mirror of https://github.com/facebook/rocksdb.git
243 lines
7.6 KiB
C++
243 lines
7.6 KiB
C++
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include "env/unique_id_gen.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <random>
|
|
|
|
#include "port/lang.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/version.h"
|
|
#include "util/hash.h"
|
|
|
|
#ifdef __SSE4_2__
|
|
#ifdef _WIN32
|
|
#include <intrin.h>
|
|
#else
|
|
#include <x86intrin.h>
|
|
#endif
|
|
#else
|
|
#include "rocksdb/system_clock.h"
|
|
#endif
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace {
|
|
|
|
struct GenerateRawUniqueIdOpts {
|
|
Env* env = Env::Default();
|
|
bool exclude_port_uuid = false;
|
|
bool exclude_env_details = false;
|
|
bool exclude_random_device = false;
|
|
};
|
|
|
|
// Each of these "tracks" below should be sufficient for generating 128 bits
|
|
// of entropy, after hashing the raw bytes. The tracks are separable for
|
|
// testing purposes, but in production we combine as many tracks as possible
|
|
// to ensure quality results even if some environments have degraded
|
|
// capabilities or quality in some APIs.
|
|
//
|
|
// This approach has not been validated for use in cryptography. The goal is
|
|
// generating globally unique values with high probability without coordination
|
|
// between instances.
|
|
//
|
|
// Linux performance: EntropyTrackRandomDevice is much faster than
|
|
// EntropyTrackEnvDetails, which is much faster than EntropyTrackPortUuid.
|
|
|
|
struct EntropyTrackPortUuid {
|
|
std::array<char, 36> uuid;
|
|
|
|
void Populate(const GenerateRawUniqueIdOpts& opts) {
|
|
if (opts.exclude_port_uuid) {
|
|
return;
|
|
}
|
|
std::string s;
|
|
port::GenerateRfcUuid(&s);
|
|
if (s.size() >= uuid.size()) {
|
|
std::copy_n(s.begin(), uuid.size(), uuid.begin());
|
|
}
|
|
}
|
|
};
|
|
|
|
struct EntropyTrackEnvDetails {
|
|
std::array<char, 64> hostname_buf;
|
|
int64_t process_id;
|
|
uint64_t thread_id;
|
|
int64_t unix_time;
|
|
uint64_t nano_time;
|
|
|
|
void Populate(const GenerateRawUniqueIdOpts& opts) {
|
|
if (opts.exclude_env_details) {
|
|
return;
|
|
}
|
|
opts.env->GetHostName(hostname_buf.data(), hostname_buf.size())
|
|
.PermitUncheckedError();
|
|
process_id = port::GetProcessID();
|
|
thread_id = opts.env->GetThreadID();
|
|
opts.env->GetCurrentTime(&unix_time).PermitUncheckedError();
|
|
nano_time = opts.env->NowNanos();
|
|
}
|
|
};
|
|
|
|
struct EntropyTrackRandomDevice {
|
|
using RandType = std::random_device::result_type;
|
|
static constexpr size_t kNumRandVals =
|
|
/* generous bits */ 192U / (8U * sizeof(RandType));
|
|
std::array<RandType, kNumRandVals> rand_vals;
|
|
|
|
void Populate(const GenerateRawUniqueIdOpts& opts) {
|
|
if (opts.exclude_random_device) {
|
|
return;
|
|
}
|
|
std::random_device r;
|
|
for (auto& val : rand_vals) {
|
|
val = r();
|
|
}
|
|
}
|
|
};
|
|
|
|
struct Entropy {
|
|
uint64_t version_identifier;
|
|
EntropyTrackRandomDevice et1;
|
|
EntropyTrackEnvDetails et2;
|
|
EntropyTrackPortUuid et3;
|
|
|
|
void Populate(const GenerateRawUniqueIdOpts& opts) {
|
|
// If we change the format of what goes into the entropy inputs, it's
|
|
// conceivable there could be a physical collision in the hash input
|
|
// even though they are logically different. This value should change
|
|
// if there's a change to the "schema" here, including byte order.
|
|
version_identifier = (uint64_t{ROCKSDB_MAJOR} << 32) +
|
|
(uint64_t{ROCKSDB_MINOR} << 16) +
|
|
uint64_t{ROCKSDB_PATCH};
|
|
et1.Populate(opts);
|
|
et2.Populate(opts);
|
|
et3.Populate(opts);
|
|
}
|
|
};
|
|
|
|
void GenerateRawUniqueIdImpl(uint64_t* a, uint64_t* b,
|
|
const GenerateRawUniqueIdOpts& opts) {
|
|
Entropy e;
|
|
std::memset(&e, 0, sizeof(e));
|
|
e.Populate(opts);
|
|
Hash2x64(reinterpret_cast<const char*>(&e), sizeof(e), a, b);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void GenerateRawUniqueId(uint64_t* a, uint64_t* b, bool exclude_port_uuid) {
|
|
GenerateRawUniqueIdOpts opts;
|
|
opts.exclude_port_uuid = exclude_port_uuid;
|
|
assert(!opts.exclude_env_details);
|
|
assert(!opts.exclude_random_device);
|
|
GenerateRawUniqueIdImpl(a, b, opts);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void TEST_GenerateRawUniqueId(uint64_t* a, uint64_t* b, bool exclude_port_uuid,
|
|
bool exclude_env_details,
|
|
bool exclude_random_device) {
|
|
GenerateRawUniqueIdOpts opts;
|
|
opts.exclude_port_uuid = exclude_port_uuid;
|
|
opts.exclude_env_details = exclude_env_details;
|
|
opts.exclude_random_device = exclude_random_device;
|
|
GenerateRawUniqueIdImpl(a, b, opts);
|
|
}
|
|
#endif
|
|
|
|
void SemiStructuredUniqueIdGen::Reset() {
|
|
saved_process_id_ = port::GetProcessID();
|
|
GenerateRawUniqueId(&base_upper_, &base_lower_);
|
|
counter_ = 0;
|
|
}
|
|
|
|
void SemiStructuredUniqueIdGen::GenerateNext(uint64_t* upper, uint64_t* lower) {
|
|
if (port::GetProcessID() == saved_process_id_) {
|
|
// Safe to increment the atomic for guaranteed uniqueness within this
|
|
// process lifetime. Xor slightly better than +. See
|
|
// https://github.com/pdillinger/unique_id
|
|
*lower = base_lower_ ^ counter_.fetch_add(1);
|
|
*upper = base_upper_;
|
|
} else {
|
|
// There must have been a fork() or something. Rather than attempting to
|
|
// update in a thread-safe way, simply fall back on GenerateRawUniqueId.
|
|
GenerateRawUniqueId(upper, lower);
|
|
}
|
|
}
|
|
|
|
void UnpredictableUniqueIdGen::Reset() {
|
|
for (size_t i = 0; i < pool_.size(); i += 2) {
|
|
assert(i + 1 < pool_.size());
|
|
uint64_t a, b;
|
|
GenerateRawUniqueId(&a, &b);
|
|
pool_[i] = a;
|
|
pool_[i + 1] = b;
|
|
}
|
|
}
|
|
|
|
void UnpredictableUniqueIdGen::GenerateNext(uint64_t* upper, uint64_t* lower) {
|
|
uint64_t extra_entropy;
|
|
// Use timing information (if available) to add to entropy. (Not a disaster
|
|
// if unavailable on some platforms. High performance is important.)
|
|
#ifdef __SSE4_2__ // More than enough to guarantee rdtsc instruction
|
|
extra_entropy = static_cast<uint64_t>(_rdtsc());
|
|
#else
|
|
extra_entropy = SystemClock::Default()->NowNanos();
|
|
#endif
|
|
|
|
GenerateNextWithEntropy(upper, lower, extra_entropy);
|
|
}
|
|
|
|
void UnpredictableUniqueIdGen::GenerateNextWithEntropy(uint64_t* upper,
|
|
uint64_t* lower,
|
|
uint64_t extra_entropy) {
|
|
// To efficiently ensure unique inputs to the hash function in the presence
|
|
// of multithreading, we do not require atomicity on the whole entropy pool,
|
|
// but instead only a piece of it (a 64-bit counter) that is sufficient to
|
|
// guarantee uniqueness.
|
|
uint64_t count = counter_.fetch_add(1, std::memory_order_relaxed);
|
|
uint64_t a = count;
|
|
uint64_t b = extra_entropy;
|
|
// Invoking the hash function several times avoids copying all the inputs
|
|
// to a contiguous, non-atomic buffer.
|
|
BijectiveHash2x64(a, b, &a, &b); // Based on XXH128
|
|
|
|
// In hashing the rest of the pool with that, we don't need to worry about
|
|
// races, but use atomic operations for sanitizer-friendliness.
|
|
for (size_t i = 0; i < pool_.size(); i += 2) {
|
|
assert(i + 1 < pool_.size());
|
|
a ^= pool_[i].load(std::memory_order_relaxed);
|
|
b ^= pool_[i + 1].load(std::memory_order_relaxed);
|
|
BijectiveHash2x64(a, b, &a, &b); // Based on XXH128
|
|
}
|
|
|
|
// Return result
|
|
*lower = a;
|
|
*upper = b;
|
|
|
|
// Add some back into pool. We don't really care that there's a race in
|
|
// storing the result back and another thread computing the next value.
|
|
// It's just an entropy pool.
|
|
pool_[count & (pool_.size() - 1)].fetch_add(a, std::memory_order_relaxed);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
UnpredictableUniqueIdGen::UnpredictableUniqueIdGen(TEST_ZeroInitialized) {
|
|
for (auto& p : pool_) {
|
|
p.store(0);
|
|
}
|
|
counter_.store(0);
|
|
}
|
|
#endif
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|