mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-26 07:30:54 +00:00
f517d9dd09
Summary: Add new Iterator API, `SeekForPrev`: find the last key that <= target key support prefix_extractor support prefix_same_as_start support upper_bound not supported in iterators without Prev() Also add tests in db_iter_test and db_iterator_test Pass all tests Cheers! Test Plan: make all check -j64 Reviewers: andrewkr, yiwu, IslamAbdelRahman, sdong Reviewed By: sdong Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D64149
662 lines
25 KiB
C++
662 lines
25 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
#include "memtable/hash_cuckoo_rep.h"
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "db/memtable.h"
|
|
#include "db/skiplist.h"
|
|
#include "memtable/stl_wrappers.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/memtablerep.h"
|
|
#include "util/murmurhash.h"
|
|
|
|
namespace rocksdb {
|
|
namespace {
|
|
|
|
// the default maximum size of the cuckoo path searching queue
|
|
static const int kCuckooPathMaxSearchSteps = 100;
|
|
|
|
struct CuckooStep {
|
|
static const int kNullStep = -1;
|
|
// the bucket id in the cuckoo array.
|
|
int bucket_id_;
|
|
// index of cuckoo-step array that points to its previous step,
|
|
// -1 if it the beginning step.
|
|
int prev_step_id_;
|
|
// the depth of the current step.
|
|
unsigned int depth_;
|
|
|
|
CuckooStep() : bucket_id_(-1), prev_step_id_(kNullStep), depth_(1) {}
|
|
|
|
CuckooStep(CuckooStep&& o) = default;
|
|
|
|
CuckooStep& operator=(CuckooStep&& rhs) {
|
|
bucket_id_ = std::move(rhs.bucket_id_);
|
|
prev_step_id_ = std::move(rhs.prev_step_id_);
|
|
depth_ = std::move(rhs.depth_);
|
|
return *this;
|
|
}
|
|
|
|
CuckooStep(const CuckooStep&) = delete;
|
|
CuckooStep& operator=(const CuckooStep&) = delete;
|
|
|
|
CuckooStep(int bucket_id, int prev_step_id, int depth)
|
|
: bucket_id_(bucket_id), prev_step_id_(prev_step_id), depth_(depth) {}
|
|
};
|
|
|
|
class HashCuckooRep : public MemTableRep {
|
|
public:
|
|
explicit HashCuckooRep(const MemTableRep::KeyComparator& compare,
|
|
MemTableAllocator* allocator,
|
|
const size_t bucket_count,
|
|
const unsigned int hash_func_count,
|
|
const size_t approximate_entry_size)
|
|
: MemTableRep(allocator),
|
|
compare_(compare),
|
|
allocator_(allocator),
|
|
bucket_count_(bucket_count),
|
|
approximate_entry_size_(approximate_entry_size),
|
|
cuckoo_path_max_depth_(kDefaultCuckooPathMaxDepth),
|
|
occupied_count_(0),
|
|
hash_function_count_(hash_func_count),
|
|
backup_table_(nullptr) {
|
|
char* mem = reinterpret_cast<char*>(
|
|
allocator_->Allocate(sizeof(std::atomic<const char*>) * bucket_count_));
|
|
cuckoo_array_ = new (mem) std::atomic<char*>[bucket_count_];
|
|
for (unsigned int bid = 0; bid < bucket_count_; ++bid) {
|
|
cuckoo_array_[bid].store(nullptr, std::memory_order_relaxed);
|
|
}
|
|
|
|
cuckoo_path_ = reinterpret_cast<int*>(
|
|
allocator_->Allocate(sizeof(int) * (cuckoo_path_max_depth_ + 1)));
|
|
is_nearly_full_ = false;
|
|
}
|
|
|
|
// return false, indicating HashCuckooRep does not support merge operator.
|
|
virtual bool IsMergeOperatorSupported() const override { return false; }
|
|
|
|
// return false, indicating HashCuckooRep does not support snapshot.
|
|
virtual bool IsSnapshotSupported() const override { return false; }
|
|
|
|
// Returns true iff an entry that compares equal to key is in the collection.
|
|
virtual bool Contains(const char* internal_key) const override;
|
|
|
|
virtual ~HashCuckooRep() override {}
|
|
|
|
// Insert the specified key (internal_key) into the mem-table. Assertion
|
|
// fails if
|
|
// the current mem-table already contains the specified key.
|
|
virtual void Insert(KeyHandle handle) override;
|
|
|
|
// This function returns bucket_count_ * approximate_entry_size_ when any
|
|
// of the followings happen to disallow further write operations:
|
|
// 1. when the fullness reaches kMaxFullnes.
|
|
// 2. when the backup_table_ is used.
|
|
//
|
|
// otherwise, this function will always return 0.
|
|
virtual size_t ApproximateMemoryUsage() override {
|
|
if (is_nearly_full_) {
|
|
return bucket_count_ * approximate_entry_size_;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
virtual void Get(const LookupKey& k, void* callback_args,
|
|
bool (*callback_func)(void* arg,
|
|
const char* entry)) override;
|
|
|
|
class Iterator : public MemTableRep::Iterator {
|
|
std::shared_ptr<std::vector<const char*>> bucket_;
|
|
std::vector<const char*>::const_iterator mutable cit_;
|
|
const KeyComparator& compare_;
|
|
std::string tmp_; // For passing to EncodeKey
|
|
bool mutable sorted_;
|
|
void DoSort() const;
|
|
|
|
public:
|
|
explicit Iterator(std::shared_ptr<std::vector<const char*>> bucket,
|
|
const KeyComparator& compare);
|
|
|
|
// Initialize an iterator over the specified collection.
|
|
// The returned iterator is not valid.
|
|
// explicit Iterator(const MemTableRep* collection);
|
|
virtual ~Iterator() override{};
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
virtual bool Valid() const override;
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
virtual const char* key() const override;
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
virtual void Next() override;
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
virtual void Prev() override;
|
|
|
|
// Advance to the first entry with a key >= target
|
|
virtual void Seek(const Slice& user_key, const char* memtable_key) override;
|
|
|
|
// Retreat to the last entry with a key <= target
|
|
virtual void SeekForPrev(const Slice& user_key,
|
|
const char* memtable_key) override;
|
|
|
|
// Position at the first entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToFirst() override;
|
|
|
|
// Position at the last entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToLast() override;
|
|
};
|
|
|
|
struct CuckooStepBuffer {
|
|
CuckooStepBuffer() : write_index_(0), read_index_(0) {}
|
|
~CuckooStepBuffer() {}
|
|
|
|
int write_index_;
|
|
int read_index_;
|
|
CuckooStep steps_[kCuckooPathMaxSearchSteps];
|
|
|
|
CuckooStep& NextWriteBuffer() { return steps_[write_index_++]; }
|
|
|
|
inline const CuckooStep& ReadNext() { return steps_[read_index_++]; }
|
|
|
|
inline bool HasNewWrite() { return write_index_ > read_index_; }
|
|
|
|
inline void reset() {
|
|
write_index_ = 0;
|
|
read_index_ = 0;
|
|
}
|
|
|
|
inline bool IsFull() { return write_index_ >= kCuckooPathMaxSearchSteps; }
|
|
|
|
// returns the number of steps that has been read
|
|
inline int ReadCount() { return read_index_; }
|
|
|
|
// returns the number of steps that has been written to the buffer.
|
|
inline int WriteCount() { return write_index_; }
|
|
};
|
|
|
|
private:
|
|
const MemTableRep::KeyComparator& compare_;
|
|
// the pointer to Allocator to allocate memory, immutable after construction.
|
|
MemTableAllocator* const allocator_;
|
|
// the number of hash bucket in the hash table.
|
|
const size_t bucket_count_;
|
|
// approximate size of each entry
|
|
const size_t approximate_entry_size_;
|
|
// the maxinum depth of the cuckoo path.
|
|
const unsigned int cuckoo_path_max_depth_;
|
|
// the current number of entries in cuckoo_array_ which has been occupied.
|
|
size_t occupied_count_;
|
|
// the current number of hash functions used in the cuckoo hash.
|
|
unsigned int hash_function_count_;
|
|
// the backup MemTableRep to handle the case where cuckoo hash cannot find
|
|
// a vacant bucket for inserting the key of a put request.
|
|
std::shared_ptr<MemTableRep> backup_table_;
|
|
// the array to store pointers, pointing to the actual data.
|
|
std::atomic<char*>* cuckoo_array_;
|
|
// a buffer to store cuckoo path
|
|
int* cuckoo_path_;
|
|
// a boolean flag indicating whether the fullness of bucket array
|
|
// reaches the point to make the current memtable immutable.
|
|
bool is_nearly_full_;
|
|
|
|
// the default maximum depth of the cuckoo path.
|
|
static const unsigned int kDefaultCuckooPathMaxDepth = 10;
|
|
|
|
CuckooStepBuffer step_buffer_;
|
|
|
|
// returns the bucket id assogied to the input slice based on the
|
|
unsigned int GetHash(const Slice& slice, const int hash_func_id) const {
|
|
// the seeds used in the Murmur hash to produce different hash functions.
|
|
static const int kMurmurHashSeeds[HashCuckooRepFactory::kMaxHashCount] = {
|
|
545609244, 1769731426, 763324157, 13099088, 592422103,
|
|
1899789565, 248369300, 1984183468, 1613664382, 1491157517};
|
|
return static_cast<unsigned int>(
|
|
MurmurHash(slice.data(), static_cast<int>(slice.size()),
|
|
kMurmurHashSeeds[hash_func_id]) %
|
|
bucket_count_);
|
|
}
|
|
|
|
// A cuckoo path is a sequence of bucket ids, where each id points to a
|
|
// location of cuckoo_array_. This path describes the displacement sequence
|
|
// of entries in order to store the desired data specified by the input user
|
|
// key. The path starts from one of the locations associated with the
|
|
// specified user key and ends at a vacant space in the cuckoo array. This
|
|
// function will update the cuckoo_path.
|
|
//
|
|
// @return true if it found a cuckoo path.
|
|
bool FindCuckooPath(const char* internal_key, const Slice& user_key,
|
|
int* cuckoo_path, size_t* cuckoo_path_length,
|
|
int initial_hash_id = 0);
|
|
|
|
// Perform quick insert by checking whether there is a vacant bucket in one
|
|
// of the possible locations of the input key. If so, then the function will
|
|
// return true and the key will be stored in that vacant bucket.
|
|
//
|
|
// This function is a helper function of FindCuckooPath that discovers the
|
|
// first possible steps of a cuckoo path. It begins by first computing
|
|
// the possible locations of the input keys (and stores them in bucket_ids.)
|
|
// Then, if one of its possible locations is vacant, then the input key will
|
|
// be stored in that vacant space and the function will return true.
|
|
// Otherwise, the function will return false indicating a complete search
|
|
// of cuckoo-path is needed.
|
|
bool QuickInsert(const char* internal_key, const Slice& user_key,
|
|
int bucket_ids[], const int initial_hash_id);
|
|
|
|
// Returns the pointer to the internal iterator to the buckets where buckets
|
|
// are sorted according to the user specified KeyComparator. Note that
|
|
// any insert after this function call may affect the sorted nature of
|
|
// the returned iterator.
|
|
virtual MemTableRep::Iterator* GetIterator(Arena* arena) override {
|
|
std::vector<const char*> compact_buckets;
|
|
for (unsigned int bid = 0; bid < bucket_count_; ++bid) {
|
|
const char* bucket = cuckoo_array_[bid].load(std::memory_order_relaxed);
|
|
if (bucket != nullptr) {
|
|
compact_buckets.push_back(bucket);
|
|
}
|
|
}
|
|
MemTableRep* backup_table = backup_table_.get();
|
|
if (backup_table != nullptr) {
|
|
std::unique_ptr<MemTableRep::Iterator> iter(backup_table->GetIterator());
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
compact_buckets.push_back(iter->key());
|
|
}
|
|
}
|
|
if (arena == nullptr) {
|
|
return new Iterator(
|
|
std::shared_ptr<std::vector<const char*>>(
|
|
new std::vector<const char*>(std::move(compact_buckets))),
|
|
compare_);
|
|
} else {
|
|
auto mem = arena->AllocateAligned(sizeof(Iterator));
|
|
return new (mem) Iterator(
|
|
std::shared_ptr<std::vector<const char*>>(
|
|
new std::vector<const char*>(std::move(compact_buckets))),
|
|
compare_);
|
|
}
|
|
}
|
|
};
|
|
|
|
void HashCuckooRep::Get(const LookupKey& key, void* callback_args,
|
|
bool (*callback_func)(void* arg, const char* entry)) {
|
|
Slice user_key = key.user_key();
|
|
for (unsigned int hid = 0; hid < hash_function_count_; ++hid) {
|
|
const char* bucket =
|
|
cuckoo_array_[GetHash(user_key, hid)].load(std::memory_order_acquire);
|
|
if (bucket != nullptr) {
|
|
Slice bucket_user_key = UserKey(bucket);
|
|
if (user_key == bucket_user_key) {
|
|
callback_func(callback_args, bucket);
|
|
break;
|
|
}
|
|
} else {
|
|
// as Put() always stores at the vacant bucket located by the
|
|
// hash function with the smallest possible id, when we first
|
|
// find a vacant bucket in Get(), that means a miss.
|
|
break;
|
|
}
|
|
}
|
|
MemTableRep* backup_table = backup_table_.get();
|
|
if (backup_table != nullptr) {
|
|
backup_table->Get(key, callback_args, callback_func);
|
|
}
|
|
}
|
|
|
|
void HashCuckooRep::Insert(KeyHandle handle) {
|
|
static const float kMaxFullness = 0.90f;
|
|
|
|
auto* key = static_cast<char*>(handle);
|
|
int initial_hash_id = 0;
|
|
size_t cuckoo_path_length = 0;
|
|
auto user_key = UserKey(key);
|
|
// find cuckoo path
|
|
if (FindCuckooPath(key, user_key, cuckoo_path_, &cuckoo_path_length,
|
|
initial_hash_id) == false) {
|
|
// if true, then we can't find a vacant bucket for this key even we
|
|
// have used up all the hash functions. Then use a backup memtable to
|
|
// store such key, which will further make this mem-table become
|
|
// immutable.
|
|
if (backup_table_.get() == nullptr) {
|
|
VectorRepFactory factory(10);
|
|
backup_table_.reset(
|
|
factory.CreateMemTableRep(compare_, allocator_, nullptr, nullptr));
|
|
is_nearly_full_ = true;
|
|
}
|
|
backup_table_->Insert(key);
|
|
return;
|
|
}
|
|
// when reaching this point, means the insert can be done successfully.
|
|
occupied_count_++;
|
|
if (occupied_count_ >= bucket_count_ * kMaxFullness) {
|
|
is_nearly_full_ = true;
|
|
}
|
|
|
|
// perform kickout process if the length of cuckoo path > 1.
|
|
if (cuckoo_path_length == 0) return;
|
|
|
|
// the cuckoo path stores the kickout path in reverse order.
|
|
// so the kickout or displacement is actually performed
|
|
// in reverse order, which avoids false-negatives on read
|
|
// by moving each key involved in the cuckoo path to the new
|
|
// location before replacing it.
|
|
for (size_t i = 1; i < cuckoo_path_length; ++i) {
|
|
int kicked_out_bid = cuckoo_path_[i - 1];
|
|
int current_bid = cuckoo_path_[i];
|
|
// since we only allow one writer at a time, it is safe to do relaxed read.
|
|
cuckoo_array_[kicked_out_bid]
|
|
.store(cuckoo_array_[current_bid].load(std::memory_order_relaxed),
|
|
std::memory_order_release);
|
|
}
|
|
int insert_key_bid = cuckoo_path_[cuckoo_path_length - 1];
|
|
cuckoo_array_[insert_key_bid].store(key, std::memory_order_release);
|
|
}
|
|
|
|
bool HashCuckooRep::Contains(const char* internal_key) const {
|
|
auto user_key = UserKey(internal_key);
|
|
for (unsigned int hid = 0; hid < hash_function_count_; ++hid) {
|
|
const char* stored_key =
|
|
cuckoo_array_[GetHash(user_key, hid)].load(std::memory_order_acquire);
|
|
if (stored_key != nullptr) {
|
|
if (compare_(internal_key, stored_key) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HashCuckooRep::QuickInsert(const char* internal_key, const Slice& user_key,
|
|
int bucket_ids[], const int initial_hash_id) {
|
|
int cuckoo_bucket_id = -1;
|
|
|
|
// Below does the followings:
|
|
// 0. Calculate all possible locations of the input key.
|
|
// 1. Check if there is a bucket having same user_key as the input does.
|
|
// 2. If there exists such bucket, then replace this bucket by the newly
|
|
// insert data and return. This step also performs duplication check.
|
|
// 3. If no such bucket exists but exists a vacant bucket, then insert the
|
|
// input data into it.
|
|
// 4. If step 1 to 3 all fail, then return false.
|
|
for (unsigned int hid = initial_hash_id; hid < hash_function_count_; ++hid) {
|
|
bucket_ids[hid] = GetHash(user_key, hid);
|
|
// since only one PUT is allowed at a time, and this is part of the PUT
|
|
// operation, so we can safely perform relaxed load.
|
|
const char* stored_key =
|
|
cuckoo_array_[bucket_ids[hid]].load(std::memory_order_relaxed);
|
|
if (stored_key == nullptr) {
|
|
if (cuckoo_bucket_id == -1) {
|
|
cuckoo_bucket_id = bucket_ids[hid];
|
|
}
|
|
} else {
|
|
const auto bucket_user_key = UserKey(stored_key);
|
|
if (bucket_user_key.compare(user_key) == 0) {
|
|
cuckoo_bucket_id = bucket_ids[hid];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cuckoo_bucket_id != -1) {
|
|
cuckoo_array_[cuckoo_bucket_id].store(const_cast<char*>(internal_key),
|
|
std::memory_order_release);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Perform pre-check and find the shortest cuckoo path. A cuckoo path
|
|
// is a displacement sequence for inserting the specified input key.
|
|
//
|
|
// @return true if it successfully found a vacant space or cuckoo-path.
|
|
// If the return value is true but the length of cuckoo_path is zero,
|
|
// then it indicates that a vacant bucket or an bucket with matched user
|
|
// key with the input is found, and a quick insertion is done.
|
|
bool HashCuckooRep::FindCuckooPath(const char* internal_key,
|
|
const Slice& user_key, int* cuckoo_path,
|
|
size_t* cuckoo_path_length,
|
|
const int initial_hash_id) {
|
|
int bucket_ids[HashCuckooRepFactory::kMaxHashCount];
|
|
*cuckoo_path_length = 0;
|
|
|
|
if (QuickInsert(internal_key, user_key, bucket_ids, initial_hash_id)) {
|
|
return true;
|
|
}
|
|
// If this step is reached, then it means:
|
|
// 1. no vacant bucket in any of the possible locations of the input key.
|
|
// 2. none of the possible locations of the input key has the same user
|
|
// key as the input `internal_key`.
|
|
|
|
// the front and back indices for the step_queue_
|
|
step_buffer_.reset();
|
|
|
|
for (unsigned int hid = initial_hash_id; hid < hash_function_count_; ++hid) {
|
|
/// CuckooStep& current_step = step_queue_[front_pos++];
|
|
CuckooStep& current_step = step_buffer_.NextWriteBuffer();
|
|
current_step.bucket_id_ = bucket_ids[hid];
|
|
current_step.prev_step_id_ = CuckooStep::kNullStep;
|
|
current_step.depth_ = 1;
|
|
}
|
|
|
|
while (step_buffer_.HasNewWrite()) {
|
|
int step_id = step_buffer_.read_index_;
|
|
const CuckooStep& step = step_buffer_.ReadNext();
|
|
// Since it's a BFS process, then the first step with its depth deeper
|
|
// than the maximum allowed depth indicates all the remaining steps
|
|
// in the step buffer queue will all exceed the maximum depth.
|
|
// Return false immediately indicating we can't find a vacant bucket
|
|
// for the input key before the maximum allowed depth.
|
|
if (step.depth_ >= cuckoo_path_max_depth_) {
|
|
return false;
|
|
}
|
|
// again, we can perform no barrier load safely here as the current
|
|
// thread is the only writer.
|
|
Slice bucket_user_key =
|
|
UserKey(cuckoo_array_[step.bucket_id_].load(std::memory_order_relaxed));
|
|
if (step.prev_step_id_ != CuckooStep::kNullStep) {
|
|
if (bucket_user_key == user_key) {
|
|
// then there is a loop in the current path, stop discovering this path.
|
|
continue;
|
|
}
|
|
}
|
|
// if the current bucket stores at its nth location, then we only consider
|
|
// its mth location where m > n. This property makes sure that all reads
|
|
// will not miss if we do have data associated to the query key.
|
|
//
|
|
// The n and m in the above statement is the start_hid and hid in the code.
|
|
unsigned int start_hid = hash_function_count_;
|
|
for (unsigned int hid = 0; hid < hash_function_count_; ++hid) {
|
|
bucket_ids[hid] = GetHash(bucket_user_key, hid);
|
|
if (step.bucket_id_ == bucket_ids[hid]) {
|
|
start_hid = hid;
|
|
}
|
|
}
|
|
// must found a bucket which is its current "home".
|
|
assert(start_hid != hash_function_count_);
|
|
|
|
// explore all possible next steps from the current step.
|
|
for (unsigned int hid = start_hid + 1; hid < hash_function_count_; ++hid) {
|
|
CuckooStep& next_step = step_buffer_.NextWriteBuffer();
|
|
next_step.bucket_id_ = bucket_ids[hid];
|
|
next_step.prev_step_id_ = step_id;
|
|
next_step.depth_ = step.depth_ + 1;
|
|
// once a vacant bucket is found, trace back all its previous steps
|
|
// to generate a cuckoo path.
|
|
if (cuckoo_array_[next_step.bucket_id_].load(std::memory_order_relaxed) ==
|
|
nullptr) {
|
|
// store the last step in the cuckoo path. Note that cuckoo_path
|
|
// stores steps in reverse order. This allows us to move keys along
|
|
// the cuckoo path by storing each key to the new place first before
|
|
// removing it from the old place. This property ensures reads will
|
|
// not missed due to moving keys along the cuckoo path.
|
|
cuckoo_path[(*cuckoo_path_length)++] = next_step.bucket_id_;
|
|
int depth;
|
|
for (depth = step.depth_; depth > 0 && step_id != CuckooStep::kNullStep;
|
|
depth--) {
|
|
const CuckooStep& prev_step = step_buffer_.steps_[step_id];
|
|
cuckoo_path[(*cuckoo_path_length)++] = prev_step.bucket_id_;
|
|
step_id = prev_step.prev_step_id_;
|
|
}
|
|
assert(depth == 0 && step_id == CuckooStep::kNullStep);
|
|
return true;
|
|
}
|
|
if (step_buffer_.IsFull()) {
|
|
// if true, then it reaches maxinum number of cuckoo search steps.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// tried all possible paths but still not unable to find a cuckoo path
|
|
// which path leads to a vacant bucket.
|
|
return false;
|
|
}
|
|
|
|
HashCuckooRep::Iterator::Iterator(
|
|
std::shared_ptr<std::vector<const char*>> bucket,
|
|
const KeyComparator& compare)
|
|
: bucket_(bucket),
|
|
cit_(bucket_->end()),
|
|
compare_(compare),
|
|
sorted_(false) {}
|
|
|
|
void HashCuckooRep::Iterator::DoSort() const {
|
|
if (!sorted_) {
|
|
std::sort(bucket_->begin(), bucket_->end(),
|
|
stl_wrappers::Compare(compare_));
|
|
cit_ = bucket_->begin();
|
|
sorted_ = true;
|
|
}
|
|
}
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
bool HashCuckooRep::Iterator::Valid() const {
|
|
DoSort();
|
|
return cit_ != bucket_->end();
|
|
}
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
const char* HashCuckooRep::Iterator::key() const {
|
|
assert(Valid());
|
|
return *cit_;
|
|
}
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
void HashCuckooRep::Iterator::Next() {
|
|
assert(Valid());
|
|
if (cit_ == bucket_->end()) {
|
|
return;
|
|
}
|
|
++cit_;
|
|
}
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
void HashCuckooRep::Iterator::Prev() {
|
|
assert(Valid());
|
|
if (cit_ == bucket_->begin()) {
|
|
// If you try to go back from the first element, the iterator should be
|
|
// invalidated. So we set it to past-the-end. This means that you can
|
|
// treat the container circularly.
|
|
cit_ = bucket_->end();
|
|
} else {
|
|
--cit_;
|
|
}
|
|
}
|
|
|
|
// Advance to the first entry with a key >= target
|
|
void HashCuckooRep::Iterator::Seek(const Slice& user_key,
|
|
const char* memtable_key) {
|
|
DoSort();
|
|
// Do binary search to find first value not less than the target
|
|
const char* encoded_key =
|
|
(memtable_key != nullptr) ? memtable_key : EncodeKey(&tmp_, user_key);
|
|
cit_ = std::equal_range(bucket_->begin(), bucket_->end(), encoded_key,
|
|
[this](const char* a, const char* b) {
|
|
return compare_(a, b) < 0;
|
|
}).first;
|
|
}
|
|
|
|
// Retreat to the last entry with a key <= target
|
|
void HashCuckooRep::Iterator::SeekForPrev(const Slice& user_key,
|
|
const char* memtable_key) {
|
|
assert(false);
|
|
}
|
|
|
|
// Position at the first entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
void HashCuckooRep::Iterator::SeekToFirst() {
|
|
DoSort();
|
|
cit_ = bucket_->begin();
|
|
}
|
|
|
|
// Position at the last entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
void HashCuckooRep::Iterator::SeekToLast() {
|
|
DoSort();
|
|
cit_ = bucket_->end();
|
|
if (bucket_->size() != 0) {
|
|
--cit_;
|
|
}
|
|
}
|
|
|
|
} // anom namespace
|
|
|
|
MemTableRep* HashCuckooRepFactory::CreateMemTableRep(
|
|
const MemTableRep::KeyComparator& compare, MemTableAllocator* allocator,
|
|
const SliceTransform* transform, Logger* logger) {
|
|
// The estimated average fullness. The write performance of any close hash
|
|
// degrades as the fullness of the mem-table increases. Setting kFullness
|
|
// to a value around 0.7 can better avoid write performance degradation while
|
|
// keeping efficient memory usage.
|
|
static const float kFullness = 0.7f;
|
|
size_t pointer_size = sizeof(std::atomic<const char*>);
|
|
assert(write_buffer_size_ >= (average_data_size_ + pointer_size));
|
|
size_t bucket_count =
|
|
static_cast<size_t>(
|
|
(write_buffer_size_ / (average_data_size_ + pointer_size)) / kFullness +
|
|
1);
|
|
unsigned int hash_function_count = hash_function_count_;
|
|
if (hash_function_count < 2) {
|
|
hash_function_count = 2;
|
|
}
|
|
if (hash_function_count > kMaxHashCount) {
|
|
hash_function_count = kMaxHashCount;
|
|
}
|
|
return new HashCuckooRep(compare, allocator, bucket_count,
|
|
hash_function_count,
|
|
static_cast<size_t>(
|
|
(average_data_size_ + pointer_size) / kFullness)
|
|
);
|
|
}
|
|
|
|
MemTableRepFactory* NewHashCuckooRepFactory(size_t write_buffer_size,
|
|
size_t average_data_size,
|
|
unsigned int hash_function_count) {
|
|
return new HashCuckooRepFactory(write_buffer_size, average_data_size,
|
|
hash_function_count);
|
|
}
|
|
|
|
} // namespace rocksdb
|
|
#endif // ROCKSDB_LITE
|