndReopen(default_options);
CreateColumnFamilies(cfs, ts_options);
return ReopenColumnFamiliesWithTs(cfs, ts_options, persist_udt,
avoid_flush_during_recovery);
}
Status ReopenColumnFamiliesWithTs(const std::vector<std::string>& cfs,
Options ts_options, bool persist_udt,
bool avoid_flush_during_recovery = false) {
Options default_options = CurrentOptions();
default_options.create_if_missing = false;
default_options.allow_concurrent_memtable_write =
persist_udt ? true : false;
default_options.avoid_flush_during_recovery = avoid_flush_during_recovery;
ts_options.create_if_missing = false;
std::vector<Options> cf_options(cfs.size(), ts_options);
std::vector<std::string> cfs_plus_default = cfs;
cfs_plus_default.insert(cfs_plus_default.begin(), kDefaultColumnFamilyName);
cf_options.insert(cf_options.begin(), default_options);
Close();
return TryReopenWithColumnFamilies(cfs_plus_default, cf_options);
}
Status Put(uint32_t cf, const Slice& key, const Slice& ts,
const Slice& value) {
WriteOptions write_opts;
return db_->Put(write_opts, handles_[cf], key, ts, value);
}
void CheckGet(const ReadOptions& read_opts, uint32_t cf, const Slice& key,
const std::string& expected_value,
const std::string& expected_ts) {
std::string actual_value;
std::string actual_ts;
ASSERT_OK(
db_->Get(read_opts, handles_[cf], key, &actual_value, &actual_ts));
ASSERT_EQ(expected_value, actual_value);
ASSERT_EQ(expected_ts, actual_ts);
}
};
TEST_P(DBWALTestWithTimestamp, RecoverAndNoFlush) {
// Set up the option that enables user defined timestmp size.
std::string ts1;
PutFixed64(&ts1, 1);
Options ts_options;
ts_options.create_if_missing = true;
ts_options.comparator = test::BytewiseComparatorWithU64TsWrapper();
// Test that user-defined timestamps are recovered from WAL regardless of
// the value of this flag because UDTs are saved in WAL nonetheless.
// We however need to explicitly disable flush during recovery by setting
// `avoid_flush_during_recovery=true` so that we can avoid timestamps getting
// stripped when the `persist_user_defined_timestamps` flag is false, so that
// all written timestamps are available for testing user-defined time travel
// read.
bool persist_udt = test::ShouldPersistUDT(GetParam());
ts_options.persist_user_defined_timestamps = persist_udt;
bool avoid_flush_during_recovery = true;
std::string full_history_ts_low;
ReadOptions read_opts;
do {
Slice ts_slice = ts1;
read_opts.timestamp = &ts_slice;
ASSERT_OK(CreateAndReopenWithTs({"pikachu"}, ts_options, persist_udt,
avoid_flush_during_recovery));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"), 0U);
ASSERT_OK(Put(1, "foo", ts1, "v1"));
ASSERT_OK(Put(1, "baz", ts1, "v5"));
ASSERT_OK(ReopenColumnFamiliesWithTs({"pikachu"}, ts_options, persist_udt,
avoid_flush_during_recovery));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"), 0U);
// Do a timestamped read with ts1 after second reopen.
CheckGet(read_opts, 1, "foo", "v1", ts1);
CheckGet(read_opts, 1, "baz", "v5", ts1);
// Write more value versions for key "foo" and "bar" before and after second
// reopen.
std::string ts2;
PutFixed64(&ts2, 2);
ASSERT_OK(Put(1, "bar", ts2, "v2"));
ASSERT_OK(Put(1, "foo", ts2, "v3"));
ASSERT_OK(ReopenColumnFamiliesWithTs({"pikachu"}, ts_options, persist_udt,
avoid_flush_during_recovery));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"), 0U);
std::string ts3;
PutFixed64(&ts3, 3);
ASSERT_OK(Put(1, "foo", ts3, "v4"));
// All the key value pairs available for read:
// "foo" -> [(ts1, "v1"), (ts2, "v3"), (ts3, "v4")]
// "bar" -> [(ts2, "v2")]
// "baz" -> [(ts1, "v5")]
// Do a timestamped read with ts1 after third reopen.
// read_opts.timestamp is set to ts1 for below reads
CheckGet(read_opts, 1, "foo", "v1", ts1);
std::string value;
ASSERT_TRUE(db_->Get(read_opts, handles_[1], "bar", &value).IsNotFound());
CheckGet(read_opts, 1, "baz", "v5", ts1);
// Do a timestamped read with ts2 after third reopen.
ts_slice = ts2;
// read_opts.timestamp is set to ts2 for below reads.
CheckGet(read_opts, 1, "foo", "v3", ts2);
CheckGet(read_opts, 1, "bar", "v2", ts2);
CheckGet(read_opts, 1, "baz", "v5", ts1);
// Do a timestamped read with ts3 after third reopen.
ts_slice = ts3;
// read_opts.timestamp is set to ts3 for below reads.
CheckGet(read_opts, 1, "foo", "v4", ts3);
CheckGet(read_opts, 1, "bar", "v2", ts2);
CheckGet(read_opts, 1, "baz", "v5", ts1);
ASSERT_OK(db_->GetFullHistoryTsLow(handles_[1], &full_history_ts_low));
ASSERT_TRUE(full_history_ts_low.empty());
} while (ChangeWalOptions());
}
TEST_P(DBWALTestWithTimestamp, RecoverAndFlush) {
// Set up the option that enables user defined timestamp size.
std::string min_ts;
std::string write_ts;
PutFixed64(&min_ts, 0);
PutFixed64(&write_ts, 1);
Options ts_options;
ts_options.create_if_missing = true;
ts_options.comparator = test::BytewiseComparatorWithU64TsWrapper();
bool persist_udt = test::ShouldPersistUDT(GetParam());
ts_options.persist_user_defined_timestamps = persist_udt;
std::string smallest_ukey_without_ts = "baz";
std::string largest_ukey_without_ts = "foo";
ASSERT_OK(CreateAndReopenWithTs({"pikachu"}, ts_options, persist_udt));
// No flush, no sst files, because of no data.
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"), 0U);
ASSERT_OK(Put(1, largest_ukey_without_ts, write_ts, "v1"));
ASSERT_OK(Put(1, smallest_ukey_without_ts, write_ts, "v5"));
ASSERT_OK(ReopenColumnFamiliesWithTs({"pikachu"}, ts_options, persist_udt));
// Memtable recovered from WAL flushed because `avoid_flush_during_recovery`
// defaults to false, created one L0 file.
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"), 1U);
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(handles_[1], &level_to_files);
std::string full_history_ts_low;
ASSERT_OK(db_->GetFullHistoryTsLow(handles_[1], &full_history_ts_low));
ASSERT_GT(level_to_files.size(), 1);
// L0 only has one SST file.
ASSERT_EQ(level_to_files[0].size(), 1);
auto meta = level_to_files[0][0];
if (persist_udt) {
ASSERT_EQ(smallest_ukey_without_ts + write_ts, meta.smallest.user_key());
ASSERT_EQ(largest_ukey_without_ts + write_ts, meta.largest.user_key());
ASSERT_TRUE(full_history_ts_low.empty());
} else {
ASSERT_EQ(smallest_ukey_without_ts + min_ts, meta.smallest.user_key());
ASSERT_EQ(largest_ukey_without_ts + min_ts, meta.largest.user_key());
std::string effective_cutoff;
Slice write_ts_slice = write_ts;
GetFullHistoryTsLowFromU64CutoffTs(&write_ts_slice, &effective_cutoff);
ASSERT_EQ(effective_cutoff, full_history_ts_low);
}
}
// Param 0: test mode for the user-defined timestamp feature
INSTANTIATE_TEST_CASE_P(
P, DBWALTestWithTimestamp,
::testing::Values(
test::UserDefinedTimestampTestMode::kStripUserDefinedTimestamp,
test::UserDefinedTimestampTestMode::kNormal));
TEST_F(DBWALTestWithTimestamp, EnableDisableUDT) {
Options options;
options.create_if_missing = true;
options.comparator = BytewiseComparator();
bool avoid_flush_during_recovery = true;
ASSERT_OK(CreateAndReopenWithTs({"pikachu"}, options, true /* persist_udt */,
avoid_flush_during_recovery));
ASSERT_OK(db_->Put(WriteOptions(), handles_[1], "foo", "v1"));
ASSERT_OK(db_->Put(WriteOptions(), handles_[1], "baz", "v5"));
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
options.persist_user_defined_timestamps = false;
// Test handle timestamp size inconsistency in WAL when enabling user-defined
// timestamps.
ASSERT_OK(ReopenColumnFamiliesWithTs({"pikachu"}, options,
false /* persist_udt */,
avoid_flush_during_recovery));
std::string ts;
PutFixed64(&ts, 0);
Slice ts_slice = ts;
ReadOptions read_opts;
read_opts.timestamp = &ts_slice;
// Pre-existing entries are treated as if they have the min timestamp.
CheckGet(read_opts, 1, "foo", "v1", ts);
CheckGet(read_opts, 1, "baz", "v5", ts);
ts.clear();
PutFixed64(&ts, 1);
ASSERT_OK(db_->Put(WriteOptions(), handles_[1], "foo", ts, "v2"));
ASSERT_OK(db_->Put(WriteOptions(), handles_[1], "baz", ts, "v6"));
CheckGet(read_opts, 1, "foo", "v2", ts);
CheckGet(read_opts, 1, "baz", "v6", ts);
options.comparator = BytewiseComparator();
// Open the column family again with the UDT feature disabled. Test handle
// timestamp size inconsistency in WAL when disabling user-defined timestamps
ASSERT_OK(ReopenColumnFamiliesWithTs({"pikachu"}, options,
true /* persist_udt */,
avoid_flush_during_recovery));
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_EQ("v6", Get(1, "baz"));
}
TEST_F(DBWALTest, RecoverWithTableHandle) {
do {
Options options = CurrentOptions();
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.avoid_flush_during_recovery = false;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Put(1, "bar", "v2"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "foo", "v3"));
ASSERT_OK(Put(1, "bar", "v4"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "big", std::string(100, 'a')));
options = CurrentOptions();
const int kSmallMaxOpenFiles = 13;
if (option_config_ == kDBLogDir) {
// Use this option to check not preloading files
// Set the max open files to be small enough so no preload will
// happen.
options.max_open_files = kSmallMaxOpenFiles;
// RocksDB sanitize max open files to at least 20. Modify it back.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = static_cast<int*>(arg);
*max_open_files = kSmallMaxOpenFiles;
});
} else if (option_config_ == kWalDirAndMmapReads) {
// Use this option to check always loading all files.
options.max_open_files = 100;
} else {
options.max_open_files = -1;
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
std::vector<std::vector<FileMetaData>> files;
dbfull()->TEST_GetFilesMetaData(handles_[1], &files);
size_t total_files = 0;
for (const auto& level : files) {
total_files += level.size();
}
ASSERT_EQ(total_files, 3);
for (const auto& level : files) {
for (const auto& file : level) {
if (options.max_open_files == kSmallMaxOpenFiles) {
ASSERT_TRUE(file.table_reader_handle == nullptr);
} else {
ASSERT_TRUE(file.table_reader_handle != nullptr);
}
}
}
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, RecoverWithBlob) {
// Write a value that's below the prospective size limit for blobs and another
// one that's above. Note that blob files are not actually enabled at this
// point.
constexpr uint64_t min_blob_size = 10;
constexpr char short_value[] = "short";
static_assert(sizeof(short_value) - 1 < min_blob_size,
"short_value too long");
constexpr char long_value[] = "long_value";
static_assert(sizeof(long_value) - 1 >= min_blob_size,
"long_value too short");
ASSERT_OK(Put("key1", short_value));
ASSERT_OK(Put("key2", long_value));
// There should be no files just yet since we haven't flushed.
{
VersionSet* const versions = dbfull()->GetVersionSet();
ASSERT_NE(versions, nullptr);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
ASSERT_NE(cfd, nullptr);
Version* const current = cfd->current();
ASSERT_NE(current, nullptr);
const VersionStorageInfo* const storage_info = current->storage_info();
ASSERT_NE(storage_info, nullptr);
ASSERT_EQ(storage_info->num_non_empty_levels(), 0);
ASSERT_TRUE(storage_info->GetBlobFiles().empty());
}
// Reopen the database with blob files enabled. A new table file/blob file
// pair should be written during recovery.
Options options;
options.enable_blob_files = true;
options.min_blob_size = min_blob_size;
options.avoid_flush_during_recovery = false;
options.disable_auto_compactions = true;
options.env = env_;
Reopen(options);
ASSERT_EQ(Get("key1"), short_value);
ASSERT_EQ(Get("key2"), long_value);
VersionSet* const versions = dbfull()->GetVersionSet();
ASSERT_NE(versions, nullptr);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
ASSERT_NE(cfd, nullptr);
Version* const current = cfd->current();
ASSERT_NE(current, nullptr);
const VersionStorageInfo* const storage_info = current->storage_info();
ASSERT_NE(storage_info, nullptr);
const auto& l0_files = storage_info->LevelFiles(0);
ASSERT_EQ(l0_files.size(), 1);
const FileMetaData* const table_file = l0_files[0];
ASSERT_NE(table_file, nullptr);
const auto& blob_files = storage_info->GetBlobFiles();
ASSERT_EQ(blob_files.size(), 1);
const auto& blob_file = blob_files.front();
ASSERT_NE(blob_file, nullptr);
ASSERT_EQ(table_file->smallest.user_key(), "key1");
ASSERT_EQ(table_file->largest.user_key(), "key2");
ASSERT_EQ(table_file->fd.smallest_seqno, 1);
ASSERT_EQ(table_file->fd.largest_seqno, 2);
ASSERT_EQ(table_file->oldest_blob_file_number,
blob_file->GetBlobFileNumber());
ASSERT_EQ(blob_file->GetTotalBlobCount(), 1);
const InternalStats* const internal_stats = cfd->internal_stats();
ASSERT_NE(internal_stats, nullptr);
const auto& compaction_stats = internal_stats->TEST_GetCompactionStats();
ASSERT_FALSE(compaction_stats.empty());
ASSERT_EQ(compaction_stats[0].bytes_written, table_file->fd.GetFileSize());
ASSERT_EQ(compaction_stats[0].bytes_written_blob,
blob_file->GetTotalBlobBytes());
ASSERT_EQ(compaction_stats[0].num_output_files, 1);
ASSERT_EQ(compaction_stats[0].num_output_files_blob, 1);
const uint64_t* const cf_stats_value = internal_stats->TEST_GetCFStatsValue();
ASSERT_EQ(cf_stats_value[InternalStats::BYTES_FLUSHED],
compaction_stats[0].bytes_written +
compaction_stats[0].bytes_written_blob);
}
TEST_F(DBWALTest, RecoverWithBlobMultiSST) {
// Write several large (4 KB) values without flushing. Note that blob files
// are not actually enabled at this point.
std::string large_value(1 << 12, 'a');
constexpr int num_keys = 64;
for (int i = 0; i < num_keys; ++i) {
ASSERT_OK(Put(Key(i), large_value));
}
// There should be no files just yet since we haven't flushed.
{
VersionSet* const versions = dbfull()->GetVersionSet();
ASSERT_NE(versions, nullptr);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
ASSERT_NE(cfd, nullptr);
Version* const current = cfd->current();
ASSERT_NE(current, nullptr);
const VersionStorageInfo* const storage_info = current->storage_info();
ASSERT_NE(storage_info, nullptr);
ASSERT_EQ(storage_info->num_non_empty_levels(), 0);
ASSERT_TRUE(storage_info->GetBlobFiles().empty());
}
// Reopen the database with blob files enabled and write buffer size set to a
// smaller value. Multiple table files+blob files should be written and added
// to the Version during recovery.
Options options;
options.write_buffer_size = 1 << 16; // 64 KB
options.enable_blob_files = true;
options.avoid_flush_during_recovery = false;
options.disable_auto_compactions = true;
options.env = env_;
Reopen(options);
for (int i = 0; i < num_keys; ++i) {
ASSERT_EQ(Get(Key(i)), large_value);
}
VersionSet* const versions = dbfull()->GetVersionSet();
ASSERT_NE(versions, nullptr);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
ASSERT_NE(cfd, nullptr);
Version* const current = cfd->current();
ASSERT_NE(current, nullptr);
const VersionStorageInfo* const storage_info = current->storage_info();
ASSERT_NE(storage_info, nullptr);
const auto& l0_files = storage_info->LevelFiles(0);
ASSERT_GT(l0_files.size(), 1);
const auto& blob_files = storage_info->GetBlobFiles();
ASSERT_GT(blob_files.size(), 1);
ASSERT_EQ(l0_files.size(), blob_files.size());
}
TEST_F(DBWALTest, WALWithChecksumHandoff) {
#ifndef ROCKSDB_ASSERT_STATUS_CHECKED
if (mem_env_ || encrypted_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
return;
}
std::shared_ptr<FaultInjectionTestFS> fault_fs(
new FaultInjectionTestFS(FileSystem::Default()));
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
do {
Options options = CurrentOptions();
options.checksum_handoff_file_types.Add(FileType::kWalFile);
options.env = fault_fs_env.get();
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
CreateAndReopenWithCF({"pikachu"}, options);
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v2"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v2"));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
// Both value's should be present.
ASSERT_EQ("v2", Get(1, "bar"));
ASSERT_EQ("v2", Get(1, "foo"));
writeOpt.disableWAL = true;
// This put, data is persisted by Flush
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v3"));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
writeOpt.disableWAL = false;
// Data is persisted in the WAL
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "zoo", "v3"));
ASSERT_OK(dbfull()->SyncWAL());
// The hash does not match, write fails
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kxxHash);
writeOpt.disableWAL = false;
ASSERT_NOK(dbfull()->Put(writeOpt, handles_[1], "foo", "v3"));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
// Due to the write failure, Get should not find
ASSERT_NE("v3", Get(1, "foo"));
ASSERT_EQ("v3", Get(1, "zoo"));
ASSERT_EQ("v3", Get(1, "bar"));
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
// Each write will be similated as corrupted.
fault_fs->IngestDataCorruptionBeforeWrite();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v4"));
writeOpt.disableWAL = false;
ASSERT_NOK(dbfull()->Put(writeOpt, handles_[1], "foo", "v4"));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_NE("v4", Get(1, "foo"));
ASSERT_NE("v4", Get(1, "bar"));
fault_fs->NoDataCorruptionBeforeWrite();
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kNoChecksum);
// The file system does not provide checksum method and verification.
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v5"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v5"));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ("v5", Get(1, "foo"));
ASSERT_EQ("v5", Get(1, "bar"));
Destroy(options);
} while (ChangeWalOptions());
#endif // ROCKSDB_ASSERT_STATUS_CHECKED
}
TEST_F(DBWALTest, LockWal) {
do {
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "v"));
ASSERT_OK(Put("bar", "v"));
ASSERT_OK(db_->LockWAL());
// Verify writes are stopped
WriteOptions wopts;
wopts.no_slowdown = true;
Status s = db_->Put(wopts, "foo", "dontcare");
ASSERT_TRUE(s.IsIncomplete());
{
VectorLogPtr wals;
ASSERT_OK(db_->GetSortedWalFiles(wals));
ASSERT_FALSE(wals.empty());
}
port::Thread worker([&]() {
Status tmp_s = db_->Flush(FlushOptions());
ASSERT_OK(tmp_s);
});
FlushOptions flush_opts;
flush_opts.wait = false;
s = db_->Flush(flush_opts);
ASSERT_TRUE(s.IsTryAgain());
ASSERT_OK(db_->UnlockWAL());
ASSERT_OK(db_->Put(WriteOptions(), "foo", "dontcare"));
worker.join();
} while (ChangeWalOptions());
}
class DBRecoveryTestBlobError
: public DBWALTest,
public testing::WithParamInterface<std::string> {
public:
DBRecoveryTestBlobError() : sync_point_(GetParam()) {}
std::string sync_point_;
};
INSTANTIATE_TEST_CASE_P(DBRecoveryTestBlobError, DBRecoveryTestBlobError,
::testing::ValuesIn(std::vector<std::string>{
"BlobFileBuilder::WriteBlobToFile:AddRecord",
"BlobFileBuilder::WriteBlobToFile:AppendFooter"}));
TEST_P(DBRecoveryTestBlobError, RecoverWithBlobError) {
// Write a value. Note that blob files are not actually enabled at this point.
ASSERT_OK(Put("key", "blob"));
// Reopen with blob files enabled but make blob file writing fail during
// recovery.
SyncPoint::GetInstance()->SetCallBack(sync_point_, [this](void* arg) {
Status* const s = static_cast<Status*>(arg);
assert(s);
(*s) = Status::IOError(sync_point_);
});
SyncPoint::GetInstance()->EnableProcessing();
Options options;
options.enable_blob_files = true;
options.avoid_flush_during_recovery = false;
options.disable_auto_compactions = true;
options.env = env_;
ASSERT_NOK(TryReopen(options));
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
// Make sure the files generated by the failed recovery have been deleted.
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(dbname_, &files));
for (const auto& file : files) {
uint64_t number = 0;
FileType type = kTableFile;
if (!ParseFileName(file, &number, &type)) {
continue;
}
ASSERT_NE(type, kTableFile);
ASSERT_NE(type, kBlobFile);
}
}
TEST_F(DBWALTest, IgnoreRecoveredLog) {
std::string backup_logs = dbname_ + "/backup_logs";
do {
// delete old files in backup_logs directory
ASSERT_OK(env_->CreateDirIfMissing(backup_logs));
std::vector<std::string> old_files;
ASSERT_OK(env_->GetChildren(backup_logs, &old_files));
for (auto& file : old_files) {
ASSERT_OK(env_->DeleteFile(backup_logs + "/" + file));
}
Options options = CurrentOptions();
options.create_if_missing = true;
options.merge_operator = MergeOperators::CreateUInt64AddOperator();
options.wal_dir = dbname_ + "/logs";
DestroyAndReopen(options);
// fill up the DB
std::string one, two;
PutFixed64(&one, 1);
PutFixed64(&two, 2);
ASSERT_OK(db_->Merge(WriteOptions(), Slice("foo"), Slice(one)));
ASSERT_OK(db_->Merge(WriteOptions(), Slice("foo"), Slice(one)));
ASSERT_OK(db_->Merge(WriteOptions(), Slice("bar"), Slice(one)));
// copy the logs to backup
std::vector<std::string> logs;
ASSERT_OK(env_->GetChildren(options.wal_dir, &logs));
for (auto& log : logs) {
CopyFile(options.wal_dir + "/" + log, backup_logs + "/" + log);
}
// recover the DB
Reopen(options);
ASSERT_EQ(two, Get("foo"));
ASSERT_EQ(one, Get("bar"));
Close();
// copy the logs from backup back to wal dir
for (auto& log : logs) {
CopyFile(backup_logs + "/" + log, options.wal_dir + "/" + log);
}
// this should ignore the log files, recovery should not happen again
// if the recovery happens, the same merge operator would be called twice,
// leading to incorrect results
Reopen(options);
ASSERT_EQ(two, Get("foo"));
ASSERT_EQ(one, Get("bar"));
Close();
Destroy(options);
Reopen(options);
Close();
// copy the logs from backup back to wal dir
ASSERT_OK(env_->CreateDirIfMissing(options.wal_dir));
for (auto& log : logs) {
CopyFile(backup_logs + "/" + log, options.wal_dir + "/" + log);
}
// assert that we successfully recovered only from logs, even though we
// destroyed the DB
Reopen(options);
ASSERT_EQ(two, Get("foo"));
ASSERT_EQ(one, Get("bar"));
// Recovery will fail if DB directory doesn't exist.
Destroy(options);
// copy the logs from backup back to wal dir
ASSERT_OK(env_->CreateDirIfMissing(options.wal_dir));
for (auto& log : logs) {
CopyFile(backup_logs + "/" + log, options.wal_dir + "/" + log);
// we won't be needing this file no more
ASSERT_OK(env_->DeleteFile(backup_logs + "/" + log));
}
Status s = TryReopen(options);
ASSERT_NOK(s);
Destroy(options);
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, RecoveryWithEmptyLog) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Put(1, "foo", "v2"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v3"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v3", Get(1, "foo"));
} while (ChangeWalOptions());
}
#if !(defined NDEBUG) || !defined(OS_WIN)
TEST_F(DBWALTest, PreallocateBlock) {
Options options = CurrentOptions();
options.write_buffer_size = 10 * 1000 * 1000;
options.max_total_wal_size = 0;
size_t expected_preallocation_size = static_cast<size_t>(
options.write_buffer_size + options.write_buffer_size / 10);
DestroyAndReopen(options);
std::atomic<int> called(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBTestWalFile.GetPreallocationStatus", [&](void* arg) {
ASSERT_TRUE(arg != nullptr);
size_t preallocation_size = *(static_cast<size_t*>(arg));
ASSERT_EQ(expected_preallocation_size, preallocation_size);
called.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("", ""));
Close();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(2, called.load());
options.max_total_wal_size = 1000 * 1000;
expected_preallocation_size = static_cast<size_t>(options.max_total_wal_size);
Reopen(options);
called.store(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBTestWalFile.GetPreallocationStatus", [&](void* arg) {
ASSERT_TRUE(arg != nullptr);
size_t preallocation_size = *(static_cast<size_t*>(arg));
ASSERT_EQ(expected_preallocation_size, preallocation_size);
called.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("", ""));
Close();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(2, called.load());
options.db_write_buffer_size = 800 * 1000;
expected_preallocation_size =
static_cast<size_t>(options.db_write_buffer_size);
Reopen(options);
called.store(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBTestWalFile.GetPreallocationStatus", [&](void* arg) {
ASSERT_TRUE(arg != nullptr);
size_t preallocation_size = *(static_cast<size_t*>(arg));
ASSERT_EQ(expected_preallocation_size, preallocation_size);
called.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("", ""));
Close();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(2, called.load());
expected_preallocation_size = 700 * 1000;
std::shared_ptr<WriteBufferManager> write_buffer_manager =
std::make_shared<WriteBufferManager>(static_cast<uint64_t>(700 * 1000));
options.write_buffer_manager = write_buffer_manager;
Reopen(options);
called.store(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBTestWalFile.GetPreallocationStatus", [&](void* arg) {
ASSERT_TRUE(arg != nullptr);
size_t preallocation_size = *(static_cast<size_t*>(arg));
ASSERT_EQ(expected_preallocation_size, preallocation_size);
called.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("", ""));
Close();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(2, called.load());
}
#endif // !(defined NDEBUG) || !defined(OS_WIN)
TEST_F(DBWALTest, FullPurgePreservesRecycledLog) {
// For github issue #1303
for (int i = 0; i < 2; ++i) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.recycle_log_file_num = 2;
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
if (i != 0) {
options.wal_dir = alternative_wal_dir_;
}
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "v1"));
VectorLogPtr log_files;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files));
ASSERT_GT(log_files.size(), 0);
ASSERT_OK(Flush());
// Now the original WAL is in log_files[0] and should be marked for
// recycling.
// Verify full purge cannot remove this file.
JobContext job_context(0);
dbfull()->TEST_LockMutex();
dbfull()->FindObsoleteFiles(&job_context, true /* force */);
dbfull()->TEST_UnlockMutex();
dbfull()->PurgeObsoleteFiles(job_context);
if (i == 0) {
ASSERT_OK(
env_->FileExists(LogFileName(dbname_, log_files[0]->LogNumber())));
} else {
ASSERT_OK(env_->FileExists(
LogFileName(alternative_wal_dir_, log_files[0]->LogNumber())));
}
}
}
TEST_F(DBWALTest, FullPurgePreservesLogPendingReuse) {
// Ensures full purge cannot delete a WAL while it's in the process of being
// recycled. In particular, we force the full purge after a file has been
// chosen for reuse, but before it has been renamed.
for (int i = 0; i < 2; ++i) {
Options options = CurrentOptions();
options.recycle_log_file_num = 1;
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
if (i != 0) {
options.wal_dir = alternative_wal_dir_;
}
DestroyAndReopen(options);
// The first flush creates a second log so writes can continue before the
// flush finishes.
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
// The second flush can recycle the first log. Sync points enforce the
// full purge happens after choosing the log to recycle and before it is
// renamed.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::CreateWAL:BeforeReuseWritableFile1",
"DBWALTest::FullPurgePreservesLogPendingReuse:PreFullPurge"},
{"DBWALTest::FullPurgePreservesLogPendingReuse:PostFullPurge",
"DBImpl::CreateWAL:BeforeReuseWritableFile2"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread thread([&]() {
TEST_SYNC_POINT(
"DBWALTest::FullPurgePreservesLogPendingReuse:PreFullPurge");
ASSERT_OK(db_->EnableFileDeletions());
TEST_SYNC_POINT(
"DBWALTest::FullPurgePreservesLogPendingReuse:PostFullPurge");
});
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
thread.join();
}
}
TEST_F(DBWALTest, GetSortedWalFiles) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
VectorLogPtr log_files;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files));
ASSERT_EQ(0, log_files.size());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files));
ASSERT_EQ(1, log_files.size());
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, GetCurrentWalFile) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
std::unique_ptr<LogFile>* bad_log_file = nullptr;
ASSERT_NOK(dbfull()->GetCurrentWalFile(bad_log_file));
std::unique_ptr<LogFile> log_file;
ASSERT_OK(dbfull()->GetCurrentWalFile(&log_file));
// nothing has been written to the log yet
ASSERT_EQ(log_file->StartSequence(), 0);
ASSERT_EQ(log_file->SizeFileBytes(), 0);
ASSERT_EQ(log_file->Type(), kAliveLogFile);
ASSERT_GT(log_file->LogNumber(), 0);
// add some data and verify that the file size actually moves foward
ASSERT_OK(Put(0, "foo", "v1"));
ASSERT_OK(Put(0, "foo2", "v2"));
ASSERT_OK(Put(0, "foo3", "v3"));
ASSERT_OK(dbfull()->GetCurrentWalFile(&log_file));
ASSERT_EQ(log_file->StartSequence(), 0);
ASSERT_GT(log_file->SizeFileBytes(), 0);
ASSERT_EQ(log_file->Type(), kAliveLogFile);
ASSERT_GT(log_file->LogNumber(), 0);
// force log files to cycle and add some more data, then check if
// log number moves forward
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
for (int i = 0; i < 10; i++) {
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
}
ASSERT_OK(Put(0, "foo4", "v4"));
ASSERT_OK(Put(0, "foo5", "v5"));
ASSERT_OK(Put(0, "foo6", "v6"));
ASSERT_OK(dbfull()->GetCurrentWalFile(&log_file));
ASSERT_EQ(log_file->StartSequence(), 0);
ASSERT_GT(log_file->SizeFileBytes(), 0);
ASSERT_EQ(log_file->Type(), kAliveLogFile);
ASSERT_GT(log_file->LogNumber(), 0);
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, RecoveryWithLogDataForSomeCFs) {
// Test for regression of WAL cleanup missing files that don't contain data
// for every column family.
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Put(1, "foo", "v2"));
uint64_t earliest_log_nums[2];
for (int i = 0; i < 2; ++i) {
if (i > 0) {
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
}
VectorLogPtr log_files;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files));
if (log_files.size() > 0) {
earliest_log_nums[i] = log_files[0]->LogNumber();
} else {
earliest_log_nums[i] = std::numeric_limits<uint64_t>::max();
}
}
// Check at least the first WAL was cleaned up during the recovery.
ASSERT_LT(earliest_log_nums[0], earliest_log_nums[1]);
} while (ChangeWalOptions());
}
TEST_F(DBWALTest, RecoverWithLargeLog) {
do {
{
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "big1", std::string(200000, '1')));
ASSERT_OK(Put(1, "big2", std::string(200000, '2')));
ASSERT_OK(Put(1, "small3", std::string(10, '3')));
ASSERT_OK(Put(1, "small4", std::string(10, '4')));
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
}
// Make sure that if we re-open with a small write buffer size that
// we flush table files in the middle of a large log file.
Options options;
options.write_buffer_size = 100000;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 3);
ASSERT_EQ(std::string(200000, '1'), Get(1, "big1"));
ASSERT_EQ(std::string(200000, '2'), Get(1, "big2"));
ASSERT_EQ(std::string(10, '3'), Get(1, "small3"));
ASSERT_EQ(std::string(10, '4'), Get(1, "small4"));
ASSERT_GT(NumTableFilesAtLevel(0, 1), 1);
} while (ChangeWalOptions());
}
// In https://reviews.facebook.net/D20661 we change
// recovery behavior: previously for each log file each column family
// memtable was flushed, even it was empty. Now it's changed:
// we try to create the smallest number of table files by merging
// updates from multiple logs
TEST_F(DBWALTest, RecoverCheckFileAmountWithSmallWriteBuffer) {
Options options = CurrentOptions();
options.write_buffer_size = 5000000;
CreateAndReopenWithCF({"pikachu", "dobrynia", "nikitich"}, options);
// Since we will reopen DB with smaller write_buffer_size,
// each key will go to new SST file
ASSERT_OK(Put(1, Key(10), DummyString(1000000)));
ASSERT_OK(Put(1, Key(10), DummyString(1000000)));
ASSERT_OK(Put(1, Key(10), DummyString(1000000)));
ASSERT_OK(Put(1, Key(10), DummyString(1000000)));
ASSERT_OK(Put(3, Key(10), DummyString(1)));
// Make 'dobrynia' to be flushed and new WAL file to be created
ASSERT_OK(Put(2, Key(10), DummyString(7500000)));
ASSERT_OK(Put(2, Key(1), DummyString(1)));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[2]));
{
auto tables = ListTableFiles(env_, dbname_);
ASSERT_EQ(tables.size(), static_cast<size_t>(1));
// Make sure 'dobrynia' was flushed: check sst files amount
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(1));
}
// New WAL file
ASSERT_OK(Put(1, Key(1), DummyString(1)));
ASSERT_OK(Put(1, Key(1), DummyString(1)));
ASSERT_OK(Put(3, Key(10), DummyString(1)));
ASSERT_OK(Put(3, Key(10), DummyString(1)));
ASSERT_OK(Put(3, Key(10), DummyString(1)));
options.write_buffer_size = 4096;
options.arena_block_size = 4096;
ReopenWithColumnFamilies({"default", "pikachu", "dobrynia", "nikitich"},
options);
{
// No inserts => default is empty
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(0));
// First 4 keys goes to separate SSTs + 1 more SST for 2 smaller keys
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(5));
// 1 SST for big key + 1 SST for small one
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(2));
// 1 SST for all keys
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(1));
}
}
// In https://reviews.facebook.net/D20661 we change
// recovery behavior: previously for each log file each column family
// memtable was flushed, even it wasn't empty. Now it's changed:
// we try to create the smallest number of table files by merging
// updates from multiple logs
TEST_F(DBWALTest, RecoverCheckFileAmount) {
Options options = CurrentOptions();
options.write_buffer_size = 100000;
options.arena_block_size = 4 * 1024;
options.avoid_flush_during_recovery = false;
CreateAndReopenWithCF({"pikachu", "dobrynia", "nikitich"}, options);
ASSERT_OK(Put(0, Key(1), DummyString(1)));
ASSERT_OK(Put(1, Key(1), DummyString(1)));
ASSERT_OK(Put(2, Key(1), DummyString(1)));
// Make 'nikitich' memtable to be flushed
ASSERT_OK(Put(3, Key(10), DummyString(1002400)));
ASSERT_OK(Put(3, Key(1), DummyString(1)));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[3]));
// 4 memtable are not flushed, 1 sst file
{
auto tables = ListTableFiles(env_, dbname_);
ASSERT_EQ(tables.size(), static_cast<size_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(1));
}
// Memtable for 'nikitich' has flushed, new WAL file has opened
// 4 memtable still not flushed
// Write to new WAL file
ASSERT_OK(Put(0, Key(1), DummyString(1)));
ASSERT_OK(Put(1, Key(1), DummyString(1)));
ASSERT_OK(Put(2, Key(1), DummyString(1)));
// Fill up 'nikitich' one more time
ASSERT_OK(Put(3, Key(10), DummyString(1002400)));
// make it flush
ASSERT_OK(Put(3, Key(1), DummyString(1)));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[3]));
// There are still 4 memtable not flushed, and 2 sst tables
ASSERT_OK(Put(0, Key(1), DummyString(1)));
ASSERT_OK(Put(1, Key(1), DummyString(1)));
ASSERT_OK(Put(2, Key(1), DummyString(1)));
{
auto tables = ListTableFiles(env_, dbname_);
ASSERT_EQ(tables.size(), static_cast<size_t>(2));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(2));
}
ReopenWithColumnFamilies({"default", "pikachu", "dobrynia", "nikitich"},
options);
{
std::vector<uint64_t> table_files = ListTableFiles(env_, dbname_);
// Check, that records for 'default', 'dobrynia' and 'pikachu' from
// first, second and third WALs went to the same SST.
// So, there is 6 SSTs: three for 'nikitich', one for 'default', one for
// 'dobrynia', one for 'pikachu'
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(3));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(1));
}
}
TEST_F(DBWALTest, SyncMultipleLogs) {
const uint64_t kNumBatches = 2;
const int kBatchSize = 1000;
Options options = CurrentOptions();
options.create_if_missing = true;
options.write_buffer_size = 4096;
Reopen(options);
WriteBatch batch;
WriteOptions wo;
wo.sync = true;
for (uint64_t b = 0; b < kNumBatches; b++) {
batch.Clear();
for (int i = 0; i < kBatchSize; i++) {
ASSERT_OK(batch.Put(Key(i), DummyString(128)));
}
ASSERT_OK(dbfull()->Write(wo, &batch));
}
ASSERT_OK(dbfull()->SyncWAL());
}
TEST_F(DBWALTest, DISABLED_RecycleMultipleWalsCrash) {
Options options = CurrentOptions();
options.max_write_buffer_number = 5;
options.track_and_verify_wals_in_manifest = true;
options.max_bgerror_resume_count = 0; // manual resume
options.recycle_log_file_num = 3;
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
// Disable truncating recycled WALs to new size in posix env
// (approximating a crash)
SyncPoint::GetInstance()->SetCallBack(
"PosixWritableFile::Close",
[](void* arg) { *(static_cast<size_t*>(arg)) = 0; });
SyncPoint::GetInstance()->EnableProcessing();
// Re-open with desired options
DestroyAndReopen(options);
Defer closer([this]() { Close(); });
// Ensure WAL recycling wasn't sanitized away
ASSERT_EQ(db_->GetOptions().recycle_log_file_num,
options.recycle_log_file_num);
// Prepare external files for later ingestion
std::string sst_files_dir = dbname_ + "/sst_files/";
ASSERT_OK(DestroyDir(env_, sst_files_dir));
ASSERT_OK(env_->CreateDir(sst_files_dir));
std::string external_file1 = sst_files_dir + "file1.sst";
{
SstFileWriter sst_file_writer(EnvOptions(), options);
ASSERT_OK(sst_file_writer.Open(external_file1));
ASSERT_OK(sst_file_writer.Put("external1", "ex1"));
ExternalSstFileInfo file_info;
ASSERT_OK(sst_file_writer.Finish(&file_info));
}
std::string external_file2 = sst_files_dir + "file2.sst";
{
SstFileWriter sst_file_writer(EnvOptions(), options);
ASSERT_OK(sst_file_writer.Open(external_file2));
ASSERT_OK(sst_file_writer.Put("external2", "ex2"));
ExternalSstFileInfo file_info;
ASSERT_OK(sst_file_writer.Finish(&file_info));
}
// Populate some WALs to be recycled such that there will be extra data
// from an old incarnation of the WAL on recovery
ASSERT_OK(db_->PauseBackgroundWork());
ASSERT_OK(Put("ignore1", Random::GetTLSInstance()->RandomString(500)));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_SwitchMemtable());
ASSERT_OK(Put("ignore2", Random::GetTLSInstance()->RandomString(500)));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_SwitchMemtable());
ASSERT_OK(db_->ContinueBackgroundWork());
ASSERT_OK(Flush());
ASSERT_OK(Put("ignore3", Random::GetTLSInstance()->RandomString(500)));
ASSERT_OK(Flush());
// Verify expected log files (still there for recycling)
std::vector<FileAttributes> files;
int log_count = 0;
ASSERT_OK(options.env->GetChildrenFileAttributes(dbname_, &files));
for (const auto& f : files) {
if (EndsWith(f.name, ".log")) {
EXPECT_GT(f.size_bytes, 500);
++log_count;
}
}
EXPECT_EQ(log_count, 3);
// (Re-used recipe) Generate two inactive WALs and one active WAL, with a
// gap in sequence numbers to interfere with recovery
ASSERT_OK(db_->PauseBackgroundWork());
ASSERT_OK(Put("key1", "val1"));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_SwitchMemtable());
ASSERT_OK(Put("key2", "val2"));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_SwitchMemtable());
// Need a gap in sequence numbers, so e.g. ingest external file
// with an open snapshot
{
ManagedSnapshot snapshot(db_);
ASSERT_OK(
db_->IngestExternalFile({external_file1}, IngestExternalFileOptions()));
}
ASSERT_OK(Put("key3", "val3"));
ASSERT_OK(db_->SyncWAL());
// Need an SST file that is logically after that WAL, so that dropping WAL
// data is not a valid point in time.
{
ManagedSnapshot snapshot(db_);
ASSERT_OK(
db_->IngestExternalFile({external_file2}, IngestExternalFileOptions()));
}
// Approximate a crash, with respect to recycled WAL data extending past
// the end of the current WAL data (see SyncPoint callback above)
Close();
// Verify recycled log files haven't been truncated
files.clear();
log_count = 0;
ASSERT_OK(options.env->GetChildrenFileAttributes(dbname_, &files));
for (const auto& f : files) {
if (EndsWith(f.name, ".log")) {
EXPECT_GT(f.size_bytes, 500);
++log_count;
}
}
EXPECT_EQ(log_count, 3);
// Verify no data loss after reopen.
Reopen(options);
EXPECT_EQ("val1", Get("key1"));
EXPECT_EQ("val2", Get("key2")); // Passes because of adjacent seqnos
EXPECT_EQ("ex1", Get("external1"));
EXPECT_EQ("val3", Get("key3")); // <- ONLY FAILURE! (Not a point in time)
EXPECT_EQ("ex2", Get("external2"));
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(DBWALTest, SyncWalPartialFailure) {
class MyTestFileSystem : public FileSystemWrapper {
public:
explicit MyTestFileSystem(std::shared_ptr<FileSystem> base)
: FileSystemWrapper(std::move(base)) {}
static const char* kClassName() { return "MyTestFileSystem"; }
const char* Name() const override { return kClassName(); }
IOStatus NewWritableFile(const std::string& fname,
const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>* result,
IODebugContext* dbg) override {
IOStatus s = target()->NewWritableFile(fname, file_opts, result, dbg);
if (s.ok()) {
*result =
std::make_unique<MyTestWritableFile>(std::move(*result), *this);
}
return s;
}
AcqRelAtomic<uint32_t> syncs_before_failure_{UINT32_MAX};
protected:
class MyTestWritableFile : public FSWritableFileOwnerWrapper {
public:
MyTestWritableFile(std::unique_ptr<FSWritableFile>&& file,
MyTestFileSystem& fs)
: FSWritableFileOwnerWrapper(std::move(file)), fs_(fs) {}
IOStatus Sync(const IOOptions& options, IODebugContext* dbg) override {
int prev_val = fs_.syncs_before_failure_.FetchSub(1);
if (prev_val == 0) {
return IOStatus::IOError("fault");
} else {
return target()->Sync(options, dbg);
}
}
protected:
MyTestFileSystem& fs_;
};
};
Options options = CurrentOptions();
options.max_write_buffer_number = 4;
options.track_and_verify_wals_in_manifest = true;
options.max_bgerror_resume_count = 0; // manual resume
auto custom_fs =
std::make_shared<MyTestFileSystem>(options.env->GetFileSystem());
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(custom_fs));
options.env = fault_fs_env.get();
Reopen(options);
Defer closer([this]() { Close(); });
// This is the simplest way to get
// * one inactive WAL, synced
// * one inactive WAL, not synced, and
// * one active WAL, not synced
// with a single thread, to exercise as much logic as we reasonably can.
ASSERT_OK(db_->PauseBackgroundWork());
ASSERT_OK(Put("key1", "val1"));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_SwitchMemtable());
ASSERT_OK(db_->SyncWAL());
ASSERT_OK(Put("key2", "val2"));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_SwitchMemtable());
ASSERT_OK(Put("key3", "val3"));
// Allow 1 of the WALs to sync, but another won't
custom_fs->syncs_before_failure_.Store(1);
ASSERT_NOK(db_->SyncWAL());
// Stuck in this state. (This could previously cause a segfault.)
ASSERT_NOK(db_->SyncWAL());
// Can't Resume because WAL write failure is considered non-recoverable,
// regardless of the IOStatus itself. (Can/should be fixed?)
ASSERT_NOK(db_->Resume());
// Verify no data loss after reopen.
// Also Close() could previously crash in this state.
Reopen(options);
ASSERT_EQ("val1", Get("key1"));
ASSERT_EQ("val2", Get("key2"));
ASSERT_EQ("val3", Get("key3"));
}
// Github issue 1339. Prior the fix we read sequence id from the first log to
// a local variable, then keep increase the variable as we replay logs,
// ignoring actual sequence id of the records. This is incorrect if some writes
// come with WAL disabled.
TEST_F(DBWALTest, PartOfWritesWithWALDisabled) {
std::unique_ptr<FaultInjectionTestEnv> fault_env(
new FaultInjectionTestEnv(env_));
Options options = CurrentOptions();
options.env = fault_env.get();
options.disable_auto_compactions = true;
WriteOptions wal_on, wal_off;
wal_on.sync = true;
wal_on.disableWAL = false;
wal_off.disableWAL = true;
CreateAndReopenWithCF({"dummy"}, options);
ASSERT_OK(Put(1, "dummy", "d1", wal_on)); // seq id 1
ASSERT_OK(Put(1, "dummy", "d2", wal_off));
ASSERT_OK(Put(1, "dummy", "d3", wal_off));
ASSERT_OK(Put(0, "key", "v4", wal_on)); // seq id 4
ASSERT_OK(Flush(0));
ASSERT_OK(Put(0, "key", "v5", wal_on)); // seq id 5
ASSERT_EQ("v5", Get(0, "key"));
ASSERT_OK(dbfull()->FlushWAL(false));
// Simulate a crash.
fault_env->SetFilesystemActive(false);
Close();
fault_env->ResetState();
ReopenWithColumnFamilies({"default", "dummy"}, options);
// Prior to the fix, we may incorrectly recover "v5" with sequence id = 3.
ASSERT_EQ("v5", Get(0, "key"));
// Destroy DB before destruct fault_env.
Destroy(options);
}
//
// Test WAL recovery for the various modes available
//
class RecoveryTestHelper {
public:
// Number of WAL files to generate
static constexpr int kWALFilesCount = 10;
// Starting number for the WAL file name like 00010.log
static constexpr int kWALFileOffset = 10;
// Keys to be written per WAL file
static constexpr int kKeysPerWALFile = 133;
// Size of the value
static constexpr int kValueSize = 96;
// Create WAL files with values filled in
static void FillData(DBWALTestBase* test, const Options& options,
const size_t wal_count, size_t* count) {
// Calling internal functions requires sanitized options.
Options sanitized_options = SanitizeOptions(test->dbname_, options);
const ImmutableDBOptions db_options(sanitized_options);
*count = 0;
std::shared_ptr<Cache> table_cache = NewLRUCache(50, 0);
FileOptions file_options;
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
std::unique_ptr<VersionSet> versions;
std::unique_ptr<WalManager> wal_manager;
WriteController write_controller;
versions.reset(new VersionSet(
test->dbname_, &db_options, file_options, table_cache.get(),
&write_buffer_manager, &write_controller,
/*block_cache_tracer=*/nullptr,
/*io_tracer=*/nullptr, /*db_id=*/"", /*db_session_id=*/"",
options.daily_offpeak_time_utc,
/*error_handler=*/nullptr, /*read_only=*/false));
wal_manager.reset(
new WalManager(db_options, file_options, /*io_tracer=*/nullptr));
std::unique_ptr<log::Writer> current_log_writer;
for (size_t j = kWALFileOffset; j < wal_count + kWALFileOffset; j++) {
uint64_t current_log_number = j;
std::string fname = LogFileName(test->dbname_, current_log_number);
std::unique_ptr<WritableFileWriter> file_writer;
ASSERT_OK(WritableFileWriter::Create(db_options.env->GetFileSystem(),
fname, file_options, &file_writer,
nullptr));
log::Writer* log_writer =
new log::Writer(std::move(file_writer), current_log_number,
db_options.recycle_log_file_num > 0, false,
db_options.wal_compression);
ASSERT_OK(log_writer->AddCompressionTypeRecord(WriteOptions()));
current_log_writer.reset(log_writer);
WriteBatch batch;
for (int i = 0; i < kKeysPerWALFile; i++) {
std::string key = "key" + std::to_string((*count)++);
std::string value = test->DummyString(kValueSize);
ASSERT_NE(current_log_writer.get(), nullptr);
uint64_t seq = versions->LastSequence() + 1;
batch.Clear();
ASSERT_OK(batch.Put(key, value));
WriteBatchInternal::SetSequence(&batch, seq);
ASSERT_OK(current_log_writer->AddRecord(
WriteOptions(), WriteBatchInternal::Contents(&batch)));
versions->SetLastAllocatedSequence(seq);
versions->SetLastPublishedSequence(seq);
versions->SetLastSequence(seq);
}
}
}
// Recreate and fill the store with some data
static size_t FillData(DBWALTestBase* test, Options* options) {
options->create_if_missing = true;
test->DestroyAndReopen(*options);
test->Close();
size_t count = 0;
FillData(test, *options, kWALFilesCount, &count);
return count;
}
// Read back all the keys we wrote and return the number of keys found
static size_t GetData(DBWALTestBase* test) {
size_t count = 0;
for (size_t i = 0; i < kWALFilesCount * kKeysPerWALFile; i++) {
if (test->Get("key" + std::to_string(i)) != "NOT_FOUND") {
++count;
}
}
return count;
}
// Manuall corrupt the specified WAL
static void CorruptWAL(DBWALTestBase* test, const Options& options,
const double off, const double len,
const int wal_file_id, const bool trunc = false) {
Env* env = options.env;
std::string fname = LogFileName(test->dbname_, wal_file_id);
uint64_t size;
ASSERT_OK(env->GetFileSize(fname, &size));
ASSERT_GT(size, 0);
#ifdef OS_WIN
// Windows disk cache behaves differently. When we truncate
// the original content is still in the cache due to the original
// handle is still open. Generally, in Windows, one prohibits
// shared access to files and it is not needed for WAL but we allow
// it to induce corruption at various tests.
test->Close();
#endif
if (trunc) {
ASSERT_OK(
test::TruncateFile(env, fname, static_cast<uint64_t>(size * off)));
} else {
ASSERT_OK(test::CorruptFile(env, fname, static_cast<int>(size * off + 8),
static_cast<int>(size * len), false));
}
}
};
class DBWALTestWithParams : public DBWALTestBase,
public ::testing::WithParamInterface<
std::tuple<bool, int, int, CompressionType>> {
public:
DBWALTestWithParams() : DBWALTestBase("/db_wal_test_with_params") {}
};
INSTANTIATE_TEST_CASE_P(
Wal, DBWALTestWithParams,
::testing::Combine(::testing::Bool(), ::testing::Range(0, 4, 1),
::testing::Range(RecoveryTestHelper::kWALFileOffset,
RecoveryTestHelper::kWALFileOffset +
RecoveryTestHelper::kWALFilesCount,
1),
::testing::Values(CompressionType::kNoCompression,
CompressionType::kZSTD)));
class DBWALTestWithParamsVaryingRecoveryMode
: public DBWALTestBase,
public ::testing::WithParamInterface<
std::tuple<bool, int, int, WALRecoveryMode, CompressionType>> {
public:
DBWALTestWithParamsVaryingRecoveryMode()
: DBWALTestBase("/db_wal_test_with_params_mode") {}
};
INSTANTIATE_TEST_CASE_P(
Wal, DBWALTestWithParamsVaryingRecoveryMode,
::testing::Combine(
::testing::Bool(), ::testing::Range(0, 4, 1),
::testing::Range(RecoveryTestHelper::kWALFileOffset,
RecoveryTestHelper::kWALFileOffset +
RecoveryTestHelper::kWALFilesCount,
1),
::testing::Values(WALRecoveryMode::kTolerateCorruptedTailRecords,
WALRecoveryMode::kAbsoluteConsistency,
WALRecoveryMode::kPointInTimeRecovery,
WALRecoveryMode::kSkipAnyCorruptedRecords),
::testing::Values(CompressionType::kNoCompression,
CompressionType::kZSTD)));
// Test scope:
// - We expect to open the data store when there is incomplete trailing writes
// at the end of any of the logs
// - We do not expect to open the data store for corruption
TEST_P(DBWALTestWithParams, kTolerateCorruptedTailRecords) {
bool trunc = std::get<0>(GetParam()); // Corruption style
// Corruption offset position
int corrupt_offset = std::get<1>(GetParam());
int wal_file_id = std::get<2>(GetParam()); // WAL file
// Fill data for testing
Options options = CurrentOptions();
const size_t row_count = RecoveryTestHelper::FillData(this, &options);
// test checksum failure or parsing
RecoveryTestHelper::CorruptWAL(this, options, corrupt_offset * .3,
/*len%=*/.1, wal_file_id, trunc);
options.wal_recovery_mode = WALRecoveryMode::kTolerateCorruptedTailRecords;
if (trunc) {
options.create_if_missing = false;
ASSERT_OK(TryReopen(options));
const size_t recovered_row_count = RecoveryTestHelper::GetData(this);
ASSERT_TRUE(corrupt_offset == 0 || recovered_row_count > 0);
ASSERT_LT(recovered_row_count, row_count);
} else {
ASSERT_NOK(TryReopen(options));
}
}
// Test scope:
// We don't expect the data store to be opened if there is any corruption
// (leading, middle or trailing -- incomplete writes or corruption)
TEST_P(DBWALTestWithParams, kAbsoluteConsistency) {
// Verify clean slate behavior
Options options = CurrentOptions();
const size_t row_count = RecoveryTestHelper::FillData(this, &options);
options.create_if_missing = false;
ASSERT_OK(TryReopen(options));
ASSERT_EQ(RecoveryTestHelper::GetData(this), row_count);
bool trunc = std::get<0>(GetParam()); // Corruption style
// Corruption offset position
int corrupt_offset = std::get<1>(GetParam());
int wal_file_id = std::get<2>(GetParam()); // WAL file
// WAL compression type
CompressionType compression_type = std::get<3>(GetParam());
options.wal_compression = compression_type;
if (trunc && corrupt_offset == 0) {
return;
}
// fill with new date
RecoveryTestHelper::FillData(this, &options);
// corrupt the wal
RecoveryTestHelper::CorruptWAL(this, options, corrupt_offset * .33,
/*len%=*/.1, wal_file_id, trunc);
// verify
options.wal_recovery_mode = WALRecoveryMode::kAbsoluteConsistency;
options.create_if_missing = false;
ASSERT_NOK(TryReopen(options));
}
// Test scope:
// We don't expect the data store to be opened if there is any inconsistency
// between WAL and SST files
TEST_F(DBWALTest, kPointInTimeRecoveryCFConsistency) {
Options options = CurrentOptions();
options.avoid_flush_during_recovery = true;
// Create DB with multiple column families.
CreateAndReopenWithCF({"one", "two"}, options);
ASSERT_OK(Put(1, "key1", "val1"));
ASSERT_OK(Put(2, "key2", "val2"));
// Record the offset at this point
Env* env = options.env;
uint64_t wal_file_id = dbfull()->TEST_LogfileNumber();
std::string fname = LogFileName(dbname_, wal_file_id);
uint64_t offset_to_corrupt;
ASSERT_OK(env->GetFileSize(fname, &offset_to_corrupt));
ASSERT_GT(offset_to_corrupt, 0);
ASSERT_OK(Put(1, "key3", "val3"));
// Corrupt WAL at location of key3
ASSERT_OK(test::CorruptFile(env, fname, static_cast<int>(offset_to_corrupt),
4, false));
ASSERT_OK(Put(2, "key4", "val4"));
ASSERT_OK(Put(1, "key5", "val5"));
ASSERT_OK(Flush(2));
// PIT recovery & verify
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
ASSERT_NOK(TryReopenWithColumnFamilies({"default", "one", "two"}, options));
}
TEST_F(DBWALTest, RaceInstallFlushResultsWithWalObsoletion) {
Options options = CurrentOptions();
options.env = env_;
options.track_and_verify_wals_in_manifest = true;
// The following make sure there are two bg flush threads.
options.max_background_jobs = 8;
DestroyAndReopen(options);
const std::string cf1_name("cf1");
CreateAndReopenWithCF({cf1_name}, options);
assert(handles_.size() == 2);
{
dbfull()->TEST_LockMutex();
ASSERT_LE(2, dbfull()->GetBGJobLimits().max_flushes);
dbfull()->TEST_UnlockMutex();
}
ASSERT_OK(dbfull()->PauseBackgroundWork());
ASSERT_OK(db_->Put(WriteOptions(), handles_[1], "foo", "value"));
ASSERT_OK(db_->Put(WriteOptions(), "foo", "value"));
ASSERT_OK(dbfull()->TEST_FlushMemTable(
/*wait=*/false, /*allow_write_stall=*/true, handles_[1]));
ASSERT_OK(db_->Put(WriteOptions(), "foo", "value"));
ASSERT_OK(dbfull()->TEST_FlushMemTable(
/*wait=*/false, /*allow_write_stall=*/true, handles_[0]));
bool called = false;
std::atomic<int> bg_flush_threads{0};
std::atomic<bool> wal_synced{false};
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCallFlush:start", [&](void* /*arg*/) {
int cur = bg_flush_threads.load();
int desired = cur + 1;
if (cur > 0 ||
!bg_flush_threads.compare_exchange_strong(cur, desired)) {
while (!wal_synced.load()) {
// Wait until the other bg flush thread finishes committing WAL sync
// operation to the MANIFEST.
}
}
});
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::FlushMemTableToOutputFile:CommitWal:1",
[&](void* /*arg*/) { wal_synced.store(true); });
// This callback will be called when the first bg flush thread reaches the
// point before entering the MANIFEST write queue after flushing the SST
// file.
// The purpose of the sync points here is to ensure both bg flush threads
// finish computing `min_wal_number_to_keep` before any of them updates the
// `log_number` for the column family that's being flushed.
SyncPoint::GetInstance()->SetCallBack(
"MemTableList::TryInstallMemtableFlushResults:AfterComputeMinWalToKeep",
[&](void* /*arg*/) {
dbfull()->mutex()->AssertHeld();
if (!called) {
// We are the first bg flush thread in the MANIFEST write queue.
// We set up the dependency between sync points for two threads that
// will be executing the same code.
// For the interleaving of events, see
// https://github.com/facebook/rocksdb/pull/9715.
// bg flush thread1 will release the db mutex while in the MANIFEST
// write queue. In the meantime, bg flush thread2 locks db mutex and
// computes the min_wal_number_to_keep (before thread1 writes to
// MANIFEST thus before cf1->log_number is updated). Bg thread2 joins
// the MANIFEST write queue afterwards and bg flush thread1 proceeds
// with writing to MANIFEST.
called = true;
SyncPoint::GetInstance()->LoadDependency({
{"VersionSet::LogAndApply:WriteManifestStart",
"DBWALTest::RaceInstallFlushResultsWithWalObsoletion:BgFlush2"},
{"DBWALTest::RaceInstallFlushResultsWithWalObsoletion:BgFlush2",
"VersionSet::LogAndApply:WriteManifest"},
});
} else {
// The other bg flush thread has already been in the MANIFEST write
// queue, and we are after.
TEST_SYNC_POINT(
"DBWALTest::RaceInstallFlushResultsWithWalObsoletion:BgFlush2");
}
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(dbfull()->ContinueBackgroundWork());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[0]));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_TRUE(called);
Close();
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
DB* db1 = nullptr;
Status s = DB::OpenForReadOnly(options, dbname_, &db1);
ASSERT_OK(s);
assert(db1);
delete db1;
}
TEST_F(DBWALTest, FixSyncWalOnObseletedWalWithNewManifestCausingMissingWAL) {
Options options = CurrentOptions();
// Small size to force manifest creation
options.max_manifest_file_size = 1;
options.track_and_verify_wals_in_manifest = true;
DestroyAndReopen(options);
// Accumulate memtable m1 and create the 1st wal (i.e, 4.log)
ASSERT_OK(Put(Key(1), ""));
ASSERT_OK(Put(Key(2), ""));
ASSERT_OK(Put(Key(3), ""));
const std::string wal_file_path = db_->GetName() + "/000004.log";
// Coerce the following sequence of events:
// (1) Flush() marks 4.log to be obsoleted, 8.log to be the latest (i.e,
// active) log and release the lock
// (2) SyncWAL() proceeds with the lock. It
// creates a new manifest and syncs all the inactive wals before the latest
// (i.e, active log), which is 4.log. Note that SyncWAL() is not aware of the
// fact that 4.log has marked as to be obseleted. Such wal
// sync will then add a WAL addition record of 4.log to the new manifest
// without any special treatment. Prior to the fix, there is no WAL deletion
// record to offset it. (3) BackgroundFlush() will eventually purge 4.log.
bool wal_synced = false;
SyncPoint::GetInstance()->SetCallBack(
"FindObsoleteFiles::PostMutexUnlock", [&](void*) {
ASSERT_OK(env_->FileExists(wal_file_path));
uint64_t pre_sync_wal_manifest_no =
dbfull()->TEST_Current_Manifest_FileNo();
ASSERT_OK(db_->SyncWAL());
uint64_t post_sync_wal_manifest_no =
dbfull()->TEST_Current_Manifest_FileNo();
bool new_manifest_created =
post_sync_wal_manifest_no == pre_sync_wal_manifest_no + 1;
ASSERT_TRUE(new_manifest_created);
wal_synced = true;
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForBackgroundWork());
ASSERT_TRUE(wal_synced);
// BackgroundFlush() purged 4.log
// because the memtable associated with the WAL was flushed and new WAL was
// created (i.e, 8.log)
ASSERT_TRUE(env_->FileExists(wal_file_path).IsNotFound());
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->DisableProcessing();
// To verify the corruption of "Missing WAL with log number: 4" under
// `options.track_and_verify_wals_in_manifest = true` is fixed.
//
// Before the fix, `db_->SyncWAL()` will sync and record WAL addtion of the
// obseleted WAL 4.log in a new manifest without any special treament.
// This will result in missing-wal corruption in DB::Reopen().
Status s = TryReopen(options);
EXPECT_OK(s);
}
// Test scope:
// - We expect to open data store under all circumstances
// - We expect only data upto the point where the first error was encountered
TEST_P(DBWALTestWithParams, kPointInTimeRecovery) {
const int maxkeys =
RecoveryTestHelper::kWALFilesCount * RecoveryTestHelper::kKeysPerWALFile;
bool trunc = std::get<0>(GetParam()); // Corruption style
// Corruption offset position
int corrupt_offset = std::get<1>(GetParam());
int wal_file_id = std::get<2>(GetParam()); // WAL file
// WAL compression type
CompressionType compression_type = std::get<3>(GetParam());
// Fill data for testing
Options options = CurrentOptions();
options.wal_compression = compression_type;
const size_t row_count = RecoveryTestHelper::FillData(this, &options);
// Corrupt the wal
// The offset here was 0.3 which cuts off right at the end of a
// valid fragment after wal zstd compression checksum is enabled,
// so changed the value to 0.33.
RecoveryTestHelper::CorruptWAL(this, options, corrupt_offset * .33,
/*len%=*/.1, wal_file_id, trunc);
// Verify
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
options.create_if_missing = false;
ASSERT_OK(TryReopen(options));
// Probe data for invariants
size_t recovered_row_count = RecoveryTestHelper::GetData(this);
ASSERT_LT(recovered_row_count, row_count);
// Verify a prefix of keys were recovered. But not in the case of full WAL
// truncation, because we have no way to know there was a corruption when
// truncation happened on record boundaries (preventing recovery holes in
// that case requires using `track_and_verify_wals_in_manifest`).
if (!trunc || corrupt_offset != 0) {
bool expect_data = true;
for (size_t k = 0; k < maxkeys; ++k) {
bool found = Get("key" + std::to_string(k)) != "NOT_FOUND";
if (expect_data && !found) {
expect_data = false;
}
ASSERT_EQ(found, expect_data);
}
}
const size_t min = RecoveryTestHelper::kKeysPerWALFile *
(wal_file_id - RecoveryTestHelper::kWALFileOffset);
ASSERT_GE(recovered_row_count, min);
if (!trunc && corrupt_offset != 0) {
const size_t max = RecoveryTestHelper::kKeysPerWALFile *
(wal_file_id - RecoveryTestHelper::kWALFileOffset + 1);
ASSERT_LE(recovered_row_count, max);
}
}
// Test scope:
// - We expect to open the data store under all scenarios
// - We expect to have recovered records past the corruption zone
TEST_P(DBWALTestWithParams, kSkipAnyCorruptedRecords) {
bool trunc = std::get<0>(GetParam()); // Corruption style
// Corruption offset position
int corrupt_offset = std::get<1>(GetParam());
int wal_file_id = std::get<2>(GetParam()); // WAL file
// WAL compression type
CompressionType compression_type = std::get<3>(GetParam());
// Fill data for testing
Options options = CurrentOptions();
options.wal_compression = compression_type;
const size_t row_count = RecoveryTestHelper::FillData(this, &options);
// Corrupt the WAL
RecoveryTestHelper::CorruptWAL(this, options, corrupt_offset * .3,
/*len%=*/.1, wal_file_id, trunc);
// Verify behavior
options.wal_recovery_mode = WALRecoveryMode::kSkipAnyCorruptedRecords;
options.create_if_missing = false;
ASSERT_OK(TryReopen(options));
// Probe data for invariants
size_t recovered_row_count = RecoveryTestHelper::GetData(this);
ASSERT_LT(recovered_row_count, row_count);
if (!trunc) {
ASSERT_TRUE(corrupt_offset != 0 || recovered_row_count > 0);
}
}
TEST_F(DBWALTest, AvoidFlushDuringRecovery) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.avoid_flush_during_recovery = false;
// Test with flush after recovery.
Reopen(options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", "v3"));
ASSERT_OK(Put("bar", "v4"));
ASSERT_EQ(1, TotalTableFiles());
// Reopen DB. Check if WAL logs flushed.
Reopen(options);
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v4", Get("bar"));
ASSERT_EQ(2, TotalTableFiles());
// Test without flush after recovery.
options.avoid_flush_during_recovery = true;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "v5"));
ASSERT_OK(Put("bar", "v6"));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", "v7"));
ASSERT_OK(Put("bar", "v8"));
ASSERT_EQ(1, TotalTableFiles());
// Reopen DB. WAL logs should not be flushed this time.
Reopen(options);
ASSERT_EQ("v7", Get("foo"));
ASSERT_EQ("v8", Get("bar"));
ASSERT_EQ(1, TotalTableFiles());
// Force flush with allow_2pc.
options.avoid_flush_during_recovery = true;
options.allow_2pc = true;
ASSERT_OK(Put("foo", "v9"));
ASSERT_OK(Put("bar", "v10"));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", "v11"));
ASSERT_OK(Put("bar", "v12"));
Reopen(options);
ASSERT_EQ("v11", Get("foo"));
ASSERT_EQ("v12", Get("bar"));
ASSERT_EQ(3, TotalTableFiles());
}
TEST_F(DBWALTest, WalCleanupAfterAvoidFlushDuringRecovery) {
// Verifies WAL files that were present during recovery, but not flushed due
// to avoid_flush_during_recovery, will be considered for deletion at a later
// stage. We check at least one such file is deleted during Flush().
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.avoid_flush_during_recovery = true;
Reopen(options);
ASSERT_OK(Put("foo", "v1"));
Reopen(options);
for (int i = 0; i < 2; ++i) {
if (i > 0) {
// Flush() triggers deletion of obsolete tracked files
ASSERT_OK(Flush());
}
VectorLogPtr log_files;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files));
if (i == 0) {
ASSERT_GT(log_files.size(), 0);
} else {
ASSERT_EQ(0, log_files.size());
}
}
}
TEST_F(DBWALTest, RecoverWithoutFlush) {
Options options = CurrentOptions();
options.avoid_flush_during_recovery = true;
options.create_if_missing = false;
options.disable_auto_compactions = true;
options.write_buffer_size = 64 * 1024 * 1024;
size_t count = RecoveryTestHelper::FillData(this, &options);
auto validateData = [this, count]() {
for (size_t i = 0; i < count; i++) {
ASSERT_NE(Get("key" + std::to_string(i)), "NOT_FOUND");
}
};
Reopen(options);
validateData();
// Insert some data without flush
ASSERT_OK(Put("foo", "foo_v1"));
ASSERT_OK(Put("bar", "bar_v1"));
Reopen(options);
validateData();
ASSERT_EQ(Get("foo"), "foo_v1");
ASSERT_EQ(Get("bar"), "bar_v1");
// Insert again and reopen
ASSERT_OK(Put("foo", "foo_v2"));
ASSERT_OK(Put("bar", "bar_v2"));
Reopen(options);
validateData();
ASSERT_EQ(Get("foo"), "foo_v2");
ASSERT_EQ(Get("bar"), "bar_v2");
// manual flush and insert again
ASSERT_OK(Flush());
ASSERT_EQ(Get("foo"), "foo_v2");
ASSERT_EQ(Get("bar"), "bar_v2");
ASSERT_OK(Put("foo", "foo_v3"));
ASSERT_OK(Put("bar", "bar_v3"));
Reopen(options);
validateData();
ASSERT_EQ(Get("foo"), "foo_v3");
ASSERT_EQ(Get("bar"), "bar_v3");
}
TEST_F(DBWALTest, RecoverWithoutFlushMultipleCF) {
const std::string kSmallValue = "v";
const std::string kLargeValue = DummyString(1024);
Options options = CurrentOptions();
options.avoid_flush_during_recovery = true;
options.create_if_missing = false;
options.disable_auto_compactions = true;
auto countWalFiles = [this]() {
VectorLogPtr log_files;
if (!dbfull()->GetSortedWalFiles(log_files).ok()) {
return size_t{0};
}
return log_files.size();
};
// Create DB with multiple column families and multiple log files.
CreateAndReopenWithCF({"one", "two"}, options);
ASSERT_OK(Put(0, "key1", kSmallValue));
ASSERT_OK(Put(1, "key2", kLargeValue));
ASSERT_OK(Flush(1));
ASSERT_EQ(1, countWalFiles());
ASSERT_OK(Put(0, "key3", kSmallValue));
ASSERT_OK(Put(2, "key4", kLargeValue));
ASSERT_OK(Flush(2));
ASSERT_EQ(2, countWalFiles());
// Reopen, insert and flush.
options.db_write_buffer_size = 64 * 1024 * 1024;
ReopenWithColumnFamilies({"default", "one", "two"}, options);
ASSERT_EQ(Get(0, "key1"), kSmallValue);
ASSERT_EQ(Get(1, "key2"), kLargeValue);
ASSERT_EQ(Get(0, "key3"), kSmallValue);
ASSERT_EQ(Get(2, "key4"), kLargeValue);
// Insert more data.
ASSERT_OK(Put(0, "key5", kLargeValue));
ASSERT_OK(Put(1, "key6", kLargeValue));
ASSERT_EQ(3, countWalFiles());
ASSERT_OK(Flush(1));
ASSERT_OK(Put(2, "key7", kLargeValue));
ASSERT_OK(dbfull()->FlushWAL(false));
ASSERT_EQ(4, countWalFiles());
// Reopen twice and validate.
for (int i = 0; i < 2; i++) {
ReopenWithColumnFamilies({"default", "one", "two"}, options);
ASSERT_EQ(Get(0, "key1"), kSmallValue);
ASSERT_EQ(Get(1, "key2"), kLargeValue);
ASSERT_EQ(Get(0, "key3"), kSmallValue);
ASSERT_EQ(Get(2, "key4"), kLargeValue);
ASSERT_EQ(Get(0, "key5"), kLargeValue);
ASSERT_EQ(Get(1, "key6"), kLargeValue);
ASSERT_EQ(Get(2, "key7"), kLargeValue);
ASSERT_EQ(4, countWalFiles());
}
}
// In this test we are trying to do the following:
// 1. Create a DB with corrupted WAL log;
// 2. Open with avoid_flush_during_recovery = true;
// 3. Append more data without flushing, which creates new WAL log.
// 4. Open again. See if it can correctly handle previous corruption.
TEST_P(DBWALTestWithParamsVaryingRecoveryMode,
RecoverFromCorruptedWALWithoutFlush) {
const int kAppendKeys = 100;
Options options = CurrentOptions();
options.avoid_flush_during_recovery = true;
options.create_if_missing = false;
options.disable_auto_compactions = true;
options.write_buffer_size = 64 * 1024 * 1024;
auto getAll = [this]() {
std::vector<std::pair<std::string, std::string>> data;
ReadOptions ropt;
Iterator* iter = dbfull()->NewIterator(ropt);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
data.emplace_back(iter->key().ToString(), iter->value().ToString());
}
EXPECT_OK(iter->status());
delete iter;
return data;
};
bool trunc = std::get<0>(GetParam()); // Corruption style
// Corruption offset position
int corrupt_offset = std::get<1>(GetParam());
int wal_file_id = std::get<2>(GetParam()); // WAL file
WALRecoveryMode recovery_mode = std::get<3>(GetParam());
// WAL compression type
CompressionType compression_type = std::get<4>(GetParam());
options.wal_recovery_mode = recovery_mode;
options.wal_compression = compression_type;
// Create corrupted WAL
RecoveryTestHelper::FillData(this, &options);
RecoveryTestHelper::CorruptWAL(this, options, corrupt_offset * .3,
/*len%=*/.1, wal_file_id, trunc);
// Skip the test if DB won't open.
if (!TryReopen(options).ok()) {
ASSERT_TRUE(options.wal_recovery_mode ==
WALRecoveryMode::kAbsoluteConsistency ||
(!trunc && options.wal_recovery_mode ==
WALRecoveryMode::kTolerateCorruptedTailRecords));
return;
}
ASSERT_OK(TryReopen(options));
// Append some more data.
for (int k = 0; k < kAppendKeys; k++) {
std::string key = "extra_key" + std::to_string(k);
std::string value = DummyString(RecoveryTestHelper::kValueSize);
ASSERT_OK(Put(key, value));
}
// Save data for comparison.
auto data = getAll();
// Reopen. Verify data.
ASSERT_OK(TryReopen(options));
auto actual_data = getAll();
ASSERT_EQ(data, actual_data);
}
// Tests that total log size is recovered if we set
// avoid_flush_during_recovery=true.
// Flush should trigger if max_total_wal_size is reached.
TEST_F(DBWALTest, RestoreTotalLogSizeAfterRecoverWithoutFlush) {
auto test_listener = std::make_shared<FlushCounterListener>();
test_listener->expected_flush_reason = FlushReason::kWalFull;
constexpr size_t kKB = 1024;
constexpr size_t kMB = 1024 * 1024;
Options options = CurrentOptions();
options.avoid_flush_during_recovery = true;
options.max_total_wal_size = 1 * kMB;
options.listeners.push_back(test_listener);
// Have to open DB in multi-CF mode to trigger flush when
// max_total_wal_size is reached.
CreateAndReopenWithCF({"one"}, options);
// Write some keys and we will end up with one log file which is slightly
// smaller than 1MB.
std::string value_100k(100 * kKB, 'v');
std::string value_300k(300 * kKB, 'v');
ASSERT_OK(Put(0, "foo", "v1"));
for (int i = 0; i < 9; i++) {
ASSERT_OK(Put(1, "key" + std::to_string(i), value_100k));
}
// Get log files before reopen.
VectorLogPtr log_files_before;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_before));
ASSERT_EQ(1, log_files_before.size());
uint64_t log_size_before = log_files_before[0]->SizeFileBytes();
ASSERT_GT(log_size_before, 900 * kKB);
ASSERT_LT(log_size_before, 1 * kMB);
ReopenWithColumnFamilies({"default", "one"}, options);
// Write one more value to make log larger than 1MB.
ASSERT_OK(Put(1, "bar", value_300k));
// Get log files again. A new log file will be opened.
VectorLogPtr log_files_after_reopen;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_after_reopen));
ASSERT_EQ(2, log_files_after_reopen.size());
ASSERT_EQ(log_files_before[0]->LogNumber(),
log_files_after_reopen[0]->LogNumber());
ASSERT_GT(log_files_after_reopen[0]->SizeFileBytes() +
log_files_after_reopen[1]->SizeFileBytes(),
1 * kMB);
// Write one more key to trigger flush.
ASSERT_OK(Put(0, "foo", "v2"));
for (auto* h : handles_) {
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(h));
}
// Flushed two column families.
ASSERT_EQ(2, test_listener->count.load());
}
#if defined(ROCKSDB_PLATFORM_POSIX)
#if defined(ROCKSDB_FALLOCATE_PRESENT)
// Tests that we will truncate the preallocated space of the last log from
// previous.
TEST_F(DBWALTest, TruncateLastLogAfterRecoverWithoutFlush) {
constexpr size_t kKB = 1024;
Options options = CurrentOptions();
options.env = env_;
options.avoid_flush_during_recovery = true;
if (mem_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem environment");
return;
}
if (!IsFallocateSupported()) {
return;
}
DestroyAndReopen(options);
size_t preallocated_size =
dbfull()->TEST_GetWalPreallocateBlockSize(options.write_buffer_size);
ASSERT_OK(Put("foo", "v1"));
VectorLogPtr log_files_before;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_before));
ASSERT_EQ(1, log_files_before.size());
auto& file_before = log_files_before[0];
ASSERT_LT(file_before->SizeFileBytes(), 1 * kKB);
// The log file has preallocated space.
ASSERT_GE(GetAllocatedFileSize(dbname_ + file_before->PathName()),
preallocated_size);
Reopen(options);
VectorLogPtr log_files_after;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_after));
ASSERT_EQ(1, log_files_after.size());
ASSERT_LT(log_files_after[0]->SizeFileBytes(), 1 * kKB);
// The preallocated space should be truncated.
ASSERT_LT(GetAllocatedFileSize(dbname_ + file_before->PathName()),
preallocated_size);
}
// Tests that we will truncate the preallocated space of the last log from
// previous.
TEST_F(DBWALTest, TruncateLastLogAfterRecoverWithFlush) {
constexpr size_t kKB = 1024;
Options options = CurrentOptions();
options.env = env_;
options.avoid_flush_during_recovery = false;
options.avoid_flush_during_shutdown = true;
if (mem_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem environment");
return;
}
if (!IsFallocateSupported()) {
return;
}
DestroyAndReopen(options);
size_t preallocated_size =
dbfull()->TEST_GetWalPreallocateBlockSize(options.write_buffer_size);
ASSERT_OK(Put("foo", "v1"));
VectorLogPtr log_files_before;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_before));
ASSERT_EQ(1, log_files_before.size());
auto& file_before = log_files_before[0];
ASSERT_LT(file_before->SizeFileBytes(), 1 * kKB);
ASSERT_GE(GetAllocatedFileSize(dbname_ + file_before->PathName()),
preallocated_size);
// The log file has preallocated space.
Close();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::PurgeObsoleteFiles:Begin",
"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterRecover"},
{"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterTruncate",
"DBImpl::DeleteObsoleteFileImpl::BeforeDeletion"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
port::Thread reopen_thread([&]() { Reopen(options); });
TEST_SYNC_POINT(
"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterRecover");
// After the flush during Open, the log file should get deleted. However,
// if the process is in a crash loop, the log file may not get
// deleted and thte preallocated space will keep accumulating. So we need
// to ensure it gets trtuncated.
EXPECT_LT(GetAllocatedFileSize(dbname_ + file_before->PathName()),
preallocated_size);
TEST_SYNC_POINT(
"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterTruncate");
reopen_thread.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBWALTest, TruncateLastLogAfterRecoverWALEmpty) {
Options options = CurrentOptions();
options.env = env_;
options.avoid_flush_during_recovery = false;
if (mem_env_ || encrypted_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem/non-encrypted environment");
return;
}
if (!IsFallocateSupported()) {
return;
}
DestroyAndReopen(options);
size_t preallocated_size =
dbfull()->TEST_GetWalPreallocateBlockSize(options.write_buffer_size);
Close();
std::vector<std::string> filenames;
std::string last_log;
uint64_t last_log_num = 0;
ASSERT_OK(env_->GetChildren(dbname_, &filenames));
for (const auto& fname : filenames) {
uint64_t number;
FileType type;
if (ParseFileName(fname, &number, &type, nullptr)) {
if (type == kWalFile && number > last_log_num) {
last_log = fname;
}
}
}
ASSERT_NE(last_log, "");
last_log = dbname_ + '/' + last_log;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::PurgeObsoleteFiles:Begin",
"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterRecover"},
{"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterTruncate",
"DBImpl::DeleteObsoleteFileImpl::BeforeDeletion"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PosixWritableFile::Close",
[](void* arg) { *(static_cast<size_t*>(arg)) = 0; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Preallocate space for the empty log file. This could happen if WAL data
// was buffered in memory and the process crashed.
std::unique_ptr<WritableFile> log_file;
ASSERT_OK(env_->ReopenWritableFile(last_log, &log_file, EnvOptions()));
log_file->SetPreallocationBlockSize(preallocated_size);
log_file->PrepareWrite(0, 4096);
log_file.reset();
ASSERT_GE(GetAllocatedFileSize(last_log), preallocated_size);
port::Thread reopen_thread([&]() { Reopen(options); });
TEST_SYNC_POINT(
"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterRecover");
// The preallocated space should be truncated.
EXPECT_LT(GetAllocatedFileSize(last_log), preallocated_size);
TEST_SYNC_POINT(
"DBWALTest::TruncateLastLogAfterRecoverWithFlush:AfterTruncate");
reopen_thread.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(DBWALTest, ReadOnlyRecoveryNoTruncate) {
constexpr size_t kKB = 1024;
Options options = CurrentOptions();
options.env = env_;
options.avoid_flush_during_recovery = true;
if (mem_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem environment");
return;
}
if (!IsFallocateSupported()) {
return;
}
// create DB and close with file truncate disabled
std::atomic_bool enable_truncate{false};
SyncPoint::GetInstance()->SetCallBack(
"PosixWritableFile::Close", [&](void* arg) {
if (!enable_truncate) {
*(static_cast<size_t*>(arg)) = 0;
}
});
SyncPoint::GetInstance()->EnableProcessing();
DestroyAndReopen(options);
size_t preallocated_size =
dbfull()->TEST_GetWalPreallocateBlockSize(options.write_buffer_size);
ASSERT_OK(Put("foo", "v1"));
VectorLogPtr log_files_before;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_before));
ASSERT_EQ(1, log_files_before.size());
auto& file_before = log_files_before[0];
ASSERT_LT(file_before->SizeFileBytes(), 1 * kKB);
// The log file has preallocated space.
auto db_size = GetAllocatedFileSize(dbname_ + file_before->PathName());
ASSERT_GE(db_size, preallocated_size);
Close();
// enable truncate and open DB as readonly, the file should not be truncated
// and DB size is not changed.
enable_truncate = true;
ASSERT_OK(ReadOnlyReopen(options));
VectorLogPtr log_files_after;
ASSERT_OK(dbfull()->GetSortedWalFiles(log_files_after));
ASSERT_EQ(1, log_files_after.size());
ASSERT_LT(log_files_after[0]->SizeFileBytes(), 1 * kKB);
ASSERT_EQ(log_files_after[0]->PathName(), file_before->PathName());
// The preallocated space should NOT be truncated.
// the DB size is almost the same.
ASSERT_NEAR(GetAllocatedFileSize(dbname_ + file_before->PathName()), db_size,
db_size / 100);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
#endif // ROCKSDB_FALLOCATE_PRESENT
#endif // ROCKSDB_PLATFORM_POSIX
TEST_F(DBWALTest, WalInManifestButNotInSortedWals) {
Options options = CurrentOptions();
options.track_and_verify_wals_in_manifest = true;
options.wal_recovery_mode = WALRecoveryMode::kAbsoluteConsistency;
// Build a way to make wal files selectively go missing
bool wals_go_missing = false;
struct MissingWalFs : public FileSystemWrapper {
MissingWalFs(const std::shared_ptr<FileSystem>& t,
bool* _wals_go_missing_flag)
: FileSystemWrapper(t), wals_go_missing_flag(_wals_go_missing_flag) {}
bool* wals_go_missing_flag;
IOStatus GetChildren(const std::string& dir, const IOOptions& io_opts,
std::vector<std::string>* r,
IODebugContext* dbg) override {
IOStatus s = target_->GetChildren(dir, io_opts, r, dbg);
if (s.ok() && *wals_go_missing_flag) {
for (size_t i = 0; i < r->size();) {
if (EndsWith(r->at(i), ".log")) {
r->erase(r->begin() + i);
} else {
++i;
}
}
}
return s;
}
const char* Name() const override { return "MissingWalFs"; }
};
auto my_fs =
std::make_shared<MissingWalFs>(env_->GetFileSystem(), &wals_go_missing);
std::unique_ptr<Env> my_env(NewCompositeEnv(my_fs));
options.env = my_env.get();
CreateAndReopenWithCF({"blah"}, options);
// Currently necessary to get a WAL tracked in manifest; see
// https://github.com/facebook/rocksdb/issues/10080
ASSERT_OK(Put(0, "x", "y"));
ASSERT_OK(db_->SyncWAL());
ASSERT_OK(Put(1, "x", "y"));
ASSERT_OK(db_->SyncWAL());
ASSERT_OK(Flush(1));
ASSERT_FALSE(dbfull()->GetVersionSet()->GetWalSet().GetWals().empty());
std::vector<std::unique_ptr<LogFile>> wals;
ASSERT_OK(db_->GetSortedWalFiles(wals));
wals_go_missing = true;
ASSERT_NOK(db_->GetSortedWalFiles(wals));
wals_go_missing = false;
Close();
}
TEST_F(DBWALTest, WalTermTest) {
Options options = CurrentOptions();
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "bar"));
WriteOptions wo;
wo.sync = true;
wo.disableWAL = false;
WriteBatch batch;
ASSERT_OK(batch.Put("foo", "bar"));
batch.MarkWalTerminationPoint();
ASSERT_OK(batch.Put("foo2", "bar2"));
ASSERT_OK(dbfull()->Write(wo, &batch));
// make sure we can re-open it.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
ASSERT_EQ("bar", Get(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo2"));
}
TEST_F(DBWALTest, GetCompressedWalsAfterSync) {
if (db_->GetOptions().wal_compression == kNoCompression) {
ROCKSDB_GTEST_BYPASS("stream compression not present");
return;
}
Options options = GetDefaultOptions();
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
options.create_if_missing = true;
options.env = env_;
options.avoid_flush_during_recovery = true;
options.track_and_verify_wals_in_manifest = true;
// Enable WAL compression so that the newly-created WAL will be non-empty
// after DB open, even if point-in-time WAL recovery encounters no
// corruption.
options.wal_compression = kZSTD;
DestroyAndReopen(options);
// Write something to memtable and WAL so that log_empty_ will be false after
// next DB::Open().
ASSERT_OK(Put("a", "v"));
Reopen(options);
// New WAL is created, thanks to !log_empty_.
ASSERT_OK(dbfull()->TEST_SwitchWAL());
ASSERT_OK(Put("b", "v"));
ASSERT_OK(db_->SyncWAL());
VectorLogPtr wals;
Status s = dbfull()->GetSortedWalFiles(wals);
ASSERT_OK(s);
}
TEST_F(DBWALTest, EmptyWalReopenTest) {
Options options = CurrentOptions();
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
// make sure we can re-open it.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
{
std::vector<std::string> files;
int num_wal_files = 0;
ASSERT_OK(env_->GetChildren(dbname_, &files));
for (const auto& file : files) {
uint64_t number = 0;
FileType type = kWalFile;
if (ParseFileName(file, &number, &type) && type == kWalFile) {
num_wal_files++;
}
}
ASSERT_EQ(num_wal_files, 1);
}
}
TEST_F(DBWALTest, RecoveryFlushSwitchWALOnEmptyMemtable) {
Options options = CurrentOptions();
auto fault_fs = std::make_shared<FaultInjectionTestFS>(FileSystem::Default());
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
options.env = fault_fs_env.get();
options.avoid_flush_during_shutdown = true;
DestroyAndReopen(options);
// Make sure the memtable switch in recovery flush happened after test checks
// the memtable is empty.
SyncPoint::GetInstance()->LoadDependency(
{{"DBWALTest.RecoveryFlushSwitchWALOnEmptyMemtable:"
"AfterCheckMemtableEmpty",
"RecoverFromRetryableBGIOError:BeforeStart"}});
SyncPoint::GetInstance()->EnableProcessing();
fault_fs->SetThreadLocalErrorContext(
FaultInjectionIOType::kMetadataWrite, 7 /* seed*/, 1 /* one_in */,
true /* retryable */, false /* has_data_loss*/);
fault_fs->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
WriteOptions wo;
wo.sync = true;
Status s = Put("k", "old_v", wo);
ASSERT_TRUE(s.IsIOError());
// To verify the key is not in memtable nor SST
ASSERT_TRUE(static_cast<ColumnFamilyHandleImpl*>(db_->DefaultColumnFamily())
->cfd()
->mem()
->IsEmpty());
ASSERT_EQ("NOT_FOUND", Get("k"));
TEST_SYNC_POINT(
"DBWALTest.RecoveryFlushSwitchWALOnEmptyMemtable:"
"AfterCheckMemtableEmpty");
SyncPoint::GetInstance()->DisableProcessing();
fault_fs->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
// Keep trying write until recovery of the previous IO error finishes
while (!s.ok()) {
options.env->SleepForMicroseconds(1000);
s = Put("k", "new_v");
}
// If recovery flush didn't switch WAL, we will end up having two duplicate
// WAL entries with same seqno and same key that violate assertion during WAL
// recovery and fail DB reopen
options.avoid_flush_during_recovery = false;
Reopen(options);
ASSERT_EQ("new_v", Get("k"));
Destroy(options);
}
TEST_F(DBWALTest, WALWriteErrorNoRecovery) {
Options options = CurrentOptions();
auto fault_fs = std::make_shared<FaultInjectionTestFS>(FileSystem::Default());
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
options.env = fault_fs_env.get();
options.manual_wal_flush = true;
DestroyAndReopen(options);
fault_fs->SetThreadLocalErrorContext(
FaultInjectionIOType::kWrite, 7 /* seed*/, 1 /* one_in */,
true /* retryable */, false /* has_data_loss*/);
fault_fs->EnableThreadLocalErrorInjection(FaultInjectionIOType::kWrite);
ASSERT_OK(Put("k", "v"));
Status s;
s = db_->FlushWAL(false);
ASSERT_TRUE(s.IsIOError());
s = dbfull()->TEST_GetBGError();
ASSERT_EQ(s.severity(), Status::Severity::kFatalError);
ASSERT_FALSE(dbfull()->TEST_IsRecoveryInProgress());
fault_fs->DisableThreadLocalErrorInjection(FaultInjectionIOType::kWrite);
Destroy(options);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}