rocksdb/utilities/cache_dump_load_impl.cc
Peter Dillinger 4f78f9699b Refactor: Add BlockTypes to make them imply C++ type in block cache (#10098)
Summary:
We have three related concepts:
* BlockType: an internal enum conceptually indicating a type of SST file
block
* CacheEntryRole: a user-facing enum for categorizing block cache entries,
which is also involved in associated cache entries with an appropriate
deleter. Can include categories for non-block cache entries (e.g. memory
reservations).
* TBlocklike: a C++ type for the actual type behind a void* cache entry.

We had some existing code ugliness because BlockType did not imply
TBlocklike, because of various kinds of "filter" block. This refactoring
fixes that with new BlockTypes.

More clean-up can come in later work.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10098

Test Plan: existing tests

Reviewed By: akankshamahajan15

Differential Revision: D36897945

Pulled By: pdillinger

fbshipit-source-id: 3ae496b5caa81e0a0ed85e873eb5b525e2d9a295
2022-06-06 11:16:12 -07:00

491 lines
18 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "cache/cache_key.h"
#include "table/block_based/block_based_table_reader.h"
#ifndef ROCKSDB_LITE
#include "utilities/cache_dump_load_impl.h"
#include "cache/cache_entry_roles.h"
#include "file/writable_file_writer.h"
#include "port/lang.h"
#include "rocksdb/env.h"
#include "rocksdb/file_system.h"
#include "rocksdb/utilities/ldb_cmd.h"
#include "table/format.h"
#include "util/crc32c.h"
namespace ROCKSDB_NAMESPACE {
// Set the dump filter with a list of DBs. Block cache may be shared by multipe
// DBs and we may only want to dump out the blocks belonging to certain DB(s).
// Therefore, a filter is need to decide if the key of the block satisfy the
// requirement.
Status CacheDumperImpl::SetDumpFilter(std::vector<DB*> db_list) {
Status s = Status::OK();
for (size_t i = 0; i < db_list.size(); i++) {
assert(i < db_list.size());
TablePropertiesCollection ptc;
assert(db_list[i] != nullptr);
s = db_list[i]->GetPropertiesOfAllTables(&ptc);
if (!s.ok()) {
return s;
}
for (auto id = ptc.begin(); id != ptc.end(); id++) {
OffsetableCacheKey base;
// We only want to save cache entries that are portable to another
// DB::Open, so only save entries with stable keys.
bool is_stable;
// WART: if the file is extremely large (> kMaxFileSizeStandardEncoding)
// then the prefix will be different. But this should not be a concern
// in practice because that limit is currently 4TB on a single file.
BlockBasedTable::SetupBaseCacheKey(
id->second.get(), /*cur_db_session_id*/ "", /*cur_file_num*/ 0,
/*file_size*/ 42, &base, &is_stable);
if (is_stable) {
Slice prefix_slice = base.CommonPrefixSlice();
assert(prefix_slice.size() == OffsetableCacheKey::kCommonPrefixSize);
prefix_filter_.insert(prefix_slice.ToString());
}
}
}
return s;
}
// This is the main function to dump out the cache block entries to the writer.
// The writer may create a file or write to other systems. Currently, we will
// iterate the whole block cache, get the blocks, and write them to the writer
IOStatus CacheDumperImpl::DumpCacheEntriesToWriter() {
// Prepare stage, check the parameters.
if (cache_ == nullptr) {
return IOStatus::InvalidArgument("Cache is null");
}
if (writer_ == nullptr) {
return IOStatus::InvalidArgument("CacheDumpWriter is null");
}
// Set the system clock
if (options_.clock == nullptr) {
return IOStatus::InvalidArgument("System clock is null");
}
clock_ = options_.clock;
// We copy the Cache Deleter Role Map as its member.
role_map_ = CopyCacheDeleterRoleMap();
// Set the sequence number
sequence_num_ = 0;
// Dump stage, first, we write the hader
IOStatus io_s = WriteHeader();
if (!io_s.ok()) {
return io_s;
}
// Then, we iterate the block cache and dump out the blocks that are not
// filtered out.
cache_->ApplyToAllEntries(DumpOneBlockCallBack(), {});
// Finally, write the footer
io_s = WriteFooter();
if (!io_s.ok()) {
return io_s;
}
io_s = writer_->Close();
return io_s;
}
// Check if we need to filter out the block based on its key
bool CacheDumperImpl::ShouldFilterOut(const Slice& key) {
if (key.size() < OffsetableCacheKey::kCommonPrefixSize) {
return /*filter out*/ true;
}
Slice key_prefix(key.data(), OffsetableCacheKey::kCommonPrefixSize);
std::string prefix = key_prefix.ToString();
// Filter out if not found
return prefix_filter_.find(prefix) == prefix_filter_.end();
}
// This is the callback function which will be applied to
// Cache::ApplyToAllEntries. In this callback function, we will get the block
// type, decide if the block needs to be dumped based on the filter, and write
// the block through the provided writer.
std::function<void(const Slice&, void*, size_t, Cache::DeleterFn)>
CacheDumperImpl::DumpOneBlockCallBack() {
return [&](const Slice& key, void* value, size_t /*charge*/,
Cache::DeleterFn deleter) {
// Step 1: get the type of the block from role_map_
auto e = role_map_.find(deleter);
CacheEntryRole role;
CacheDumpUnitType type = CacheDumpUnitType::kBlockTypeMax;
if (e == role_map_.end()) {
role = CacheEntryRole::kMisc;
} else {
role = e->second;
}
bool filter_out = false;
// Step 2: based on the key prefix, check if the block should be filter out.
if (ShouldFilterOut(key)) {
filter_out = true;
}
// Step 3: based on the block type, get the block raw pointer and length.
const char* block_start = nullptr;
size_t block_len = 0;
switch (role) {
case CacheEntryRole::kDataBlock:
type = CacheDumpUnitType::kData;
block_start = (static_cast<Block*>(value))->data();
block_len = (static_cast<Block*>(value))->size();
break;
case CacheEntryRole::kDeprecatedFilterBlock:
type = CacheDumpUnitType::kDeprecatedFilterBlock;
block_start = (static_cast<BlockContents*>(value))->data.data();
block_len = (static_cast<BlockContents*>(value))->data.size();
break;
case CacheEntryRole::kFilterBlock:
type = CacheDumpUnitType::kFilter;
block_start = (static_cast<ParsedFullFilterBlock*>(value))
->GetBlockContentsData()
.data();
block_len = (static_cast<ParsedFullFilterBlock*>(value))
->GetBlockContentsData()
.size();
break;
case CacheEntryRole::kFilterMetaBlock:
type = CacheDumpUnitType::kFilterMetaBlock;
block_start = (static_cast<Block*>(value))->data();
block_len = (static_cast<Block*>(value))->size();
break;
case CacheEntryRole::kIndexBlock:
type = CacheDumpUnitType::kIndex;
block_start = (static_cast<Block*>(value))->data();
block_len = (static_cast<Block*>(value))->size();
break;
case CacheEntryRole::kMisc:
filter_out = true;
break;
case CacheEntryRole::kOtherBlock:
filter_out = true;
break;
case CacheEntryRole::kWriteBuffer:
filter_out = true;
break;
default:
filter_out = true;
}
// Step 4: if the block should not be filter out, write the block to the
// CacheDumpWriter
if (!filter_out && block_start != nullptr) {
char* buffer = new char[block_len];
memcpy(buffer, block_start, block_len);
WriteCacheBlock(type, key, (void*)buffer, block_len)
.PermitUncheckedError();
delete[] buffer;
}
};
}
// Write the raw block to the writer. It takes the timestamp of the block being
// copied from block cache, block type, key, block pointer, raw block size and
// the block checksum as the input. When writing the raw block, we first create
// the dump unit and encoude it to a string. Then, we calculate the checksum of
// the how dump unit string and store it in the dump unit metadata.
// First, we write the metadata first, which is a fixed size string. Then, we
// Append the dump unit string to the writer.
IOStatus CacheDumperImpl::WriteRawBlock(uint64_t timestamp,
CacheDumpUnitType type,
const Slice& key, void* value,
size_t len, uint32_t checksum) {
// First, serilize the block information in a string
DumpUnit dump_unit;
dump_unit.timestamp = timestamp;
dump_unit.key = key;
dump_unit.type = type;
dump_unit.value_len = len;
dump_unit.value = value;
dump_unit.value_checksum = checksum;
std::string encoded_data;
CacheDumperHelper::EncodeDumpUnit(dump_unit, &encoded_data);
// Second, create the metadata, which contains a sequence number, the dump
// unit string checksum and the string size. The sequence number monotonically
// increases from 0.
DumpUnitMeta unit_meta;
unit_meta.sequence_num = sequence_num_;
sequence_num_++;
unit_meta.dump_unit_checksum =
crc32c::Value(encoded_data.c_str(), encoded_data.size());
unit_meta.dump_unit_size = static_cast<uint64_t>(encoded_data.size());
std::string encoded_meta;
CacheDumperHelper::EncodeDumpUnitMeta(unit_meta, &encoded_meta);
// We write the metadata first.
assert(writer_ != nullptr);
IOStatus io_s = writer_->WriteMetadata(Slice(encoded_meta));
if (!io_s.ok()) {
return io_s;
}
// followed by the dump unit.
return writer_->WritePacket(Slice(encoded_data));
}
// Before we write any block, we write the header first to store the cache dump
// format version, rocksdb version, and brief intro.
IOStatus CacheDumperImpl::WriteHeader() {
std::string header_key = "header";
std::ostringstream s;
s << kTraceMagic << "\t"
<< "Cache dump format version: " << kCacheDumpMajorVersion << "."
<< kCacheDumpMinorVersion << "\t"
<< "RocksDB Version: " << kMajorVersion << "." << kMinorVersion << "\t"
<< "Format: dump_unit_metadata <sequence_number, dump_unit_checksum, "
"dump_unit_size>, dump_unit <timestamp, key, block_type, "
"block_size, raw_block, raw_block_checksum> cache_value\n";
std::string header_value(s.str());
CacheDumpUnitType type = CacheDumpUnitType::kHeader;
uint64_t timestamp = clock_->NowMicros();
uint32_t header_checksum =
crc32c::Value(header_value.c_str(), header_value.size());
return WriteRawBlock(timestamp, type, Slice(header_key),
(void*)header_value.c_str(), header_value.size(),
header_checksum);
}
// Write the block dumped from cache
IOStatus CacheDumperImpl::WriteCacheBlock(const CacheDumpUnitType type,
const Slice& key, void* value,
size_t len) {
uint64_t timestamp = clock_->NowMicros();
uint32_t value_checksum = crc32c::Value((char*)value, len);
return WriteRawBlock(timestamp, type, key, value, len, value_checksum);
}
// Write the footer after all the blocks are stored to indicate the ending.
IOStatus CacheDumperImpl::WriteFooter() {
std::string footer_key = "footer";
std::ostringstream s;
std::string footer_value("cache dump completed");
CacheDumpUnitType type = CacheDumpUnitType::kFooter;
uint64_t timestamp = clock_->NowMicros();
uint32_t footer_checksum =
crc32c::Value(footer_value.c_str(), footer_value.size());
return WriteRawBlock(timestamp, type, Slice(footer_key),
(void*)footer_value.c_str(), footer_value.size(),
footer_checksum);
}
// This is the main function to restore the cache entries to secondary cache.
// First, we check if all the arguments are valid. Then, we read the block
// sequentially from the reader and insert them to the secondary cache.
IOStatus CacheDumpedLoaderImpl::RestoreCacheEntriesToSecondaryCache() {
// TODO: remove this line when options are used in the loader
(void)options_;
// Step 1: we check if all the arguments are valid
if (secondary_cache_ == nullptr) {
return IOStatus::InvalidArgument("Secondary Cache is null");
}
if (reader_ == nullptr) {
return IOStatus::InvalidArgument("CacheDumpReader is null");
}
// we copy the Cache Deleter Role Map as its member.
role_map_ = CopyCacheDeleterRoleMap();
// Step 2: read the header
// TODO: we need to check the cache dump format version and RocksDB version
// after the header is read out.
IOStatus io_s;
DumpUnit dump_unit;
std::string data;
io_s = ReadHeader(&data, &dump_unit);
if (!io_s.ok()) {
return io_s;
}
// Step 3: read out the rest of the blocks from the reader. The loop will stop
// either I/O status is not ok or we reach to the the end.
while (io_s.ok() && dump_unit.type != CacheDumpUnitType::kFooter) {
dump_unit.reset();
data.clear();
// read the content and store in the dump_unit
io_s = ReadCacheBlock(&data, &dump_unit);
if (!io_s.ok()) {
break;
}
// create the raw_block_content based on the information in the dump_unit
BlockContents raw_block_contents(
Slice((char*)dump_unit.value, dump_unit.value_len));
Cache::CacheItemHelper* helper = nullptr;
Statistics* statistics = nullptr;
Status s = Status::OK();
// according to the block type, get the helper callback function and create
// the corresponding block
switch (dump_unit.type) {
case CacheDumpUnitType::kDeprecatedFilterBlock: {
helper = BlocklikeTraits<BlockContents>::GetCacheItemHelper(
BlockType::kDeprecatedFilter);
std::unique_ptr<BlockContents> block_holder;
block_holder.reset(BlocklikeTraits<BlockContents>::Create(
std::move(raw_block_contents), 0, statistics, false,
toptions_.filter_policy.get()));
// Insert the block to secondary cache.
// Note that, if we cannot get the correct helper callback, the block
// will not be inserted.
if (helper != nullptr) {
s = secondary_cache_->Insert(dump_unit.key,
(void*)(block_holder.get()), helper);
}
break;
}
case CacheDumpUnitType::kFilter: {
helper = BlocklikeTraits<ParsedFullFilterBlock>::GetCacheItemHelper(
BlockType::kFilter);
std::unique_ptr<ParsedFullFilterBlock> block_holder;
block_holder.reset(BlocklikeTraits<ParsedFullFilterBlock>::Create(
std::move(raw_block_contents), toptions_.read_amp_bytes_per_bit,
statistics, false, toptions_.filter_policy.get()));
if (helper != nullptr) {
s = secondary_cache_->Insert(dump_unit.key,
(void*)(block_holder.get()), helper);
}
break;
}
case CacheDumpUnitType::kData: {
helper = BlocklikeTraits<Block>::GetCacheItemHelper(BlockType::kData);
std::unique_ptr<Block> block_holder;
block_holder.reset(BlocklikeTraits<Block>::Create(
std::move(raw_block_contents), toptions_.read_amp_bytes_per_bit,
statistics, false, toptions_.filter_policy.get()));
if (helper != nullptr) {
s = secondary_cache_->Insert(dump_unit.key,
(void*)(block_holder.get()), helper);
}
break;
}
case CacheDumpUnitType::kIndex: {
helper = BlocklikeTraits<Block>::GetCacheItemHelper(BlockType::kIndex);
std::unique_ptr<Block> block_holder;
block_holder.reset(BlocklikeTraits<Block>::Create(
std::move(raw_block_contents), 0, statistics, false,
toptions_.filter_policy.get()));
if (helper != nullptr) {
s = secondary_cache_->Insert(dump_unit.key,
(void*)(block_holder.get()), helper);
}
break;
}
case CacheDumpUnitType::kFilterMetaBlock: {
helper = BlocklikeTraits<Block>::GetCacheItemHelper(
BlockType::kFilterPartitionIndex);
std::unique_ptr<Block> block_holder;
block_holder.reset(BlocklikeTraits<Block>::Create(
std::move(raw_block_contents), toptions_.read_amp_bytes_per_bit,
statistics, false, toptions_.filter_policy.get()));
if (helper != nullptr) {
s = secondary_cache_->Insert(dump_unit.key,
(void*)(block_holder.get()), helper);
}
break;
}
case CacheDumpUnitType::kFooter:
break;
default:
continue;
}
if (!s.ok()) {
io_s = status_to_io_status(std::move(s));
}
}
if (dump_unit.type == CacheDumpUnitType::kFooter) {
return IOStatus::OK();
} else {
return io_s;
}
}
// Read and copy the dump unit metadata to std::string data, decode and create
// the unit metadata based on the string
IOStatus CacheDumpedLoaderImpl::ReadDumpUnitMeta(std::string* data,
DumpUnitMeta* unit_meta) {
assert(reader_ != nullptr);
assert(data != nullptr);
assert(unit_meta != nullptr);
IOStatus io_s = reader_->ReadMetadata(data);
if (!io_s.ok()) {
return io_s;
}
return status_to_io_status(
CacheDumperHelper::DecodeDumpUnitMeta(*data, unit_meta));
}
// Read and copy the dump unit to std::string data, decode and create the unit
// based on the string
IOStatus CacheDumpedLoaderImpl::ReadDumpUnit(size_t len, std::string* data,
DumpUnit* unit) {
assert(reader_ != nullptr);
assert(data != nullptr);
assert(unit != nullptr);
IOStatus io_s = reader_->ReadPacket(data);
if (!io_s.ok()) {
return io_s;
}
if (data->size() != len) {
return IOStatus::Corruption(
"The data being read out does not match the size stored in metadata!");
}
Slice block;
return status_to_io_status(CacheDumperHelper::DecodeDumpUnit(*data, unit));
}
// Read the header
IOStatus CacheDumpedLoaderImpl::ReadHeader(std::string* data,
DumpUnit* dump_unit) {
DumpUnitMeta header_meta;
header_meta.reset();
std::string meta_string;
IOStatus io_s = ReadDumpUnitMeta(&meta_string, &header_meta);
if (!io_s.ok()) {
return io_s;
}
io_s = ReadDumpUnit(header_meta.dump_unit_size, data, dump_unit);
if (!io_s.ok()) {
return io_s;
}
uint32_t unit_checksum = crc32c::Value(data->c_str(), data->size());
if (unit_checksum != header_meta.dump_unit_checksum) {
return IOStatus::Corruption("Read header unit corrupted!");
}
return io_s;
}
// Read the blocks after header is read out
IOStatus CacheDumpedLoaderImpl::ReadCacheBlock(std::string* data,
DumpUnit* dump_unit) {
// According to the write process, we read the dump_unit_metadata first
DumpUnitMeta unit_meta;
unit_meta.reset();
std::string unit_string;
IOStatus io_s = ReadDumpUnitMeta(&unit_string, &unit_meta);
if (!io_s.ok()) {
return io_s;
}
// Based on the information in the dump_unit_metadata, we read the dump_unit
// and verify if its content is correct.
io_s = ReadDumpUnit(unit_meta.dump_unit_size, data, dump_unit);
if (!io_s.ok()) {
return io_s;
}
uint32_t unit_checksum = crc32c::Value(data->c_str(), data->size());
if (unit_checksum != unit_meta.dump_unit_checksum) {
return IOStatus::Corruption(
"Checksum does not match! Read dumped unit corrupted!");
}
return io_s;
}
} // namespace ROCKSDB_NAMESPACE
#endif // ROCKSDB_LITE