mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-26 16:30:56 +00:00
f44e69c64a
Summary: Currently, we either use the file system inode or a monotonically incrementing runtime ID as the block cache key prefix. However, if we use a monotonically incrementing runtime ID (in the case that the file system does not support inode id generation), in some cases, it cannot ensure uniqueness (e.g., we have secondary cache migrated from host to host). We use DbSessionID (20 bytes) + current file number (at most 10 bytes) as the new cache block key prefix when the secondary cache is enabled. So can accommodate scenarios such as transfer of cache state across hosts. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8360 Test Plan: add the test to lru_cache_test Reviewed By: pdillinger Differential Revision: D29006215 Pulled By: zhichao-cao fbshipit-source-id: 6cff686b38d83904667a2bd39923cd030df16814
957 lines
35 KiB
C++
957 lines
35 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include "db/memtable_list.h"
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "db/merge_context.h"
|
|
#include "db/version_set.h"
|
|
#include "db/write_controller.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/status.h"
|
|
#include "rocksdb/write_buffer_manager.h"
|
|
#include "test_util/testharness.h"
|
|
#include "test_util/testutil.h"
|
|
#include "util/string_util.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
class MemTableListTest : public testing::Test {
|
|
public:
|
|
std::string dbname;
|
|
DB* db;
|
|
Options options;
|
|
std::vector<ColumnFamilyHandle*> handles;
|
|
std::atomic<uint64_t> file_number;
|
|
|
|
MemTableListTest() : db(nullptr), file_number(1) {
|
|
dbname = test::PerThreadDBPath("memtable_list_test");
|
|
options.create_if_missing = true;
|
|
EXPECT_OK(DestroyDB(dbname, options));
|
|
}
|
|
|
|
// Create a test db if not yet created
|
|
void CreateDB() {
|
|
if (db == nullptr) {
|
|
options.create_if_missing = true;
|
|
EXPECT_OK(DestroyDB(dbname, options));
|
|
// Open DB only with default column family
|
|
ColumnFamilyOptions cf_options;
|
|
std::vector<ColumnFamilyDescriptor> cf_descs;
|
|
cf_descs.emplace_back(kDefaultColumnFamilyName, cf_options);
|
|
Status s = DB::Open(options, dbname, cf_descs, &handles, &db);
|
|
EXPECT_OK(s);
|
|
|
|
ColumnFamilyOptions cf_opt1, cf_opt2;
|
|
cf_opt1.cf_paths.emplace_back(dbname + "_one_1",
|
|
std::numeric_limits<uint64_t>::max());
|
|
cf_opt2.cf_paths.emplace_back(dbname + "_two_1",
|
|
std::numeric_limits<uint64_t>::max());
|
|
int sz = static_cast<int>(handles.size());
|
|
handles.resize(sz + 2);
|
|
s = db->CreateColumnFamily(cf_opt1, "one", &handles[1]);
|
|
EXPECT_OK(s);
|
|
s = db->CreateColumnFamily(cf_opt2, "two", &handles[2]);
|
|
EXPECT_OK(s);
|
|
|
|
cf_descs.emplace_back("one", cf_options);
|
|
cf_descs.emplace_back("two", cf_options);
|
|
}
|
|
}
|
|
|
|
~MemTableListTest() override {
|
|
if (db) {
|
|
std::vector<ColumnFamilyDescriptor> cf_descs(handles.size());
|
|
#ifndef ROCKSDB_LITE
|
|
for (int i = 0; i != static_cast<int>(handles.size()); ++i) {
|
|
EXPECT_OK(handles[i]->GetDescriptor(&cf_descs[i]));
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
for (auto h : handles) {
|
|
if (h) {
|
|
EXPECT_OK(db->DestroyColumnFamilyHandle(h));
|
|
}
|
|
}
|
|
handles.clear();
|
|
delete db;
|
|
db = nullptr;
|
|
EXPECT_OK(DestroyDB(dbname, options, cf_descs));
|
|
}
|
|
}
|
|
|
|
// Calls MemTableList::TryInstallMemtableFlushResults() and sets up all
|
|
// structures needed to call this function.
|
|
Status Mock_InstallMemtableFlushResults(
|
|
MemTableList* list, const MutableCFOptions& mutable_cf_options,
|
|
const autovector<MemTable*>& m, autovector<MemTable*>* to_delete) {
|
|
// Create a mock Logger
|
|
test::NullLogger logger;
|
|
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
|
|
|
|
CreateDB();
|
|
// Create a mock VersionSet
|
|
DBOptions db_options;
|
|
ImmutableDBOptions immutable_db_options(db_options);
|
|
EnvOptions env_options;
|
|
std::shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
|
|
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
|
|
WriteController write_controller(10000000u);
|
|
|
|
VersionSet versions(dbname, &immutable_db_options, env_options,
|
|
table_cache.get(), &write_buffer_manager,
|
|
&write_controller, /*block_cache_tracer=*/nullptr,
|
|
/*io_tracer=*/nullptr, /*db_session_id*/ "");
|
|
std::vector<ColumnFamilyDescriptor> cf_descs;
|
|
cf_descs.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
|
|
cf_descs.emplace_back("one", ColumnFamilyOptions());
|
|
cf_descs.emplace_back("two", ColumnFamilyOptions());
|
|
|
|
EXPECT_OK(versions.Recover(cf_descs, false));
|
|
|
|
// Create mock default ColumnFamilyData
|
|
auto column_family_set = versions.GetColumnFamilySet();
|
|
LogsWithPrepTracker dummy_prep_tracker;
|
|
auto cfd = column_family_set->GetDefault();
|
|
EXPECT_TRUE(nullptr != cfd);
|
|
uint64_t file_num = file_number.fetch_add(1);
|
|
IOStatus io_s;
|
|
// Create dummy mutex.
|
|
InstrumentedMutex mutex;
|
|
InstrumentedMutexLock l(&mutex);
|
|
std::list<std::unique_ptr<FlushJobInfo>> flush_jobs_info;
|
|
Status s = list->TryInstallMemtableFlushResults(
|
|
cfd, mutable_cf_options, m, &dummy_prep_tracker, &versions, &mutex,
|
|
file_num, to_delete, nullptr, &log_buffer, &flush_jobs_info, &io_s);
|
|
EXPECT_OK(io_s);
|
|
return s;
|
|
}
|
|
|
|
// Calls MemTableList::InstallMemtableFlushResults() and sets up all
|
|
// structures needed to call this function.
|
|
Status Mock_InstallMemtableAtomicFlushResults(
|
|
autovector<MemTableList*>& lists, const autovector<uint32_t>& cf_ids,
|
|
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
|
|
const autovector<const autovector<MemTable*>*>& mems_list,
|
|
autovector<MemTable*>* to_delete) {
|
|
// Create a mock Logger
|
|
test::NullLogger logger;
|
|
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
|
|
|
|
CreateDB();
|
|
// Create a mock VersionSet
|
|
DBOptions db_options;
|
|
|
|
ImmutableDBOptions immutable_db_options(db_options);
|
|
EnvOptions env_options;
|
|
std::shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
|
|
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
|
|
WriteController write_controller(10000000u);
|
|
|
|
VersionSet versions(dbname, &immutable_db_options, env_options,
|
|
table_cache.get(), &write_buffer_manager,
|
|
&write_controller, /*block_cache_tracer=*/nullptr,
|
|
/*io_tracer=*/nullptr, /*db_session_id*/ "");
|
|
std::vector<ColumnFamilyDescriptor> cf_descs;
|
|
cf_descs.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
|
|
cf_descs.emplace_back("one", ColumnFamilyOptions());
|
|
cf_descs.emplace_back("two", ColumnFamilyOptions());
|
|
EXPECT_OK(versions.Recover(cf_descs, false));
|
|
|
|
// Create mock default ColumnFamilyData
|
|
|
|
auto column_family_set = versions.GetColumnFamilySet();
|
|
|
|
LogsWithPrepTracker dummy_prep_tracker;
|
|
autovector<ColumnFamilyData*> cfds;
|
|
for (int i = 0; i != static_cast<int>(cf_ids.size()); ++i) {
|
|
cfds.emplace_back(column_family_set->GetColumnFamily(cf_ids[i]));
|
|
EXPECT_NE(nullptr, cfds[i]);
|
|
}
|
|
std::vector<FileMetaData> file_metas;
|
|
file_metas.reserve(cf_ids.size());
|
|
for (size_t i = 0; i != cf_ids.size(); ++i) {
|
|
FileMetaData meta;
|
|
uint64_t file_num = file_number.fetch_add(1);
|
|
meta.fd = FileDescriptor(file_num, 0, 0);
|
|
file_metas.emplace_back(meta);
|
|
}
|
|
autovector<FileMetaData*> file_meta_ptrs;
|
|
for (auto& meta : file_metas) {
|
|
file_meta_ptrs.push_back(&meta);
|
|
}
|
|
InstrumentedMutex mutex;
|
|
InstrumentedMutexLock l(&mutex);
|
|
return InstallMemtableAtomicFlushResults(
|
|
&lists, cfds, mutable_cf_options_list, mems_list, &versions,
|
|
nullptr /* prep_tracker */, &mutex, file_meta_ptrs, to_delete, nullptr,
|
|
&log_buffer);
|
|
}
|
|
};
|
|
|
|
TEST_F(MemTableListTest, Empty) {
|
|
// Create an empty MemTableList and validate basic functions.
|
|
MemTableList list(1, 0, 0);
|
|
|
|
ASSERT_EQ(0, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
|
|
autovector<MemTable*> mems;
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &mems);
|
|
ASSERT_EQ(0, mems.size());
|
|
|
|
autovector<MemTable*> to_delete;
|
|
list.current()->Unref(&to_delete);
|
|
ASSERT_EQ(0, to_delete.size());
|
|
}
|
|
|
|
TEST_F(MemTableListTest, GetTest) {
|
|
// Create MemTableList
|
|
int min_write_buffer_number_to_merge = 2;
|
|
int max_write_buffer_number_to_maintain = 0;
|
|
int64_t max_write_buffer_size_to_maintain = 0;
|
|
MemTableList list(min_write_buffer_number_to_merge,
|
|
max_write_buffer_number_to_maintain,
|
|
max_write_buffer_size_to_maintain);
|
|
|
|
SequenceNumber seq = 1;
|
|
std::string value;
|
|
Status s;
|
|
MergeContext merge_context;
|
|
InternalKeyComparator ikey_cmp(options.comparator);
|
|
SequenceNumber max_covering_tombstone_seq = 0;
|
|
autovector<MemTable*> to_delete;
|
|
|
|
LookupKey lkey("key1", seq);
|
|
bool found = list.current()->Get(
|
|
lkey, &value, /*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
// Create a MemTable
|
|
InternalKeyComparator cmp(BytewiseComparator());
|
|
auto factory = std::make_shared<SkipListFactory>();
|
|
options.memtable_factory = factory;
|
|
ImmutableOptions ioptions(options);
|
|
|
|
WriteBufferManager wb(options.db_write_buffer_size);
|
|
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
|
|
kMaxSequenceNumber, 0 /* column_family_id */);
|
|
mem->Ref();
|
|
|
|
// Write some keys to this memtable.
|
|
ASSERT_OK(
|
|
mem->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", "value1",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2.2",
|
|
nullptr /* kv_prot_info */));
|
|
|
|
// Fetch the newly written keys
|
|
merge_context.Clear();
|
|
found = mem->Get(LookupKey("key1", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(s.ok() && found);
|
|
ASSERT_EQ(value, "value1");
|
|
|
|
merge_context.Clear();
|
|
found = mem->Get(LookupKey("key1", 2), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
// MemTable found out that this key is *not* found (at this sequence#)
|
|
ASSERT_TRUE(found && s.IsNotFound());
|
|
|
|
merge_context.Clear();
|
|
found = mem->Get(LookupKey("key2", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(s.ok() && found);
|
|
ASSERT_EQ(value, "value2.2");
|
|
|
|
ASSERT_EQ(4, mem->num_entries());
|
|
ASSERT_EQ(1, mem->num_deletes());
|
|
|
|
// Add memtable to list
|
|
list.Add(mem, &to_delete);
|
|
|
|
SequenceNumber saved_seq = seq;
|
|
|
|
// Create another memtable and write some keys to it
|
|
WriteBufferManager wb2(options.db_write_buffer_size);
|
|
MemTable* mem2 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb2,
|
|
kMaxSequenceNumber, 0 /* column_family_id */);
|
|
mem2->Ref();
|
|
|
|
ASSERT_OK(
|
|
mem2->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem2->Add(++seq, kTypeValue, "key2", "value2.3",
|
|
nullptr /* kv_prot_info */));
|
|
|
|
// Add second memtable to list
|
|
list.Add(mem2, &to_delete);
|
|
|
|
// Fetch keys via MemTableList
|
|
merge_context.Clear();
|
|
found = list.current()->Get(
|
|
LookupKey("key1", seq), &value, /*timestamp*/nullptr, &s,
|
|
&merge_context, &max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(found && s.IsNotFound());
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(
|
|
LookupKey("key1", saved_seq), &value, /*timestamp*/nullptr,
|
|
&s, &merge_context, &max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(s.ok() && found);
|
|
ASSERT_EQ("value1", value);
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(
|
|
LookupKey("key2", seq), &value, /*timestamp*/nullptr, &s,
|
|
&merge_context, &max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(s.ok() && found);
|
|
ASSERT_EQ(value, "value2.3");
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(
|
|
LookupKey("key2", 1), &value, /*timestamp*/nullptr, &s,
|
|
&merge_context, &max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
ASSERT_EQ(2, list.NumNotFlushed());
|
|
|
|
list.current()->Unref(&to_delete);
|
|
for (MemTable* m : to_delete) {
|
|
delete m;
|
|
}
|
|
}
|
|
|
|
TEST_F(MemTableListTest, GetFromHistoryTest) {
|
|
// Create MemTableList
|
|
int min_write_buffer_number_to_merge = 2;
|
|
int max_write_buffer_number_to_maintain = 2;
|
|
int64_t max_write_buffer_size_to_maintain = 2000;
|
|
MemTableList list(min_write_buffer_number_to_merge,
|
|
max_write_buffer_number_to_maintain,
|
|
max_write_buffer_size_to_maintain);
|
|
|
|
SequenceNumber seq = 1;
|
|
std::string value;
|
|
Status s;
|
|
MergeContext merge_context;
|
|
InternalKeyComparator ikey_cmp(options.comparator);
|
|
SequenceNumber max_covering_tombstone_seq = 0;
|
|
autovector<MemTable*> to_delete;
|
|
|
|
LookupKey lkey("key1", seq);
|
|
bool found = list.current()->Get(
|
|
lkey, &value, /*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
// Create a MemTable
|
|
InternalKeyComparator cmp(BytewiseComparator());
|
|
auto factory = std::make_shared<SkipListFactory>();
|
|
options.memtable_factory = factory;
|
|
ImmutableOptions ioptions(options);
|
|
|
|
WriteBufferManager wb(options.db_write_buffer_size);
|
|
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
|
|
kMaxSequenceNumber, 0 /* column_family_id */);
|
|
mem->Ref();
|
|
|
|
// Write some keys to this memtable.
|
|
ASSERT_OK(
|
|
mem->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2.2",
|
|
nullptr /* kv_prot_info */));
|
|
|
|
// Fetch the newly written keys
|
|
merge_context.Clear();
|
|
found = mem->Get(LookupKey("key1", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
// MemTable found out that this key is *not* found (at this sequence#)
|
|
ASSERT_TRUE(found && s.IsNotFound());
|
|
|
|
merge_context.Clear();
|
|
found = mem->Get(LookupKey("key2", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(s.ok() && found);
|
|
ASSERT_EQ(value, "value2.2");
|
|
|
|
// Add memtable to list
|
|
list.Add(mem, &to_delete);
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Fetch keys via MemTableList
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key1", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(found && s.IsNotFound());
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key2", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(s.ok() && found);
|
|
ASSERT_EQ("value2.2", value);
|
|
|
|
// Flush this memtable from the list.
|
|
// (It will then be a part of the memtable history).
|
|
autovector<MemTable*> to_flush;
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
ASSERT_EQ(1, to_flush.size());
|
|
|
|
MutableCFOptions mutable_cf_options(options);
|
|
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
|
|
&to_delete);
|
|
ASSERT_OK(s);
|
|
ASSERT_EQ(0, list.NumNotFlushed());
|
|
ASSERT_EQ(1, list.NumFlushed());
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Verify keys are no longer in MemTableList
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key1", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key2", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
// Verify keys are present in history
|
|
merge_context.Clear();
|
|
found = list.current()->GetFromHistory(
|
|
LookupKey("key1", seq), &value, /*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(found && s.IsNotFound());
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->GetFromHistory(
|
|
LookupKey("key2", seq), &value, /*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(found);
|
|
ASSERT_EQ("value2.2", value);
|
|
|
|
// Create another memtable and write some keys to it
|
|
WriteBufferManager wb2(options.db_write_buffer_size);
|
|
MemTable* mem2 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb2,
|
|
kMaxSequenceNumber, 0 /* column_family_id */);
|
|
mem2->Ref();
|
|
|
|
ASSERT_OK(
|
|
mem2->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem2->Add(++seq, kTypeValue, "key3", "value3",
|
|
nullptr /* kv_prot_info */));
|
|
|
|
// Add second memtable to list
|
|
list.Add(mem2, &to_delete);
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
to_flush.clear();
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
ASSERT_EQ(1, to_flush.size());
|
|
|
|
// Flush second memtable
|
|
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
|
|
&to_delete);
|
|
ASSERT_OK(s);
|
|
ASSERT_EQ(0, list.NumNotFlushed());
|
|
ASSERT_EQ(2, list.NumFlushed());
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Add a third memtable to push the first memtable out of the history
|
|
WriteBufferManager wb3(options.db_write_buffer_size);
|
|
MemTable* mem3 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb3,
|
|
kMaxSequenceNumber, 0 /* column_family_id */);
|
|
mem3->Ref();
|
|
list.Add(mem3, &to_delete);
|
|
ASSERT_EQ(1, list.NumNotFlushed());
|
|
ASSERT_EQ(1, list.NumFlushed());
|
|
ASSERT_EQ(1, to_delete.size());
|
|
|
|
// Verify keys are no longer in MemTableList
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key1", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key2", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key3", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
// Verify that the second memtable's keys are in the history
|
|
merge_context.Clear();
|
|
found = list.current()->GetFromHistory(
|
|
LookupKey("key1", seq), &value, /*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(found && s.IsNotFound());
|
|
|
|
merge_context.Clear();
|
|
found = list.current()->GetFromHistory(
|
|
LookupKey("key3", seq), &value, /*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_TRUE(found);
|
|
ASSERT_EQ("value3", value);
|
|
|
|
// Verify that key2 from the first memtable is no longer in the history
|
|
merge_context.Clear();
|
|
found = list.current()->Get(LookupKey("key2", seq), &value,
|
|
/*timestamp*/nullptr, &s, &merge_context,
|
|
&max_covering_tombstone_seq, ReadOptions());
|
|
ASSERT_FALSE(found);
|
|
|
|
// Cleanup
|
|
list.current()->Unref(&to_delete);
|
|
ASSERT_EQ(3, to_delete.size());
|
|
for (MemTable* m : to_delete) {
|
|
delete m;
|
|
}
|
|
}
|
|
|
|
TEST_F(MemTableListTest, FlushPendingTest) {
|
|
const int num_tables = 6;
|
|
SequenceNumber seq = 1;
|
|
Status s;
|
|
|
|
auto factory = std::make_shared<SkipListFactory>();
|
|
options.memtable_factory = factory;
|
|
ImmutableOptions ioptions(options);
|
|
InternalKeyComparator cmp(BytewiseComparator());
|
|
WriteBufferManager wb(options.db_write_buffer_size);
|
|
autovector<MemTable*> to_delete;
|
|
|
|
// Create MemTableList
|
|
int min_write_buffer_number_to_merge = 3;
|
|
int max_write_buffer_number_to_maintain = 7;
|
|
int64_t max_write_buffer_size_to_maintain =
|
|
7 * static_cast<int>(options.write_buffer_size);
|
|
MemTableList list(min_write_buffer_number_to_merge,
|
|
max_write_buffer_number_to_maintain,
|
|
max_write_buffer_size_to_maintain);
|
|
|
|
// Create some MemTables
|
|
uint64_t memtable_id = 0;
|
|
std::vector<MemTable*> tables;
|
|
MutableCFOptions mutable_cf_options(options);
|
|
for (int i = 0; i < num_tables; i++) {
|
|
MemTable* mem = new MemTable(cmp, ioptions, mutable_cf_options, &wb,
|
|
kMaxSequenceNumber, 0 /* column_family_id */);
|
|
mem->SetID(memtable_id++);
|
|
mem->Ref();
|
|
|
|
std::string value;
|
|
MergeContext merge_context;
|
|
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", ToString(i),
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyN" + ToString(i), "valueN",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyX" + ToString(i), "value",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyM" + ToString(i), "valueM",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeDeletion, "keyX" + ToString(i), "",
|
|
nullptr /* kv_prot_info */));
|
|
|
|
tables.push_back(mem);
|
|
}
|
|
|
|
// Nothing to flush
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
autovector<MemTable*> to_flush;
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
ASSERT_EQ(0, to_flush.size());
|
|
|
|
// Request a flush even though there is nothing to flush
|
|
list.FlushRequested();
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Attempt to 'flush' to clear request for flush
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
ASSERT_EQ(0, to_flush.size());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Request a flush again
|
|
list.FlushRequested();
|
|
// No flush pending since the list is empty.
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Add 2 tables
|
|
list.Add(tables[0], &to_delete);
|
|
list.Add(tables[1], &to_delete);
|
|
ASSERT_EQ(2, list.NumNotFlushed());
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Even though we have less than the minimum to flush, a flush is
|
|
// pending since we had previously requested a flush and never called
|
|
// PickMemtablesToFlush() to clear the flush.
|
|
ASSERT_TRUE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Pick tables to flush
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
ASSERT_EQ(2, to_flush.size());
|
|
ASSERT_EQ(2, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Revert flush
|
|
list.RollbackMemtableFlush(to_flush, 0);
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
to_flush.clear();
|
|
|
|
// Add another table
|
|
list.Add(tables[2], &to_delete);
|
|
// We now have the minimum to flush regardles of whether FlushRequested()
|
|
// was called.
|
|
ASSERT_TRUE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Pick tables to flush
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
ASSERT_EQ(3, to_flush.size());
|
|
ASSERT_EQ(3, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Pick tables to flush again
|
|
autovector<MemTable*> to_flush2;
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush2);
|
|
ASSERT_EQ(0, to_flush2.size());
|
|
ASSERT_EQ(3, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Add another table
|
|
list.Add(tables[3], &to_delete);
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Request a flush again
|
|
list.FlushRequested();
|
|
ASSERT_TRUE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Pick tables to flush again
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush2);
|
|
ASSERT_EQ(1, to_flush2.size());
|
|
ASSERT_EQ(4, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Rollback first pick of tables
|
|
list.RollbackMemtableFlush(to_flush, 0);
|
|
ASSERT_TRUE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
to_flush.clear();
|
|
|
|
// Add another tables
|
|
list.Add(tables[4], &to_delete);
|
|
ASSERT_EQ(5, list.NumNotFlushed());
|
|
// We now have the minimum to flush regardles of whether FlushRequested()
|
|
ASSERT_TRUE(list.IsFlushPending());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
ASSERT_EQ(0, to_delete.size());
|
|
|
|
// Pick tables to flush
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush);
|
|
// Should pick 4 of 5 since 1 table has been picked in to_flush2
|
|
ASSERT_EQ(4, to_flush.size());
|
|
ASSERT_EQ(5, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Pick tables to flush again
|
|
autovector<MemTable*> to_flush3;
|
|
list.PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */, &to_flush3);
|
|
ASSERT_EQ(0, to_flush3.size()); // nothing not in progress of being flushed
|
|
ASSERT_EQ(5, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Flush the 4 memtables that were picked in to_flush
|
|
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
|
|
&to_delete);
|
|
ASSERT_OK(s);
|
|
|
|
// Note: now to_flush contains tables[0,1,2,4]. to_flush2 contains
|
|
// tables[3].
|
|
// Current implementation will only commit memtables in the order they were
|
|
// created. So TryInstallMemtableFlushResults will install the first 3 tables
|
|
// in to_flush and stop when it encounters a table not yet flushed.
|
|
ASSERT_EQ(2, list.NumNotFlushed());
|
|
int num_in_history =
|
|
std::min(3, static_cast<int>(max_write_buffer_size_to_maintain) /
|
|
static_cast<int>(options.write_buffer_size));
|
|
ASSERT_EQ(num_in_history, list.NumFlushed());
|
|
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
|
|
|
|
// Request a flush again. Should be nothing to flush
|
|
list.FlushRequested();
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
|
|
// Flush the 1 memtable that was picked in to_flush2
|
|
s = MemTableListTest::Mock_InstallMemtableFlushResults(
|
|
&list, mutable_cf_options, to_flush2, &to_delete);
|
|
ASSERT_OK(s);
|
|
|
|
// This will actually install 2 tables. The 1 we told it to flush, and also
|
|
// tables[4] which has been waiting for tables[3] to commit.
|
|
ASSERT_EQ(0, list.NumNotFlushed());
|
|
num_in_history =
|
|
std::min(5, static_cast<int>(max_write_buffer_size_to_maintain) /
|
|
static_cast<int>(options.write_buffer_size));
|
|
ASSERT_EQ(num_in_history, list.NumFlushed());
|
|
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
|
|
|
|
for (const auto& m : to_delete) {
|
|
// Refcount should be 0 after calling TryInstallMemtableFlushResults.
|
|
// Verify this, by Ref'ing then UnRef'ing:
|
|
m->Ref();
|
|
ASSERT_EQ(m, m->Unref());
|
|
delete m;
|
|
}
|
|
to_delete.clear();
|
|
|
|
// Add another table
|
|
list.Add(tables[5], &to_delete);
|
|
ASSERT_EQ(1, list.NumNotFlushed());
|
|
ASSERT_EQ(5, list.GetLatestMemTableID());
|
|
memtable_id = 4;
|
|
// Pick tables to flush. The tables to pick must have ID smaller than or
|
|
// equal to 4. Therefore, no table will be selected in this case.
|
|
autovector<MemTable*> to_flush4;
|
|
list.FlushRequested();
|
|
ASSERT_TRUE(list.HasFlushRequested());
|
|
list.PickMemtablesToFlush(memtable_id, &to_flush4);
|
|
ASSERT_TRUE(to_flush4.empty());
|
|
ASSERT_EQ(1, list.NumNotFlushed());
|
|
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
ASSERT_FALSE(list.HasFlushRequested());
|
|
|
|
// Pick tables to flush. The tables to pick must have ID smaller than or
|
|
// equal to 5. Therefore, only tables[5] will be selected.
|
|
memtable_id = 5;
|
|
list.FlushRequested();
|
|
list.PickMemtablesToFlush(memtable_id, &to_flush4);
|
|
ASSERT_EQ(1, static_cast<int>(to_flush4.size()));
|
|
ASSERT_EQ(1, list.NumNotFlushed());
|
|
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
|
|
ASSERT_FALSE(list.IsFlushPending());
|
|
to_delete.clear();
|
|
|
|
list.current()->Unref(&to_delete);
|
|
int to_delete_size =
|
|
std::min(num_tables, static_cast<int>(max_write_buffer_size_to_maintain) /
|
|
static_cast<int>(options.write_buffer_size));
|
|
ASSERT_EQ(to_delete_size, to_delete.size());
|
|
|
|
for (const auto& m : to_delete) {
|
|
// Refcount should be 0 after calling TryInstallMemtableFlushResults.
|
|
// Verify this, by Ref'ing then UnRef'ing:
|
|
m->Ref();
|
|
ASSERT_EQ(m, m->Unref());
|
|
delete m;
|
|
}
|
|
to_delete.clear();
|
|
}
|
|
|
|
TEST_F(MemTableListTest, EmptyAtomicFlusTest) {
|
|
autovector<MemTableList*> lists;
|
|
autovector<uint32_t> cf_ids;
|
|
autovector<const MutableCFOptions*> options_list;
|
|
autovector<const autovector<MemTable*>*> to_flush;
|
|
autovector<MemTable*> to_delete;
|
|
Status s = Mock_InstallMemtableAtomicFlushResults(lists, cf_ids, options_list,
|
|
to_flush, &to_delete);
|
|
ASSERT_OK(s);
|
|
ASSERT_TRUE(to_delete.empty());
|
|
}
|
|
|
|
TEST_F(MemTableListTest, AtomicFlusTest) {
|
|
const int num_cfs = 3;
|
|
const int num_tables_per_cf = 2;
|
|
SequenceNumber seq = 1;
|
|
|
|
auto factory = std::make_shared<SkipListFactory>();
|
|
options.memtable_factory = factory;
|
|
ImmutableOptions ioptions(options);
|
|
InternalKeyComparator cmp(BytewiseComparator());
|
|
WriteBufferManager wb(options.db_write_buffer_size);
|
|
|
|
// Create MemTableLists
|
|
int min_write_buffer_number_to_merge = 3;
|
|
int max_write_buffer_number_to_maintain = 7;
|
|
int64_t max_write_buffer_size_to_maintain =
|
|
7 * static_cast<int64_t>(options.write_buffer_size);
|
|
autovector<MemTableList*> lists;
|
|
for (int i = 0; i != num_cfs; ++i) {
|
|
lists.emplace_back(new MemTableList(min_write_buffer_number_to_merge,
|
|
max_write_buffer_number_to_maintain,
|
|
max_write_buffer_size_to_maintain));
|
|
}
|
|
|
|
autovector<uint32_t> cf_ids;
|
|
std::vector<std::vector<MemTable*>> tables(num_cfs);
|
|
autovector<const MutableCFOptions*> mutable_cf_options_list;
|
|
uint32_t cf_id = 0;
|
|
for (auto& elem : tables) {
|
|
mutable_cf_options_list.emplace_back(new MutableCFOptions(options));
|
|
uint64_t memtable_id = 0;
|
|
for (int i = 0; i != num_tables_per_cf; ++i) {
|
|
MemTable* mem =
|
|
new MemTable(cmp, ioptions, *(mutable_cf_options_list.back()), &wb,
|
|
kMaxSequenceNumber, cf_id);
|
|
mem->SetID(memtable_id++);
|
|
mem->Ref();
|
|
|
|
std::string value;
|
|
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", ToString(i),
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyN" + ToString(i), "valueN",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyX" + ToString(i), "value",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyM" + ToString(i), "valueM",
|
|
nullptr /* kv_prot_info */));
|
|
ASSERT_OK(mem->Add(++seq, kTypeDeletion, "keyX" + ToString(i), "",
|
|
nullptr /* kv_prot_info */));
|
|
|
|
elem.push_back(mem);
|
|
}
|
|
cf_ids.push_back(cf_id++);
|
|
}
|
|
|
|
std::vector<autovector<MemTable*>> flush_candidates(num_cfs);
|
|
|
|
// Nothing to flush
|
|
for (auto i = 0; i != num_cfs; ++i) {
|
|
auto* list = lists[i];
|
|
ASSERT_FALSE(list->IsFlushPending());
|
|
ASSERT_FALSE(list->imm_flush_needed.load(std::memory_order_acquire));
|
|
list->PickMemtablesToFlush(port::kMaxUint64 /* memtable_id */,
|
|
&flush_candidates[i]);
|
|
ASSERT_EQ(0, flush_candidates[i].size());
|
|
}
|
|
// Request flush even though there is nothing to flush
|
|
for (auto i = 0; i != num_cfs; ++i) {
|
|
auto* list = lists[i];
|
|
list->FlushRequested();
|
|
ASSERT_FALSE(list->IsFlushPending());
|
|
ASSERT_FALSE(list->imm_flush_needed.load(std::memory_order_acquire));
|
|
}
|
|
autovector<MemTable*> to_delete;
|
|
// Add tables to the immutable memtalbe lists associated with column families
|
|
for (auto i = 0; i != num_cfs; ++i) {
|
|
for (auto j = 0; j != num_tables_per_cf; ++j) {
|
|
lists[i]->Add(tables[i][j], &to_delete);
|
|
}
|
|
ASSERT_EQ(num_tables_per_cf, lists[i]->NumNotFlushed());
|
|
ASSERT_TRUE(lists[i]->IsFlushPending());
|
|
ASSERT_TRUE(lists[i]->imm_flush_needed.load(std::memory_order_acquire));
|
|
}
|
|
std::vector<uint64_t> flush_memtable_ids = {1, 1, 0};
|
|
// +----+
|
|
// list[0]: |0 1|
|
|
// list[1]: |0 1|
|
|
// | +--+
|
|
// list[2]: |0| 1
|
|
// +-+
|
|
// Pick memtables to flush
|
|
for (auto i = 0; i != num_cfs; ++i) {
|
|
flush_candidates[i].clear();
|
|
lists[i]->PickMemtablesToFlush(flush_memtable_ids[i], &flush_candidates[i]);
|
|
ASSERT_EQ(flush_memtable_ids[i] - 0 + 1,
|
|
static_cast<uint64_t>(flush_candidates[i].size()));
|
|
}
|
|
autovector<MemTableList*> tmp_lists;
|
|
autovector<uint32_t> tmp_cf_ids;
|
|
autovector<const MutableCFOptions*> tmp_options_list;
|
|
autovector<const autovector<MemTable*>*> to_flush;
|
|
for (auto i = 0; i != num_cfs; ++i) {
|
|
if (!flush_candidates[i].empty()) {
|
|
to_flush.push_back(&flush_candidates[i]);
|
|
tmp_lists.push_back(lists[i]);
|
|
tmp_cf_ids.push_back(i);
|
|
tmp_options_list.push_back(mutable_cf_options_list[i]);
|
|
}
|
|
}
|
|
Status s = Mock_InstallMemtableAtomicFlushResults(
|
|
tmp_lists, tmp_cf_ids, tmp_options_list, to_flush, &to_delete);
|
|
ASSERT_OK(s);
|
|
|
|
for (auto i = 0; i != num_cfs; ++i) {
|
|
for (auto j = 0; j != num_tables_per_cf; ++j) {
|
|
if (static_cast<uint64_t>(j) <= flush_memtable_ids[i]) {
|
|
ASSERT_LT(0, tables[i][j]->GetFileNumber());
|
|
}
|
|
}
|
|
ASSERT_EQ(
|
|
static_cast<size_t>(num_tables_per_cf) - flush_candidates[i].size(),
|
|
lists[i]->NumNotFlushed());
|
|
}
|
|
|
|
to_delete.clear();
|
|
for (auto list : lists) {
|
|
list->current()->Unref(&to_delete);
|
|
delete list;
|
|
}
|
|
for (auto& mutable_cf_options : mutable_cf_options_list) {
|
|
if (mutable_cf_options != nullptr) {
|
|
delete mutable_cf_options;
|
|
mutable_cf_options = nullptr;
|
|
}
|
|
}
|
|
// All memtables in tables array must have been flushed, thus ready to be
|
|
// deleted.
|
|
ASSERT_EQ(to_delete.size(), tables.size() * tables.front().size());
|
|
for (const auto& m : to_delete) {
|
|
// Refcount should be 0 after calling InstallMemtableFlushResults.
|
|
// Verify this by Ref'ing and then Unref'ing.
|
|
m->Ref();
|
|
ASSERT_EQ(m, m->Unref());
|
|
delete m;
|
|
}
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|