rocksdb/db/db_universal_compaction_test.cc
Peter Dillinger 4d3518951a Option to decouple index and filter partitions (#12939)
Summary:
Partitioned metadata blocks were introduced back in 2017 to deal more gracefully with large DBs where RAM is relatively scarce and some data might be much colder than other data. The feature allows metadata blocks to compete for memory in the block cache against data blocks while alleviating tail latencies and thrash conditions that can arise with large metadata blocks (sometimes megabytes each) that can arise with large SST files. In general, the cost to partitioned metadata is more CPU in accesses (especially for filters where more binary search is needed before hashing can be used) and a bit more memory fragmentation and related overheads.

However the feature has always had a subtle limitation with a subtle effect on performance: index partitions and filter partitions must be cut at the same time, regardless of which wins the space race (hahaha) to metadata_block_size. Commonly filters will be a few times larger than indexes, so index partitions will be under-sized compared to filter (and data) blocks. While this does affect fragmentation and related overheads a bit, I suspect the bigger impact on performance is in the block cache. The coupling of the partition cuts would be defensible if the binary search done to find the filter block was used (on filter hit) to short-circuit binary search to an index partition, but that optimization has not been developed.

Consider two metadata blocks, an under-sized one and a normal-sized one, covering proportional sections of the key space with the same density of read queries. The under-sized one will be more prone to eviction from block cache because it is used less often. This is unfair because of its despite its proportionally smaller cost of keeping in block cache, and most of the cost of a miss to re-load it (random IO) is not proportional to the size (similar latency etc. up to ~32KB).

 ## This change

Adds a new table option decouple_partitioned_filters allows filter blocks and index blocks to be cut independently. To make this work, the partitioned filter block builder needs to know about the previous key, to generate an appropriate separator for the partition index. In most cases, BlockBasedTableBuilder already has easy access to the previous key to provide to the filter block builder.

This change includes refactoring to pass that previous key to the filter builder when available, with the filter building caching the previous key itself when unavailable, such as during compression dictionary training and some unit tests. Access to the previous key eliminates the need to track the previous prefix, which results in a small SST construction CPU win in prefix filtering cases, regardless of coupling, and possibly a small regression for some non-prefix cases, regardless of coupling, but still overall improvement especially with https://github.com/facebook/rocksdb/issues/12931.

Suggested follow-up:
* Update confusing use of "last key" to refer to "previous key"
* Expand unit test coverage with parallel compression and dictionary training
* Consider an option or enhancement to alleviate under-sized metadata blocks "at the end" of an SST file due to no coordination or awareness of when files are cut.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12939

Test Plan:
unit tests updated. Also did some unit test runs with "hard wired" usage of parallel compression and dictionary training code paths to ensure they were working. Also ran blackbox_crash_test for a while with the new feature.

 ## SST write performance (CPU)

Using the same testing setup as in https://github.com/facebook/rocksdb/issues/12931 but with -decouple_partitioned_filters=1 in the "after" configuration, which benchmarking shows makes almost no difference in terms of SST write CPU. "After" vs. "before" this PR
```
-partition_index_and_filters=0 -prefix_size=0 -whole_key_filtering=1
923691 vs. 924851 (-0.13%)
-partition_index_and_filters=0 -prefix_size=8 -whole_key_filtering=0
921398 vs. 922973 (-0.17%)
-partition_index_and_filters=0 -prefix_size=8 -whole_key_filtering=1
902259 vs. 908756 (-0.71%)
-partition_index_and_filters=1 -prefix_size=8 -whole_key_filtering=0
917932 vs. 916901 (+0.60%)
-partition_index_and_filters=1 -prefix_size=8 -whole_key_filtering=0
912755 vs. 907298 (+0.60%)
-partition_index_and_filters=1 -prefix_size=8 -whole_key_filtering=1
899754 vs. 892433 (+0.82%)
```
I think this is a pretty good trade, especially in attracting more movement toward partitioned configurations.

 ## Read performance

Let's see how decoupling affects read performance across various degrees of memory constraint. To simplify LSM structure, we're using FIFO compaction. Since decoupling will overall increase metadata block size, we control for this somewhat with an extra "before" configuration with larger metadata block size setting (8k instead of 4k). Basic setup:

```
(for CS in 0300 1200; do TEST_TMPDIR=/dev/shm/rocksdb1 ./db_bench -benchmarks=fillrandom,flush,readrandom,block_cache_entry_stats -num=5000000 -duration=30 -disable_wal=1 -write_buffer_size=30000000 -bloom_bits=10 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters=1 -statistics=1 -cache_size=${CS}000000 -metadata_block_size=4096 -decouple_partitioned_filters=1 2>&1 | tee results-$CS; done)
```

And read ops/s results:

```CSV
Cache size MB,After/decoupled/4k,Before/4k,Before/8k
3,15593,15158,12826
6,16295,16693,14134
10,20427,20813,18459
20,27035,26836,27384
30,33250,31810,33846
60,35518,32585,35329
100,36612,31805,35292
300,35780,31492,35481
1000,34145,31551,35411
1100,35219,31380,34302
1200,35060,31037,34322
```

If you graph this with log scale on the X axis (internal link: https://pxl.cl/5qKRc), you see that the decoupled/4k configuration is essentially the best of both the before/4k and before/8k configurations: handles really tight memory closer to the old 4k configuration and handles generous memory closer to the old 8k configuration.

Reviewed By: jowlyzhang

Differential Revision: D61376772

Pulled By: pdillinger

fbshipit-source-id: fc2af2aee44290e2d9620f79651a30640799e01f
2024-08-16 15:34:31 -07:00

2378 lines
84 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <string>
#include "db/db_test_util.h"
#include "port/stack_trace.h"
#include "rocksdb/utilities/table_properties_collectors.h"
#include "test_util/mock_time_env.h"
#include "test_util/sync_point.h"
#include "test_util/testutil.h"
#include "util/random.h"
namespace ROCKSDB_NAMESPACE {
static std::string CompressibleString(Random* rnd, int len) {
std::string r;
test::CompressibleString(rnd, 0.8, len, &r);
return r;
}
class DBTestUniversalCompactionBase
: public DBTestBase,
public ::testing::WithParamInterface<std::tuple<int, bool>> {
public:
explicit DBTestUniversalCompactionBase(const std::string& path)
: DBTestBase(path, /*env_do_fsync=*/false) {}
void SetUp() override {
num_levels_ = std::get<0>(GetParam());
exclusive_manual_compaction_ = std::get<1>(GetParam());
}
int num_levels_;
bool exclusive_manual_compaction_;
};
class DBTestUniversalCompaction : public DBTestUniversalCompactionBase {
public:
DBTestUniversalCompaction()
: DBTestUniversalCompactionBase("/db_universal_compaction_test") {}
};
class DBTestUniversalCompaction2 : public DBTestBase {
public:
DBTestUniversalCompaction2()
: DBTestBase("db_universal_compaction_test2", /*env_do_fsync=*/false) {}
};
namespace {
void VerifyCompactionResult(
const ColumnFamilyMetaData& cf_meta,
const std::set<std::string>& overlapping_file_numbers) {
#ifndef NDEBUG
for (auto& level : cf_meta.levels) {
for (auto& file : level.files) {
assert(overlapping_file_numbers.find(file.name) ==
overlapping_file_numbers.end());
}
}
#endif
}
class KeepFilter : public CompactionFilter {
public:
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
return false;
}
const char* Name() const override { return "KeepFilter"; }
};
class KeepFilterFactory : public CompactionFilterFactory {
public:
explicit KeepFilterFactory(bool check_context = false)
: check_context_(check_context) {}
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& context) override {
if (check_context_) {
EXPECT_EQ(expect_full_compaction_.load(), context.is_full_compaction);
EXPECT_EQ(expect_manual_compaction_.load(), context.is_manual_compaction);
}
return std::unique_ptr<CompactionFilter>(new KeepFilter());
}
const char* Name() const override { return "KeepFilterFactory"; }
bool check_context_;
std::atomic_bool expect_full_compaction_;
std::atomic_bool expect_manual_compaction_;
};
} // anonymous namespace
// Make sure we don't trigger a problem if the trigger condtion is given
// to be 0, which is invalid.
TEST_P(DBTestUniversalCompaction, UniversalCompactionSingleSortedRun) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = num_levels_;
// Config universal compaction to always compact to one single sorted run.
options.level0_file_num_compaction_trigger = 0;
options.compaction_options_universal.size_ratio = 10;
options.compaction_options_universal.min_merge_width = 2;
options.compaction_options_universal.max_size_amplification_percent = 0;
options.write_buffer_size = 105 << 10; // 105KB
options.arena_block_size = 4 << 10;
options.target_file_size_base = 32 << 10; // 32KB
// trigger compaction if there are >= 4 files
KeepFilterFactory* filter = new KeepFilterFactory(true);
filter->expect_manual_compaction_.store(false);
options.compaction_filter_factory.reset(filter);
DestroyAndReopen(options);
ASSERT_EQ(1, db_->GetOptions().level0_file_num_compaction_trigger);
Random rnd(301);
int key_idx = 0;
filter->expect_full_compaction_.store(true);
for (int num = 0; num < 16; num++) {
// Write 100KB file. And immediately it should be compacted to one file.
GenerateNewFile(&rnd, &key_idx);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumSortedRuns(0), 1);
}
ASSERT_OK(Put(Key(key_idx), ""));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumSortedRuns(0), 1);
}
TEST_P(DBTestUniversalCompaction, OptimizeFiltersForHits) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.size_ratio = 5;
options.num_levels = num_levels_;
options.write_buffer_size = 105 << 10; // 105KB
options.arena_block_size = 4 << 10;
options.target_file_size_base = 32 << 10; // 32KB
// trigger compaction if there are >= 4 files
options.level0_file_num_compaction_trigger = 4;
BlockBasedTableOptions bbto;
bbto.cache_index_and_filter_blocks = true;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.optimize_filters_for_hits = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.memtable_factory.reset(test::NewSpecialSkipListFactory(3));
DestroyAndReopen(options);
// block compaction from happening
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
ASSERT_OK(Put(Key(num * 10), "val"));
if (num) {
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(Put(Key(30 + num * 10), "val"));
ASSERT_OK(Put(Key(60 + num * 10), "val"));
}
ASSERT_OK(Put("", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
// Query set of non existing keys
for (int i = 5; i < 90; i += 10) {
ASSERT_EQ(Get(Key(i)), "NOT_FOUND");
}
// Make sure bloom filter is used at least once.
ASSERT_GT(TestGetTickerCount(options, BLOOM_FILTER_USEFUL), 0);
auto prev_counter = TestGetTickerCount(options, BLOOM_FILTER_USEFUL);
// Make sure bloom filter is used for all but the last L0 file when looking
// up a non-existent key that's in the range of all L0 files.
ASSERT_EQ(Get(Key(35)), "NOT_FOUND");
ASSERT_EQ(prev_counter + NumTableFilesAtLevel(0) - 1,
TestGetTickerCount(options, BLOOM_FILTER_USEFUL));
prev_counter = TestGetTickerCount(options, BLOOM_FILTER_USEFUL);
// Unblock compaction and wait it for happening.
sleeping_task_low.WakeUp();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// The same queries will not trigger bloom filter
for (int i = 5; i < 90; i += 10) {
ASSERT_EQ(Get(Key(i)), "NOT_FOUND");
}
ASSERT_EQ(prev_counter, TestGetTickerCount(options, BLOOM_FILTER_USEFUL));
}
// TODO(kailiu) The tests on UniversalCompaction has some issues:
// 1. A lot of magic numbers ("11" or "12").
// 2. Made assumption on the memtable flush conditions, which may change from
// time to time.
TEST_P(DBTestUniversalCompaction, UniversalCompactionTrigger) {
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.size_ratio = 5;
options.num_levels = num_levels_;
options.write_buffer_size = 105 << 10; // 105KB
options.arena_block_size = 4 << 10;
// trigger compaction if there are >= 4 files
options.level0_file_num_compaction_trigger = 4;
KeepFilterFactory* filter = new KeepFilterFactory(true);
filter->expect_manual_compaction_.store(false);
options.compaction_filter_factory.reset(filter);
options = CurrentOptions(options);
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBTestWritableFile.GetPreallocationStatus", [&](void* arg) {
ASSERT_TRUE(arg != nullptr);
size_t preallocation_size = *(static_cast<size_t*>(arg));
if (num_levels_ > 3) {
ASSERT_LE(preallocation_size, options.target_file_size_base * 1.1);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
int key_idx = 0;
filter->expect_full_compaction_.store(true);
// Stage 1:
// Generate a set of files at level 0, but don't trigger level-0
// compaction.
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
// Write 100KB
GenerateNewFile(1, &rnd, &key_idx);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
GenerateNewFile(1, &rnd, &key_idx);
// Suppose each file flushed from mem table has size 1. Now we compact
// (level0_file_num_compaction_trigger+1)=4 files and should have a big
// file of size 4.
ASSERT_EQ(NumSortedRuns(1), 1);
// Stage 2:
// Now we have one file at level 0, with size 4. We also have some data in
// mem table. Let's continue generating new files at level 0, but don't
// trigger level-0 compaction.
// First, clean up memtable before inserting new data. This will generate
// a level-0 file, with size around 0.4 (according to previously written
// data amount).
filter->expect_full_compaction_.store(false);
ASSERT_OK(Flush(1));
for (int num = 0; num < options.level0_file_num_compaction_trigger - 3;
num++) {
GenerateNewFile(1, &rnd, &key_idx);
ASSERT_EQ(NumSortedRuns(1), num + 3);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
GenerateNewFile(1, &rnd, &key_idx);
// Before compaction, we have 4 files at level 0, with size 4, 0.4, 1, 1.
// After compaction, we should have 2 files, with size 4, 2.4.
ASSERT_EQ(NumSortedRuns(1), 2);
// Stage 3:
// Now we have 2 files at level 0, with size 4 and 2.4. Continue
// generating new files at level 0.
for (int num = 0; num < options.level0_file_num_compaction_trigger - 3;
num++) {
GenerateNewFile(1, &rnd, &key_idx);
ASSERT_EQ(NumSortedRuns(1), num + 3);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
GenerateNewFile(1, &rnd, &key_idx);
// Before compaction, we have 4 files at level 0, with size 4, 2.4, 1, 1.
// After compaction, we should have 3 files, with size 4, 2.4, 2.
ASSERT_EQ(NumSortedRuns(1), 3);
// Stage 4:
// Now we have 3 files at level 0, with size 4, 2.4, 2. Let's generate a
// new file of size 1.
GenerateNewFile(1, &rnd, &key_idx);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Level-0 compaction is triggered, but no file will be picked up.
ASSERT_EQ(NumSortedRuns(1), 4);
// Stage 5:
// Now we have 4 files at level 0, with size 4, 2.4, 2, 1. Let's generate
// a new file of size 1.
filter->expect_full_compaction_.store(true);
GenerateNewFile(1, &rnd, &key_idx);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// All files at level 0 will be compacted into a single one.
ASSERT_EQ(NumSortedRuns(1), 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionSizeAmplification) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = num_levels_;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = 3;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
Random rnd(301);
int key_idx = 0;
// Generate two files in Level 0. Both files are approx the same size.
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(1, Key(key_idx), rnd.RandomString(10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_EQ(NumSortedRuns(1), num + 1);
}
ASSERT_EQ(NumSortedRuns(1), 2);
// Flush whatever is remaining in memtable. This is typically
// small, which should not trigger size ratio based compaction
// but will instead trigger size amplification.
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify that size amplification did occur
ASSERT_EQ(NumSortedRuns(1), 1);
}
TEST_P(DBTestUniversalCompaction, DynamicUniversalCompactionSizeAmplification) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = 3;
// Initial setup of compaction_options_universal will prevent universal
// compaction from happening
options.compaction_options_universal.size_ratio = 100;
options.compaction_options_universal.min_merge_width = 100;
DestroyAndReopen(options);
int total_picked_compactions = 0;
int total_size_amp_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionBuilder::PickCompaction:Return", [&](void* arg) {
if (arg) {
total_picked_compactions++;
Compaction* c = static_cast<Compaction*>(arg);
if (c->compaction_reason() ==
CompactionReason::kUniversalSizeAmplification) {
total_size_amp_compactions++;
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
MutableCFOptions mutable_cf_options;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
int key_idx = 0;
// Generate two files in Level 0. Both files are approx the same size.
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(1, Key(key_idx), rnd.RandomString(10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_EQ(NumSortedRuns(1), num + 1);
}
ASSERT_EQ(NumSortedRuns(1), 2);
// Flush whatever is remaining in memtable. This is typically
// small, which should not trigger size ratio based compaction
// but could instead trigger size amplification if it's set
// to 110.
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify compaction did not happen
ASSERT_EQ(NumSortedRuns(1), 3);
// Trigger compaction if size amplification exceeds 110% without reopening DB
ASSERT_EQ(dbfull()
->GetOptions(handles_[1])
.compaction_options_universal.max_size_amplification_percent,
200U);
ASSERT_OK(dbfull()->SetOptions(handles_[1],
{{"compaction_options_universal",
"{max_size_amplification_percent=110;}"}}));
ASSERT_EQ(dbfull()
->GetOptions(handles_[1])
.compaction_options_universal.max_size_amplification_percent,
110u);
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_EQ(110u, mutable_cf_options.compaction_options_universal
.max_size_amplification_percent);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify that size amplification did happen
ASSERT_EQ(NumSortedRuns(1), 1);
ASSERT_EQ(total_picked_compactions, 1);
ASSERT_EQ(total_size_amp_compactions, 1);
}
TEST_P(DBTestUniversalCompaction, DynamicUniversalCompactionReadAmplification) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = 3;
// Initial setup of compaction_options_universal will prevent universal
// compaction from happening
options.compaction_options_universal.max_size_amplification_percent = 2000;
options.compaction_options_universal.size_ratio = 0;
options.compaction_options_universal.min_merge_width = 100;
DestroyAndReopen(options);
int total_picked_compactions = 0;
int total_size_ratio_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionBuilder::PickCompaction:Return", [&](void* arg) {
if (arg) {
total_picked_compactions++;
Compaction* c = static_cast<Compaction*>(arg);
if (c->compaction_reason() == CompactionReason::kUniversalSizeRatio) {
total_size_ratio_compactions++;
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
MutableCFOptions mutable_cf_options;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
int key_idx = 0;
// Generate three files in Level 0. All files are approx the same size.
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(1, Key(key_idx), rnd.RandomString(10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_EQ(NumSortedRuns(1), num + 1);
}
ASSERT_EQ(NumSortedRuns(1), options.level0_file_num_compaction_trigger);
// Flush whatever is remaining in memtable. This is typically small, about
// 30KB.
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify compaction did not happen
ASSERT_EQ(NumSortedRuns(1), options.level0_file_num_compaction_trigger + 1);
ASSERT_EQ(total_picked_compactions, 0);
ASSERT_OK(dbfull()->SetOptions(
handles_[1],
{{"compaction_options_universal",
"{min_merge_width=2;max_merge_width=2;size_ratio=100;}"}}));
ASSERT_EQ(dbfull()
->GetOptions(handles_[1])
.compaction_options_universal.min_merge_width,
2u);
ASSERT_EQ(dbfull()
->GetOptions(handles_[1])
.compaction_options_universal.max_merge_width,
2u);
ASSERT_EQ(
dbfull()->GetOptions(handles_[1]).compaction_options_universal.size_ratio,
100u);
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_EQ(mutable_cf_options.compaction_options_universal.size_ratio, 100u);
ASSERT_EQ(mutable_cf_options.compaction_options_universal.min_merge_width,
2u);
ASSERT_EQ(mutable_cf_options.compaction_options_universal.max_merge_width,
2u);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Files in L0 are approx: 0.3 (30KB), 1, 1, 1.
// On compaction: the files are below the size amp threshold, so we
// fallthrough to checking read amp conditions. The configured size ratio is
// not big enough to take 0.3 into consideration. So the next files 1 and 1
// are compacted together first as they satisfy size ratio condition and
// (min_merge_width, max_merge_width) condition, to give out a file size of 2.
// Next, the newly generated 2 and the last file 1 are compacted together. So
// at the end: #sortedRuns = 2, #picked_compactions = 2, and all the picked
// ones are size ratio based compactions.
ASSERT_EQ(NumSortedRuns(1), 2);
// If max_merge_width had not been changed dynamically above, and if it
// continued to be the default value of UINIT_MAX, total_picked_compactions
// would have been 1.
ASSERT_EQ(total_picked_compactions, 2);
ASSERT_EQ(total_size_ratio_compactions, 2);
}
TEST_P(DBTestUniversalCompaction, CompactFilesOnUniversalCompaction) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 10;
ChangeCompactOptions();
Options options;
options.create_if_missing = true;
options.compaction_style = kCompactionStyleLevel;
options.num_levels = 1;
options.target_file_size_base = options.write_buffer_size;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_EQ(options.compaction_style, kCompactionStyleUniversal);
Random rnd(301);
for (int key = 1024 * kEntriesPerBuffer; key >= 0; --key) {
ASSERT_OK(Put(1, std::to_string(key), rnd.RandomString(kTestValueSize)));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ColumnFamilyMetaData cf_meta;
dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta);
std::vector<std::string> compaction_input_file_names;
for (const auto& file : cf_meta.levels[0].files) {
if (rnd.OneIn(2)) {
compaction_input_file_names.push_back(file.name);
}
}
if (compaction_input_file_names.size() == 0) {
compaction_input_file_names.push_back(cf_meta.levels[0].files[0].name);
}
// expect fail since universal compaction only allow L0 output
ASSERT_FALSE(dbfull()
->CompactFiles(CompactionOptions(), handles_[1],
compaction_input_file_names, 1)
.ok());
// expect ok and verify the compacted files no longer exist.
ASSERT_OK(dbfull()->CompactFiles(CompactionOptions(), handles_[1],
compaction_input_file_names, 0));
dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta);
VerifyCompactionResult(
cf_meta, std::set<std::string>(compaction_input_file_names.begin(),
compaction_input_file_names.end()));
compaction_input_file_names.clear();
// Pick the first and the last file, expect everything is
// compacted into one single file.
compaction_input_file_names.push_back(cf_meta.levels[0].files[0].name);
compaction_input_file_names.push_back(
cf_meta.levels[0].files[cf_meta.levels[0].files.size() - 1].name);
ASSERT_OK(dbfull()->CompactFiles(CompactionOptions(), handles_[1],
compaction_input_file_names, 0));
dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta);
ASSERT_EQ(cf_meta.levels[0].files.size(), 1U);
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionTargetLevel) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100 << 10; // 100KB
options.num_levels = 7;
options.disable_auto_compactions = true;
DestroyAndReopen(options);
// Generate 3 overlapping files
Random rnd(301);
for (int i = 0; i < 210; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(100)));
}
ASSERT_OK(Flush());
for (int i = 200; i < 300; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(100)));
}
ASSERT_OK(Flush());
for (int i = 250; i < 260; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(100)));
}
ASSERT_OK(Flush());
ASSERT_EQ("3", FilesPerLevel(0));
// Compact all files into 1 file and put it in L4
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 4;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_EQ("0,0,0,0,1", FilesPerLevel(0));
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DBTestUniversalCompactionMultiLevels
: public DBTestUniversalCompactionBase {
public:
DBTestUniversalCompactionMultiLevels()
: DBTestUniversalCompactionBase(
"/db_universal_compaction_multi_levels_test") {}
};
TEST_P(DBTestUniversalCompactionMultiLevels, UniversalCompactionMultiLevels) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = num_levels_;
options.write_buffer_size = 100 << 10; // 100KB
options.level0_file_num_compaction_trigger = 8;
options.max_background_compactions = 3;
options.target_file_size_base = 32 * 1024;
CreateAndReopenWithCF({"pikachu"}, options);
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
Random rnd(301);
int num_keys = 100000;
for (int i = 0; i < num_keys * 2; i++) {
ASSERT_OK(Put(1, Key(i % num_keys), Key(i)));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
for (int i = num_keys; i < num_keys * 2; i++) {
ASSERT_EQ(Get(1, Key(i % num_keys)), Key(i));
}
}
// Tests universal compaction with trivial move enabled
TEST_P(DBTestUniversalCompactionMultiLevels, UniversalCompactionTrivialMove) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial", [&](void* arg) {
non_trivial_move++;
ASSERT_TRUE(arg != nullptr);
int output_level = *(static_cast<int*>(arg));
ASSERT_EQ(output_level, 0);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.allow_trivial_move = true;
options.num_levels = 3;
options.write_buffer_size = 100 << 10; // 100KB
options.level0_file_num_compaction_trigger = 3;
options.max_background_compactions = 2;
options.target_file_size_base = 32 * 1024;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
Random rnd(301);
int num_keys = 150000;
for (int i = 0; i < num_keys; i++) {
ASSERT_OK(Put(1, Key(i), Key(i)));
}
std::vector<std::string> values;
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_GT(trivial_move, 0);
ASSERT_GT(non_trivial_move, 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
INSTANTIATE_TEST_CASE_P(MultiLevels, DBTestUniversalCompactionMultiLevels,
::testing::Combine(::testing::Values(3, 20),
::testing::Bool()));
class DBTestUniversalCompactionParallel : public DBTestUniversalCompactionBase {
public:
DBTestUniversalCompactionParallel()
: DBTestUniversalCompactionBase("/db_universal_compaction_prallel_test") {
}
};
TEST_P(DBTestUniversalCompactionParallel, UniversalCompactionParallel) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = num_levels_;
options.env = env_;
options.write_buffer_size = 1 << 10; // 1KB
options.level0_file_num_compaction_trigger = 3;
options.max_background_compactions = 3;
options.max_background_flushes = 3;
options.target_file_size_base = 1 * 1024;
options.compaction_options_universal.max_size_amplification_percent = 110;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Delay every compaction so multiple compactions will happen.
std::atomic<int> num_compactions_running(0);
std::atomic<bool> has_parallel(false);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():Start", [&](void* /*arg*/) {
if (num_compactions_running.fetch_add(1) > 0) {
has_parallel.store(true);
return;
}
for (int nwait = 0; nwait < 20000; nwait++) {
if (has_parallel.load() || num_compactions_running.load() > 1) {
has_parallel.store(true);
break;
}
env_->SleepForMicroseconds(1000);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():End",
[&](void* /*arg*/) { num_compactions_running.fetch_add(-1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
Random rnd(301);
int num_keys = 30000;
for (int i = 0; i < num_keys * 2; i++) {
ASSERT_OK(Put(1, Key(i % num_keys), Key(i)));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(num_compactions_running.load(), 0);
ASSERT_TRUE(has_parallel.load());
for (int i = num_keys; i < num_keys * 2; i++) {
ASSERT_EQ(Get(1, Key(i % num_keys)), Key(i));
}
// Reopen and check.
ReopenWithColumnFamilies({"default", "pikachu"}, options);
for (int i = num_keys; i < num_keys * 2; i++) {
ASSERT_EQ(Get(1, Key(i % num_keys)), Key(i));
}
}
TEST_P(DBTestUniversalCompactionParallel, PickByFileNumberBug) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = num_levels_;
options.write_buffer_size = 1 * 1024; // 1KB
options.level0_file_num_compaction_trigger = 7;
options.max_background_compactions = 2;
options.target_file_size_base = 1024 * 1024; // 1MB
// Disable size amplifiction compaction
options.compaction_options_universal.max_size_amplification_percent =
UINT_MAX;
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBTestUniversalCompactionParallel::PickByFileNumberBug:0",
"BackgroundCallCompaction:0"},
{"UniversalCompactionBuilder::PickCompaction:Return",
"DBTestUniversalCompactionParallel::PickByFileNumberBug:1"},
{"DBTestUniversalCompactionParallel::PickByFileNumberBug:2",
"CompactionJob::Run():Start"}});
int total_picked_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionBuilder::PickCompaction:Return", [&](void* arg) {
if (arg) {
total_picked_compactions++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Write 7 files to trigger compaction
int key_idx = 1;
for (int i = 1; i <= 70; i++) {
std::string k = Key(key_idx++);
ASSERT_OK(Put(k, k));
if (i % 10 == 0) {
ASSERT_OK(Flush());
}
}
// Wait for the 1st background compaction process to start
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:0");
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:1");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
// Write 3 files while 1st compaction is held
// These 3 files have different sizes to avoid compacting based on size_ratio
int num_keys = 1000;
for (int i = 0; i < 3; i++) {
for (int j = 1; j <= num_keys; j++) {
std::string k = Key(key_idx++);
ASSERT_OK(Put(k, k));
}
ASSERT_OK(Flush());
num_keys -= 100;
}
// Hold the 1st compaction from finishing
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:2");
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// There should only be one picked compaction as the score drops below one
// after the first one is picked.
EXPECT_EQ(total_picked_compactions, 1);
EXPECT_EQ(TotalTableFiles(), 4);
// Stop SyncPoint and destroy the DB and reopen it again
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
key_idx = 1;
total_picked_compactions = 0;
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Write 7 files to trigger compaction
for (int i = 1; i <= 70; i++) {
std::string k = Key(key_idx++);
ASSERT_OK(Put(k, k));
if (i % 10 == 0) {
ASSERT_OK(Flush());
}
}
// Wait for the 1st background compaction process to start
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:0");
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:1");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
// Write 8 files while 1st compaction is held
// These 8 files have different sizes to avoid compacting based on size_ratio
num_keys = 1000;
for (int i = 0; i < 8; i++) {
for (int j = 1; j <= num_keys; j++) {
std::string k = Key(key_idx++);
ASSERT_OK(Put(k, k));
}
ASSERT_OK(Flush());
num_keys -= 100;
}
// Wait for the 2nd background compaction process to start
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:0");
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:1");
// Hold the 1st and 2nd compaction from finishing
TEST_SYNC_POINT("DBTestUniversalCompactionParallel::PickByFileNumberBug:2");
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// This time we will trigger a compaction because of size ratio and
// another compaction because of number of files that are not compacted
// greater than 7
EXPECT_GE(total_picked_compactions, 2);
}
INSTANTIATE_TEST_CASE_P(Parallel, DBTestUniversalCompactionParallel,
::testing::Combine(::testing::Values(1, 10),
::testing::Values(false)));
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(DBTestUniversalCompaction, UniversalCompactionOptions) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 105 << 10; // 105KB
options.arena_block_size = 4 << 10; // 4KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = 4;
options.num_levels = num_levels_;
options.compaction_options_universal.compression_size_percent = -1;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
int key_idx = 0;
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
// Write 100KB (100 values, each 1K)
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(1, Key(key_idx), rnd.RandomString(990)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
if (num < options.level0_file_num_compaction_trigger - 1) {
ASSERT_EQ(NumSortedRuns(1), num + 1);
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumSortedRuns(1), 1);
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionStopStyleSimilarSize) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 105 << 10; // 105KB
options.arena_block_size = 4 << 10; // 4KB
options.target_file_size_base = 32 << 10; // 32KB
// trigger compaction if there are >= 4 files
options.level0_file_num_compaction_trigger = 4;
options.compaction_options_universal.size_ratio = 10;
options.compaction_options_universal.stop_style =
kCompactionStopStyleSimilarSize;
options.num_levels = num_levels_;
DestroyAndReopen(options);
Random rnd(301);
int key_idx = 0;
// Stage 1:
// Generate a set of files at level 0, but don't trigger level-0
// compaction.
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
// Write 100KB (100 values, each 1K)
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(key_idx), rnd.RandomString(990)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ(NumSortedRuns(), num + 1);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(key_idx), rnd.RandomString(990)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Suppose each file flushed from mem table has size 1. Now we compact
// (level0_file_num_compaction_trigger+1)=4 files and should have a big
// file of size 4.
ASSERT_EQ(NumSortedRuns(), 1);
// Stage 2:
// Now we have one file at level 0, with size 4. We also have some data in
// mem table. Let's continue generating new files at level 0, but don't
// trigger level-0 compaction.
// First, clean up memtable before inserting new data. This will generate
// a level-0 file, with size around 0.4 (according to previously written
// data amount).
ASSERT_OK(dbfull()->Flush(FlushOptions()));
for (int num = 0; num < options.level0_file_num_compaction_trigger - 3;
num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(key_idx), rnd.RandomString(990)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ(NumSortedRuns(), num + 3);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(key_idx), rnd.RandomString(990)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Before compaction, we have 4 files at level 0, with size 4, 0.4, 1, 1.
// After compaction, we should have 3 files, with size 4, 0.4, 2.
ASSERT_EQ(NumSortedRuns(), 3);
// Stage 3:
// Now we have 3 files at level 0, with size 4, 0.4, 2. Generate one
// more file at level-0, which should trigger level-0 compaction.
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(key_idx), rnd.RandomString(990)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Level-0 compaction is triggered, but no file will be picked up.
ASSERT_EQ(NumSortedRuns(), 4);
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionCompressRatio1) {
if (!Snappy_Supported()) {
return;
}
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = 2;
options.num_levels = num_levels_;
options.compaction_options_universal.compression_size_percent = 70;
DestroyAndReopen(options);
Random rnd(301);
int key_idx = 0;
// The first compaction (2) is compressed.
for (int num = 0; num < 2; num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_LT(TotalSize(), 110000U * 2 * 0.9);
// The second compaction (4) is compressed
for (int num = 0; num < 2; num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_LT(TotalSize(), 110000 * 4 * 0.9);
// The third compaction (2 4) is compressed since this time it is
// (1 1 3.2) and 3.2/5.2 doesn't reach ratio.
for (int num = 0; num < 2; num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_LT(TotalSize(), 110000 * 6 * 0.9);
// When we start for the compaction up to (2 4 8), the latest
// compressed is not compressed.
for (int num = 0; num < 8; num++) {
// Write 110KB (11 values, each 10K)
for (int i = 0; i < 11; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_GT(TotalSize(), 110000 * 11 * 0.8 + 110000 * 2);
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionCompressRatio2) {
if (!Snappy_Supported()) {
return;
}
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = 2;
options.num_levels = num_levels_;
options.compaction_options_universal.compression_size_percent = 95;
DestroyAndReopen(options);
Random rnd(301);
int key_idx = 0;
// When we start for the compaction up to (2 4 8), the latest
// compressed is compressed given the size ratio to compress.
for (int num = 0; num < 14; num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_LT(TotalSize(), 120000U * 12 * 0.82 + 120000 * 2);
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
// Test that checks trivial move in universal compaction
TEST_P(DBTestUniversalCompaction, UniversalCompactionTrivialMoveTest1) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial", [&](void* arg) {
non_trivial_move++;
ASSERT_TRUE(arg != nullptr);
int output_level = *(static_cast<int*>(arg));
ASSERT_EQ(output_level, 0);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.allow_trivial_move = true;
options.num_levels = 2;
options.write_buffer_size = 100 << 10; // 100KB
options.level0_file_num_compaction_trigger = 3;
options.max_background_compactions = 1;
options.target_file_size_base = 32 * 1024;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
Random rnd(301);
int num_keys = 250000;
for (int i = 0; i < num_keys; i++) {
ASSERT_OK(Put(1, Key(i), Key(i)));
}
std::vector<std::string> values;
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_GT(trivial_move, 0);
ASSERT_GT(non_trivial_move, 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
// Test that checks trivial move in universal compaction
TEST_P(DBTestUniversalCompaction, UniversalCompactionTrivialMoveTest2) {
int32_t trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial", [&](void* arg) {
ASSERT_TRUE(arg != nullptr);
int output_level = *(static_cast<int*>(arg));
ASSERT_EQ(output_level, 0);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.allow_trivial_move = true;
options.num_levels = 15;
options.write_buffer_size = 100 << 10; // 100KB
options.level0_file_num_compaction_trigger = 8;
options.max_background_compactions = 2;
options.target_file_size_base = 64 * 1024;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
Random rnd(301);
int num_keys = 500000;
for (int i = 0; i < num_keys; i++) {
ASSERT_OK(Put(1, Key(i), Key(i)));
}
std::vector<std::string> values;
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_GT(trivial_move, 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(DBTestUniversalCompaction, UniversalCompactionFourPaths) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 300 * 1024);
options.db_paths.emplace_back(dbname_ + "_2", 300 * 1024);
options.db_paths.emplace_back(dbname_ + "_3", 500 * 1024);
options.db_paths.emplace_back(dbname_ + "_4", 1024 * 1024 * 1024);
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.size_ratio = 5;
options.write_buffer_size = 111 << 10; // 114KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
std::vector<std::string> filenames;
if (env_->GetChildren(options.db_paths[1].path, &filenames).ok()) {
// Delete archival files.
for (size_t i = 0; i < filenames.size(); ++i) {
ASSERT_OK(
env_->DeleteFile(options.db_paths[1].path + "/" + filenames[i]));
}
ASSERT_OK(env_->DeleteDir(options.db_paths[1].path));
}
Reopen(options);
Random rnd(301);
int key_idx = 0;
// First three 110KB files are not going to second path.
// After that, (100K, 200K)
for (int num = 0; num < 3; num++) {
GenerateNewFile(&rnd, &key_idx);
}
// Another 110KB triggers a compaction to 400K file to second path
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
// (1, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1,1,4) -> (2, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 2, 4) -> (3, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 3, 4) -> (8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[3].path));
// (1, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[3].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 1, 8) -> (2, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[3].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
// (1, 2, 8) -> (3, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[3].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 3, 8) -> (4, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[3].path));
// (1, 4, 8) -> (5, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[3].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Reopen(options);
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Destroy(options);
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionCFPathUse) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 300 * 1024);
options.db_paths.emplace_back(dbname_ + "_2", 300 * 1024);
options.db_paths.emplace_back(dbname_ + "_3", 500 * 1024);
options.db_paths.emplace_back(dbname_ + "_4", 1024 * 1024 * 1024);
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.size_ratio = 10;
options.write_buffer_size = 111 << 10; // 114KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
std::vector<Options> option_vector;
option_vector.emplace_back(options);
ColumnFamilyOptions cf_opt1(options), cf_opt2(options);
// Configure CF1 specific paths.
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1", 300 * 1024);
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_2", 300 * 1024);
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_3", 500 * 1024);
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_4", 1024 * 1024 * 1024);
option_vector.emplace_back(DBOptions(options), cf_opt1);
CreateColumnFamilies({"one"}, option_vector[1]);
// Configura CF2 specific paths.
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2", 300 * 1024);
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_2", 300 * 1024);
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_3", 500 * 1024);
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_4", 1024 * 1024 * 1024);
option_vector.emplace_back(DBOptions(options), cf_opt2);
CreateColumnFamilies({"two"}, option_vector[2]);
ReopenWithColumnFamilies({"default", "one", "two"}, option_vector);
Random rnd(301);
int key_idx = 0;
int key_idx1 = 0;
int key_idx2 = 0;
auto generate_file = [&]() {
GenerateNewFile(0, &rnd, &key_idx);
GenerateNewFile(1, &rnd, &key_idx1);
GenerateNewFile(2, &rnd, &key_idx2);
};
auto check_sstfilecount = [&](int path_id, int expected) {
ASSERT_EQ(expected, GetSstFileCount(options.db_paths[path_id].path));
ASSERT_EQ(expected, GetSstFileCount(cf_opt1.cf_paths[path_id].path));
ASSERT_EQ(expected, GetSstFileCount(cf_opt2.cf_paths[path_id].path));
};
auto check_getvalues = [&]() {
for (int i = 0; i < key_idx; i++) {
auto v = Get(0, Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
for (int i = 0; i < key_idx1; i++) {
auto v = Get(1, Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
for (int i = 0; i < key_idx2; i++) {
auto v = Get(2, Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
};
// First three 110KB files are not going to second path.
// After that, (100K, 200K)
for (int num = 0; num < 3; num++) {
generate_file();
}
// Another 110KB triggers a compaction to 400K file to second path
generate_file();
check_sstfilecount(2, 1);
// (1, 4)
generate_file();
check_sstfilecount(2, 1);
check_sstfilecount(0, 1);
// (1,1,4) -> (2, 4)
generate_file();
check_sstfilecount(2, 1);
check_sstfilecount(1, 1);
check_sstfilecount(0, 0);
// (1, 2, 4) -> (3, 4)
generate_file();
check_sstfilecount(2, 1);
check_sstfilecount(1, 1);
check_sstfilecount(0, 0);
// (1, 3, 4) -> (8)
generate_file();
check_sstfilecount(3, 1);
// (1, 8)
generate_file();
check_sstfilecount(3, 1);
check_sstfilecount(0, 1);
// (1, 1, 8) -> (2, 8)
generate_file();
check_sstfilecount(3, 1);
check_sstfilecount(1, 1);
// (1, 2, 8) -> (3, 8)
generate_file();
check_sstfilecount(3, 1);
check_sstfilecount(1, 1);
check_sstfilecount(0, 0);
// (1, 3, 8) -> (4, 8)
generate_file();
check_sstfilecount(2, 1);
check_sstfilecount(3, 1);
// (1, 4, 8) -> (5, 8)
generate_file();
check_sstfilecount(3, 1);
check_sstfilecount(2, 1);
check_sstfilecount(0, 0);
check_getvalues();
ReopenWithColumnFamilies({"default", "one", "two"}, option_vector);
check_getvalues();
Destroy(options, true);
}
TEST_P(DBTestUniversalCompaction, IncreaseUniversalCompactionNumLevels) {
std::function<void(int)> verify_func = [&](int num_keys_in_db) {
std::string keys_in_db;
Iterator* iter = dbfull()->NewIterator(ReadOptions(), handles_[1]);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
keys_in_db.append(iter->key().ToString());
keys_in_db.push_back(',');
}
EXPECT_OK(iter->status());
delete iter;
std::string expected_keys;
for (int i = 0; i <= num_keys_in_db; i++) {
expected_keys.append(Key(i));
expected_keys.push_back(',');
}
ASSERT_EQ(keys_in_db, expected_keys);
};
Random rnd(301);
int max_key1 = 200;
int max_key2 = 600;
int max_key3 = 800;
const int KNumKeysPerFile = 10;
// Stage 1: open a DB with universal compaction, num_levels=1
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
options.write_buffer_size = 200 << 10; // 200KB
options.level0_file_num_compaction_trigger = 3;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysPerFile));
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, options);
for (int i = 0; i <= max_key1; i++) {
// each value is 10K
ASSERT_OK(Put(1, Key(i), rnd.RandomString(10000)));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Stage 2: reopen with universal compaction, num_levels=4
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 4;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
verify_func(max_key1);
// Insert more keys
for (int i = max_key1 + 1; i <= max_key2; i++) {
// each value is 10K
ASSERT_OK(Put(1, Key(i), rnd.RandomString(10000)));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
verify_func(max_key2);
// Compaction to non-L0 has happened.
ASSERT_GT(NumTableFilesAtLevel(options.num_levels - 1, 1), 0);
// Stage 3: Revert it back to one level and revert to num_levels=1.
options.num_levels = 4;
options.target_file_size_base = INT_MAX;
ReopenWithColumnFamilies({"default", "pikachu"}, options);
// Compact all to level 0
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 0;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(
dbfull()->CompactRange(compact_options, handles_[1], nullptr, nullptr));
// Need to restart it once to remove higher level records in manifest.
ReopenWithColumnFamilies({"default", "pikachu"}, options);
// Final reopen
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
// Insert more keys
for (int i = max_key2 + 1; i <= max_key3; i++) {
// each value is 10K
ASSERT_OK(Put(1, Key(i), rnd.RandomString(10000)));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
verify_func(max_key3);
}
TEST_P(DBTestUniversalCompaction, UniversalCompactionSecondPathRatio) {
if (!Snappy_Supported()) {
return;
}
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 500 * 1024);
options.db_paths.emplace_back(dbname_ + "_2", 1024 * 1024 * 1024);
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.size_ratio = 5;
options.write_buffer_size = 111 << 10; // 114KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
std::vector<std::string> filenames;
if (env_->GetChildren(options.db_paths[1].path, &filenames).ok()) {
// Delete archival files.
for (size_t i = 0; i < filenames.size(); ++i) {
ASSERT_OK(
env_->DeleteFile(options.db_paths[1].path + "/" + filenames[i]));
}
ASSERT_OK(env_->DeleteDir(options.db_paths[1].path));
}
Reopen(options);
Random rnd(301);
int key_idx = 0;
// First three 110KB files are not going to second path.
// After that, (100K, 200K)
for (int num = 0; num < 3; num++) {
GenerateNewFile(&rnd, &key_idx);
}
// Another 110KB triggers a compaction to 400K file to second path
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
// (1, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1,1,4) -> (2, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 2, 4) -> (3, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 3, 4) -> (8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 1, 8) -> (2, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 2, 8) -> (3, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 3, 8) -> (4, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// (1, 4, 8) -> (5, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Reopen(options);
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Destroy(options);
}
TEST_P(DBTestUniversalCompaction, ConcurrentBottomPriLowPriCompactions) {
if (num_levels_ == 1) {
// for single-level universal, everything's bottom level so nothing should
// be executed in bottom-pri thread pool.
return;
}
const int kNumFilesTrigger = 3;
Env::Default()->SetBackgroundThreads(1, Env::Priority::BOTTOM);
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.max_background_compactions = 2;
options.num_levels = num_levels_;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = kNumFilesTrigger;
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
DestroyAndReopen(options);
// Need to get a token to enable compaction parallelism up to
// `max_background_compactions` jobs.
auto pressure_token =
dbfull()->TEST_write_controler().GetCompactionPressureToken();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{// wait for the full compaction to be picked before adding files intended
// for the second one.
{"DBImpl::BackgroundCompaction:ForwardToBottomPriPool",
"DBTestUniversalCompaction:ConcurrentBottomPriLowPriCompactions:0"},
// the full (bottom-pri) compaction waits until a partial (low-pri)
// compaction has started to verify they can run in parallel.
{"DBImpl::BackgroundCompaction:NonTrivial",
"DBImpl::BGWorkBottomCompaction"}});
SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < 2; ++i) {
for (int num = 0; num < kNumFilesTrigger; num++) {
int key_idx = 0;
GenerateNewFile(&rnd, &key_idx, true /* no_wait */);
// use no_wait above because that one waits for flush and compaction. We
// don't want to wait for compaction because the full compaction is
// intentionally blocked while more files are flushed.
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
if (i == 0) {
TEST_SYNC_POINT(
"DBTestUniversalCompaction:ConcurrentBottomPriLowPriCompactions:0");
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// First compaction should output to bottom level. Second should output to L0
// since older L0 files pending compaction prevent it from being placed lower.
ASSERT_EQ(NumSortedRuns(), 2);
ASSERT_GT(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(num_levels_ - 1), 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
Env::Default()->SetBackgroundThreads(0, Env::Priority::BOTTOM);
}
TEST_P(DBTestUniversalCompaction, RecalculateScoreAfterPicking) {
// Regression test for extra compactions scheduled. Once enough compactions
// have been scheduled to bring the score below one, we should stop
// scheduling more; otherwise, other CFs/DBs may be delayed unnecessarily.
const int kNumFilesTrigger = 8;
Options options = CurrentOptions();
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_options_universal.max_merge_width = kNumFilesTrigger / 2;
options.compaction_options_universal.max_size_amplification_percent =
static_cast<unsigned int>(-1);
options.compaction_style = kCompactionStyleUniversal;
options.level0_file_num_compaction_trigger = kNumFilesTrigger;
options.num_levels = num_levels_;
Reopen(options);
std::atomic<int> num_compactions_attempted(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:Start",
[&](void* /*arg*/) { ++num_compactions_attempted; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int num = 0; num < kNumFilesTrigger; num++) {
ASSERT_EQ(NumSortedRuns(), num);
int key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Compacting the first four files was enough to bring the score below one so
// there's no need to schedule any more compactions.
ASSERT_EQ(1, num_compactions_attempted);
ASSERT_EQ(NumSortedRuns(), 5);
}
TEST_P(DBTestUniversalCompaction, FinalSortedRunCompactFilesConflict) {
// Regression test for conflict between:
// (1) Running CompactFiles including file in the final sorted run; and
// (2) Picking universal size-amp-triggered compaction, which always includes
// the final sorted run.
if (exclusive_manual_compaction_) {
return;
}
Options opts = CurrentOptions();
opts.compaction_style = kCompactionStyleUniversal;
opts.compaction_options_universal.max_size_amplification_percent = 50;
opts.compaction_options_universal.min_merge_width = 2;
opts.compression = kNoCompression;
opts.level0_file_num_compaction_trigger = 2;
opts.max_background_compactions = 2;
opts.num_levels = num_levels_;
Reopen(opts);
// make sure compaction jobs can be parallelized
auto stop_token =
dbfull()->TEST_write_controler().GetCompactionPressureToken();
ASSERT_OK(Put("key", "val"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(num_levels_ - 1), 1);
ColumnFamilyMetaData cf_meta;
ColumnFamilyHandle* default_cfh = db_->DefaultColumnFamily();
dbfull()->GetColumnFamilyMetaData(default_cfh, &cf_meta);
ASSERT_EQ(1, cf_meta.levels[num_levels_ - 1].files.size());
std::string first_sst_filename =
cf_meta.levels[num_levels_ - 1].files[0].name;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"CompactFilesImpl:0",
"DBTestUniversalCompaction:FinalSortedRunCompactFilesConflict:0"},
{"DBImpl::BackgroundCompaction():AfterPickCompaction",
"CompactFilesImpl:1"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
port::Thread compact_files_thread([&]() {
ASSERT_OK(dbfull()->CompactFiles(CompactionOptions(), default_cfh,
{first_sst_filename}, num_levels_ - 1));
});
TEST_SYNC_POINT(
"DBTestUniversalCompaction:FinalSortedRunCompactFilesConflict:0");
for (int i = 0; i < 2; ++i) {
ASSERT_OK(Put("key", "val"));
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
compact_files_thread.join();
}
INSTANTIATE_TEST_CASE_P(NumLevels, DBTestUniversalCompaction,
::testing::Combine(::testing::Values(1, 3, 5),
::testing::Bool()));
class DBTestUniversalManualCompactionOutputPathId
: public DBTestUniversalCompactionBase {
public:
DBTestUniversalManualCompactionOutputPathId()
: DBTestUniversalCompactionBase(
"/db_universal_compaction_manual_pid_test") {}
};
TEST_P(DBTestUniversalManualCompactionOutputPathId,
ManualCompactionOutputPathId) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.db_paths.emplace_back(dbname_, 1000000000);
options.db_paths.emplace_back(dbname_ + "_2", 1000000000);
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = num_levels_;
options.target_file_size_base = 1 << 30; // Big size
options.level0_file_num_compaction_trigger = 10;
Destroy(options);
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
MakeTables(3, "p", "q", 1);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(2, TotalLiveFiles(1));
ASSERT_EQ(2, GetSstFileCount(options.db_paths[0].path));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[1].path));
// Full compaction to DB path 0
CompactRangeOptions compact_options;
compact_options.target_path_id = 1;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(compact_options, handles_[1], nullptr, nullptr));
ASSERT_EQ(1, TotalLiveFiles(1));
ASSERT_EQ(0, TotalLiveFilesAtPath(1, options.db_paths[0].path));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[1].path));
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
ASSERT_EQ(1, TotalLiveFiles(1));
ASSERT_EQ(0, TotalLiveFilesAtPath(1, options.db_paths[0].path));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[1].path));
MakeTables(1, "p", "q", 1);
ASSERT_EQ(2, TotalLiveFiles(1));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[0].path));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[1].path));
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
ASSERT_EQ(2, TotalLiveFiles(1));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[0].path));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[1].path));
// Full compaction to DB path 0
compact_options.target_path_id = 0;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(compact_options, handles_[1], nullptr, nullptr));
ASSERT_EQ(1, TotalLiveFiles(1));
ASSERT_EQ(1, TotalLiveFilesAtPath(1, options.db_paths[0].path));
ASSERT_EQ(0, TotalLiveFilesAtPath(1, options.db_paths[1].path));
// Fail when compacting to an invalid path ID
compact_options.target_path_id = 2;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_TRUE(db_->CompactRange(compact_options, handles_[1], nullptr, nullptr)
.IsInvalidArgument());
}
INSTANTIATE_TEST_CASE_P(OutputPathId,
DBTestUniversalManualCompactionOutputPathId,
::testing::Combine(::testing::Values(1, 8),
::testing::Bool()));
TEST_F(DBTestUniversalCompaction2, BasicL0toL1) {
const int kNumKeys = 3000;
const int kWindowSize = 100;
const int kNumDelsTrigger = 90;
Options opts = CurrentOptions();
opts.table_properties_collector_factories.emplace_back(
NewCompactOnDeletionCollectorFactory(kWindowSize, kNumDelsTrigger));
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 2;
opts.compression = kNoCompression;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
Reopen(opts);
// add an L1 file to prevent tombstones from dropping due to obsolescence
// during flush
int i;
for (i = 0; i < 2000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
// MoveFilesToLevel(6);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
for (i = 1999; i < kNumKeys; ++i) {
if (i >= kNumKeys - kWindowSize &&
i < kNumKeys - kWindowSize + kNumDelsTrigger) {
ASSERT_OK(Delete(Key(i)));
} else {
ASSERT_OK(Put(Key(i), "val"));
}
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_GT(NumTableFilesAtLevel(6), 0);
}
#if defined(ENABLE_SINGLE_LEVEL_DTC)
TEST_F(DBTestUniversalCompaction2, SingleLevel) {
const int kNumKeys = 3000;
const int kWindowSize = 100;
const int kNumDelsTrigger = 90;
Options opts = CurrentOptions();
opts.table_properties_collector_factories.emplace_back(
NewCompactOnDeletionCollectorFactory(kWindowSize, kNumDelsTrigger));
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 2;
opts.compression = kNoCompression;
opts.num_levels = 1;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
Reopen(opts);
// add an L1 file to prevent tombstones from dropping due to obsolescence
// during flush
int i;
for (i = 0; i < 2000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 1999; i < kNumKeys; ++i) {
if (i >= kNumKeys - kWindowSize &&
i < kNumKeys - kWindowSize + kNumDelsTrigger) {
ASSERT_OK(Delete(Key(i)));
} else {
ASSERT_OK(Put(Key(i), "val"));
}
}
ASSERT_OK(Flush()(;
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(1, NumTableFilesAtLevel(0));
}
#endif // ENABLE_SINGLE_LEVEL_DTC
TEST_F(DBTestUniversalCompaction2, MultipleLevels) {
const int kWindowSize = 100;
const int kNumDelsTrigger = 90;
Options opts = CurrentOptions();
opts.table_properties_collector_factories.emplace_back(
NewCompactOnDeletionCollectorFactory(kWindowSize, kNumDelsTrigger));
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 4;
opts.compression = kNoCompression;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
Reopen(opts);
// add an L1 file to prevent tombstones from dropping due to obsolescence
// during flush
int i;
for (i = 0; i < 500; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 500; i < 1000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 1000; i < 1500; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 1500; i < 2000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_GT(NumTableFilesAtLevel(6), 0);
for (i = 1999; i < 2333; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 2333; i < 2666; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 2666; i < 2999; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_GT(NumTableFilesAtLevel(6), 0);
ASSERT_GT(NumTableFilesAtLevel(5), 0);
for (i = 1900; i < 2100; ++i) {
ASSERT_OK(Delete(Key(i)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(1));
ASSERT_EQ(0, NumTableFilesAtLevel(2));
ASSERT_EQ(0, NumTableFilesAtLevel(3));
ASSERT_EQ(0, NumTableFilesAtLevel(4));
ASSERT_EQ(0, NumTableFilesAtLevel(5));
ASSERT_GT(NumTableFilesAtLevel(6), 0);
}
TEST_F(DBTestUniversalCompaction2, OverlappingL0) {
const int kWindowSize = 100;
const int kNumDelsTrigger = 90;
Options opts = CurrentOptions();
opts.table_properties_collector_factories.emplace_back(
NewCompactOnDeletionCollectorFactory(kWindowSize, kNumDelsTrigger));
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 5;
opts.compression = kNoCompression;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
Reopen(opts);
// add an L1 file to prevent tombstones from dropping due to obsolescence
// during flush
int i;
for (i = 0; i < 2000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 2000; i < 3000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 3500; i < 4000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
for (i = 2900; i < 3100; ++i) {
ASSERT_OK(Delete(Key(i)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(2, NumTableFilesAtLevel(0));
ASSERT_GT(NumTableFilesAtLevel(6), 0);
}
TEST_F(DBTestUniversalCompaction2, IngestBehind) {
const int kNumKeys = 3000;
const int kWindowSize = 100;
const int kNumDelsTrigger = 90;
Options opts = CurrentOptions();
opts.table_properties_collector_factories.emplace_back(
NewCompactOnDeletionCollectorFactory(kWindowSize, kNumDelsTrigger));
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 2;
opts.compression = kNoCompression;
opts.allow_ingest_behind = true;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
Reopen(opts);
// add an L1 file to prevent tombstones from dropping due to obsolescence
// during flush
int i;
for (i = 0; i < 2000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
}
ASSERT_OK(Flush());
// MoveFilesToLevel(6);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
for (i = 1999; i < kNumKeys; ++i) {
if (i >= kNumKeys - kWindowSize &&
i < kNumKeys - kWindowSize + kNumDelsTrigger) {
ASSERT_OK(Delete(Key(i)));
} else {
ASSERT_OK(Put(Key(i), "val"));
}
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(6));
ASSERT_GT(NumTableFilesAtLevel(5), 0);
}
TEST_F(DBTestUniversalCompaction2, PeriodicCompactionDefault) {
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.env = env_;
KeepFilterFactory* filter = new KeepFilterFactory(true);
options.compaction_filter_factory.reset(filter);
Reopen(options);
ASSERT_EQ(30 * 24 * 60 * 60,
dbfull()->GetOptions().periodic_compaction_seconds);
KeepFilter df;
options.compaction_filter_factory.reset();
options.compaction_filter = &df;
Reopen(options);
ASSERT_EQ(30 * 24 * 60 * 60,
dbfull()->GetOptions().periodic_compaction_seconds);
options.ttl = 60 * 24 * 60 * 60;
options.compaction_filter = nullptr;
Reopen(options);
ASSERT_EQ(30 * 24 * 60 * 60,
dbfull()->GetOptions().periodic_compaction_seconds);
options.periodic_compaction_seconds = 45 * 24 * 60 * 60;
options.ttl = 50 * 24 * 60 * 60;
Reopen(options);
ASSERT_EQ(45 * 24 * 60 * 60,
dbfull()->GetOptions().periodic_compaction_seconds);
options.periodic_compaction_seconds = 0;
options.ttl = 50 * 24 * 60 * 60;
Reopen(options);
ASSERT_EQ(50 * 24 * 60 * 60,
dbfull()->GetOptions().periodic_compaction_seconds);
}
TEST_F(DBTestUniversalCompaction2, PeriodicCompaction) {
Options opts = CurrentOptions();
opts.env = env_;
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 10;
opts.max_open_files = -1;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
opts.periodic_compaction_seconds = 48 * 60 * 60; // 2 days
opts.num_levels = 5;
env_->SetMockSleep();
Reopen(opts);
// NOTE: Presumed unnecessary and removed: resetting mock time in env
int periodic_compactions = 0;
int start_level = -1;
int output_level = -1;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionPicker::PickPeriodicCompaction:Return",
[&](void* arg) {
Compaction* compaction = static_cast<Compaction*>(arg);
ASSERT_TRUE(arg != nullptr);
ASSERT_TRUE(compaction->compaction_reason() ==
CompactionReason::kPeriodicCompaction);
start_level = compaction->start_level();
output_level = compaction->output_level();
periodic_compactions++;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Case 1: Oldest flushed file excceeds periodic compaction threshold.
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_EQ(0, periodic_compactions);
// Move clock forward so that the flushed file would qualify periodic
// compaction.
env_->MockSleepForSeconds(48 * 60 * 60 + 100);
// Another flush would trigger compaction the oldest file.
ASSERT_OK(Put("foo", "bar2"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(1, periodic_compactions);
ASSERT_EQ(0, start_level);
ASSERT_EQ(4, output_level);
// Case 2: Oldest compacted file excceeds periodic compaction threshold
periodic_compactions = 0;
// A flush doesn't trigger a periodic compaction when threshold not hit
ASSERT_OK(Put("foo", "bar2"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, periodic_compactions);
// After periodic compaction threshold hits, a flush will trigger
// a compaction
ASSERT_OK(Put("foo", "bar2"));
env_->MockSleepForSeconds(48 * 60 * 60 + 100);
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(1, periodic_compactions);
ASSERT_EQ(0, start_level);
ASSERT_EQ(4, output_level);
}
TEST_F(DBTestUniversalCompaction2, PeriodicCompactionOffpeak) {
constexpr int kSecondsPerDay = 86400;
constexpr int kSecondsPerHour = 3600;
constexpr int kSecondsPerMinute = 60;
Options opts = CurrentOptions();
opts.compaction_style = kCompactionStyleUniversal;
opts.level0_file_num_compaction_trigger = 10;
opts.max_open_files = -1;
opts.compaction_options_universal.size_ratio = 10;
opts.compaction_options_universal.min_merge_width = 2;
opts.compaction_options_universal.max_size_amplification_percent = 200;
opts.periodic_compaction_seconds = 5 * kSecondsPerDay; // 5 days
opts.num_levels = 5;
// Just to add some extra random days to current time
Random rnd(test::RandomSeed());
int days = rnd.Uniform(100);
int periodic_compactions = 0;
int start_level = -1;
int output_level = -1;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionPicker::PickPeriodicCompaction:Return",
[&](void* arg) {
Compaction* compaction = static_cast<Compaction*>(arg);
ASSERT_TRUE(arg != nullptr);
ASSERT_TRUE(compaction->compaction_reason() ==
CompactionReason::kPeriodicCompaction);
start_level = compaction->start_level();
output_level = compaction->output_level();
periodic_compactions++;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (std::string preset_offpeak_time : {"", "00:30-04:30", "10:30-02:30"}) {
SCOPED_TRACE("preset_offpeak_time=" + preset_offpeak_time);
for (std::string new_offpeak_time : {"", "23:30-02:30"}) {
SCOPED_TRACE("new_offpeak_time=" + new_offpeak_time);
std::vector<std::pair<int, int>> times_to_test = {
{0, 0}, {2, 30}, {3, 15}, {5, 10}, {13, 30}, {23, 30}};
for (std::pair<int, int> now : times_to_test) {
int now_hour = now.first;
int now_minute = now.second;
SCOPED_TRACE("now=" + std::to_string(now_hour) + ":" +
std::to_string(now_minute));
auto mock_clock =
std::make_shared<MockSystemClock>(env_->GetSystemClock());
auto mock_env = std::make_unique<CompositeEnvWrapper>(env_, mock_clock);
opts.env = mock_env.get();
mock_clock->SetCurrentTime(days * kSecondsPerDay +
now_hour * kSecondsPerHour +
now_minute * kSecondsPerMinute);
opts.daily_offpeak_time_utc = preset_offpeak_time;
Reopen(opts);
ASSERT_OK(Put("foo", "bar1"));
ASSERT_OK(Flush());
ASSERT_EQ(0, periodic_compactions);
// Move clock forward by 8 hours. There should be no periodic
// compaction, yet.
mock_clock->MockSleepForSeconds(8 * kSecondsPerHour);
ASSERT_OK(Put("foo", "bar2"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, periodic_compactions);
// Move clock forward by 4 days
mock_clock->MockSleepForSeconds(4 * kSecondsPerDay);
ASSERT_OK(Put("foo", "bar3"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
int64_t mock_now;
ASSERT_OK(mock_clock->GetCurrentTime(&mock_now));
auto offpeak_time_info =
dbfull()->GetVersionSet()->offpeak_time_option().GetOffpeakTimeInfo(
mock_now);
// At this point, the first file is 4 days and 8 hours old.
// If it's offpeak now and the file is expected to expire before the
// next offpeak starts
if (offpeak_time_info.is_now_offpeak &&
offpeak_time_info.seconds_till_next_offpeak_start /
kSecondsPerHour >
16) {
ASSERT_EQ(1, periodic_compactions);
} else {
ASSERT_EQ(0, periodic_compactions);
// Change offpeak option by SetDBOption()
if (preset_offpeak_time != new_offpeak_time) {
ASSERT_OK(dbfull()->SetDBOptions(
{{"daily_offpeak_time_utc", new_offpeak_time}}));
ASSERT_OK(Put("foo", "bar4"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
offpeak_time_info = dbfull()
->GetVersionSet()
->offpeak_time_option()
.GetOffpeakTimeInfo(mock_now);
// if the first file is now eligible to be picked up
if (offpeak_time_info.is_now_offpeak &&
offpeak_time_info.seconds_till_next_offpeak_start /
kSecondsPerHour >
16) {
ASSERT_OK(Put("foo", "bar5"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(1, periodic_compactions);
}
}
// If the file has not been picked up yet (no offpeak set, or offpeak
// set but then unset before the file becomes eligible)
if (periodic_compactions == 0) {
// move clock forward by one more day
mock_clock->MockSleepForSeconds(1 * kSecondsPerDay);
ASSERT_OK(Put("foo", "bar6"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
}
ASSERT_EQ(1, periodic_compactions);
ASSERT_EQ(0, start_level);
ASSERT_EQ(4, output_level);
Destroy(opts);
periodic_compactions = 0;
}
}
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}