mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-28 05:43:50 +00:00
51a8dc6d14
Summary: The patch adds basic garbage collection support to the integrated BlobDB implementation. Valid blobs residing in the oldest blob files are relocated as they are encountered during compaction. The threshold that determines which blob files qualify is computed based on the configuration option `blob_garbage_collection_age_cutoff`, which was introduced in https://github.com/facebook/rocksdb/issues/7661 . Once a blob is retrieved for the purposes of relocation, it passes through the same logic that extracts large values to blob files in general. This means that if, for instance, the size threshold for key-value separation (`min_blob_size`) got changed or writing blob files got disabled altogether, it is possible for the value to be moved back into the LSM tree. In particular, one way to re-inline all blob values if needed would be to perform a full manual compaction with `enable_blob_files` set to `false`, `enable_blob_garbage_collection` set to `true`, and `blob_file_garbage_collection_age_cutoff` set to `1.0`. Some TODOs that I plan to address in separate PRs: 1) We'll have to measure the amount of new garbage in each blob file and log `BlobFileGarbage` entries as part of the compaction job's `VersionEdit`. (For the time being, blob files are cleaned up solely based on the `oldest_blob_file_number` relationships.) 2) When compression is used for blobs, the compression type hasn't changed, and the blob still qualifies for being written to a blob file, we can simply copy the compressed blob to the new file instead of going through decompression and compression. 3) We need to update the formula for computing write amplification to account for the amount of data read from blob files as part of GC. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7694 Test Plan: `make check` Reviewed By: riversand963 Differential Revision: D25069663 Pulled By: ltamasi fbshipit-source-id: bdfa8feb09afcf5bca3b4eba2ba72ce2f15cd06a
1024 lines
40 KiB
C++
1024 lines
40 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include "db/compaction/compaction_iterator.h"
|
|
|
|
#include <iterator>
|
|
#include <limits>
|
|
|
|
#include "db/blob/blob_file_builder.h"
|
|
#include "db/blob/blob_index.h"
|
|
#include "db/snapshot_checker.h"
|
|
#include "port/likely.h"
|
|
#include "rocksdb/listener.h"
|
|
#include "table/internal_iterator.h"
|
|
#include "test_util/sync_point.h"
|
|
|
|
#define DEFINITELY_IN_SNAPSHOT(seq, snapshot) \
|
|
((seq) <= (snapshot) && \
|
|
(snapshot_checker_ == nullptr || \
|
|
LIKELY(snapshot_checker_->CheckInSnapshot((seq), (snapshot)) == \
|
|
SnapshotCheckerResult::kInSnapshot)))
|
|
|
|
#define DEFINITELY_NOT_IN_SNAPSHOT(seq, snapshot) \
|
|
((seq) > (snapshot) || \
|
|
(snapshot_checker_ != nullptr && \
|
|
UNLIKELY(snapshot_checker_->CheckInSnapshot((seq), (snapshot)) == \
|
|
SnapshotCheckerResult::kNotInSnapshot)))
|
|
|
|
#define IN_EARLIEST_SNAPSHOT(seq) \
|
|
((seq) <= earliest_snapshot_ && \
|
|
(snapshot_checker_ == nullptr || LIKELY(IsInEarliestSnapshot(seq))))
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
CompactionIterator::CompactionIterator(
|
|
InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
|
|
SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots,
|
|
SequenceNumber earliest_write_conflict_snapshot,
|
|
const SnapshotChecker* snapshot_checker, Env* env,
|
|
bool report_detailed_time, bool expect_valid_internal_key,
|
|
CompactionRangeDelAggregator* range_del_agg,
|
|
BlobFileBuilder* blob_file_builder, bool allow_data_in_errors,
|
|
const Compaction* compaction, const CompactionFilter* compaction_filter,
|
|
const std::atomic<bool>* shutting_down,
|
|
const SequenceNumber preserve_deletes_seqnum,
|
|
const std::atomic<int>* manual_compaction_paused,
|
|
const std::shared_ptr<Logger> info_log,
|
|
const std::string* full_history_ts_low)
|
|
: CompactionIterator(
|
|
input, cmp, merge_helper, last_sequence, snapshots,
|
|
earliest_write_conflict_snapshot, snapshot_checker, env,
|
|
report_detailed_time, expect_valid_internal_key, range_del_agg,
|
|
blob_file_builder, allow_data_in_errors,
|
|
std::unique_ptr<CompactionProxy>(
|
|
compaction ? new RealCompaction(compaction) : nullptr),
|
|
compaction_filter, shutting_down, preserve_deletes_seqnum,
|
|
manual_compaction_paused, info_log, full_history_ts_low) {}
|
|
|
|
CompactionIterator::CompactionIterator(
|
|
InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
|
|
SequenceNumber /*last_sequence*/, std::vector<SequenceNumber>* snapshots,
|
|
SequenceNumber earliest_write_conflict_snapshot,
|
|
const SnapshotChecker* snapshot_checker, Env* env,
|
|
bool report_detailed_time, bool expect_valid_internal_key,
|
|
CompactionRangeDelAggregator* range_del_agg,
|
|
BlobFileBuilder* blob_file_builder, bool allow_data_in_errors,
|
|
std::unique_ptr<CompactionProxy> compaction,
|
|
const CompactionFilter* compaction_filter,
|
|
const std::atomic<bool>* shutting_down,
|
|
const SequenceNumber preserve_deletes_seqnum,
|
|
const std::atomic<int>* manual_compaction_paused,
|
|
const std::shared_ptr<Logger> info_log,
|
|
const std::string* full_history_ts_low)
|
|
: input_(input),
|
|
cmp_(cmp),
|
|
merge_helper_(merge_helper),
|
|
snapshots_(snapshots),
|
|
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
|
|
snapshot_checker_(snapshot_checker),
|
|
env_(env),
|
|
report_detailed_time_(report_detailed_time),
|
|
expect_valid_internal_key_(expect_valid_internal_key),
|
|
range_del_agg_(range_del_agg),
|
|
blob_file_builder_(blob_file_builder),
|
|
compaction_(std::move(compaction)),
|
|
compaction_filter_(compaction_filter),
|
|
shutting_down_(shutting_down),
|
|
manual_compaction_paused_(manual_compaction_paused),
|
|
preserve_deletes_seqnum_(preserve_deletes_seqnum),
|
|
info_log_(info_log),
|
|
allow_data_in_errors_(allow_data_in_errors),
|
|
timestamp_size_(cmp_ ? cmp_->timestamp_size() : 0),
|
|
full_history_ts_low_(full_history_ts_low),
|
|
current_user_key_sequence_(0),
|
|
current_user_key_snapshot_(0),
|
|
merge_out_iter_(merge_helper_),
|
|
blob_garbage_collection_cutoff_file_number_(
|
|
ComputeBlobGarbageCollectionCutoffFileNumber(compaction_.get())),
|
|
current_key_committed_(false),
|
|
cmp_with_history_ts_low_(0) {
|
|
assert(compaction_filter_ == nullptr || compaction_ != nullptr);
|
|
assert(snapshots_ != nullptr);
|
|
bottommost_level_ = compaction_ == nullptr
|
|
? false
|
|
: compaction_->bottommost_level() &&
|
|
!compaction_->allow_ingest_behind();
|
|
if (compaction_ != nullptr) {
|
|
level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
|
|
}
|
|
if (snapshots_->size() == 0) {
|
|
// optimize for fast path if there are no snapshots
|
|
visible_at_tip_ = true;
|
|
earliest_snapshot_iter_ = snapshots_->end();
|
|
earliest_snapshot_ = kMaxSequenceNumber;
|
|
latest_snapshot_ = 0;
|
|
} else {
|
|
visible_at_tip_ = false;
|
|
earliest_snapshot_iter_ = snapshots_->begin();
|
|
earliest_snapshot_ = snapshots_->at(0);
|
|
latest_snapshot_ = snapshots_->back();
|
|
}
|
|
#ifndef NDEBUG
|
|
// findEarliestVisibleSnapshot assumes this ordering.
|
|
for (size_t i = 1; i < snapshots_->size(); ++i) {
|
|
assert(snapshots_->at(i - 1) < snapshots_->at(i));
|
|
}
|
|
assert(timestamp_size_ == 0 || !full_history_ts_low_ ||
|
|
timestamp_size_ == full_history_ts_low_->size());
|
|
#endif
|
|
input_->SetPinnedItersMgr(&pinned_iters_mgr_);
|
|
TEST_SYNC_POINT_CALLBACK("CompactionIterator:AfterInit", compaction_.get());
|
|
}
|
|
|
|
CompactionIterator::~CompactionIterator() {
|
|
// input_ Iteartor lifetime is longer than pinned_iters_mgr_ lifetime
|
|
input_->SetPinnedItersMgr(nullptr);
|
|
}
|
|
|
|
void CompactionIterator::ResetRecordCounts() {
|
|
iter_stats_.num_record_drop_user = 0;
|
|
iter_stats_.num_record_drop_hidden = 0;
|
|
iter_stats_.num_record_drop_obsolete = 0;
|
|
iter_stats_.num_record_drop_range_del = 0;
|
|
iter_stats_.num_range_del_drop_obsolete = 0;
|
|
iter_stats_.num_optimized_del_drop_obsolete = 0;
|
|
}
|
|
|
|
void CompactionIterator::SeekToFirst() {
|
|
NextFromInput();
|
|
PrepareOutput();
|
|
}
|
|
|
|
void CompactionIterator::Next() {
|
|
// If there is a merge output, return it before continuing to process the
|
|
// input.
|
|
if (merge_out_iter_.Valid()) {
|
|
merge_out_iter_.Next();
|
|
|
|
// Check if we returned all records of the merge output.
|
|
if (merge_out_iter_.Valid()) {
|
|
key_ = merge_out_iter_.key();
|
|
value_ = merge_out_iter_.value();
|
|
Status s = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
|
|
// MergeUntil stops when it encounters a corrupt key and does not
|
|
// include them in the result, so we expect the keys here to be valid.
|
|
assert(s.ok());
|
|
if (!s.ok()) {
|
|
ROCKS_LOG_FATAL(info_log_, "Invalid key in compaction. %s",
|
|
s.getState());
|
|
}
|
|
|
|
// Keep current_key_ in sync.
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
key_ = current_key_.GetInternalKey();
|
|
ikey_.user_key = current_key_.GetUserKey();
|
|
valid_ = true;
|
|
} else {
|
|
// We consumed all pinned merge operands, release pinned iterators
|
|
pinned_iters_mgr_.ReleasePinnedData();
|
|
// MergeHelper moves the iterator to the first record after the merged
|
|
// records, so even though we reached the end of the merge output, we do
|
|
// not want to advance the iterator.
|
|
NextFromInput();
|
|
}
|
|
} else {
|
|
// Only advance the input iterator if there is no merge output and the
|
|
// iterator is not already at the next record.
|
|
if (!at_next_) {
|
|
input_->Next();
|
|
}
|
|
NextFromInput();
|
|
}
|
|
|
|
if (valid_) {
|
|
// Record that we've outputted a record for the current key.
|
|
has_outputted_key_ = true;
|
|
}
|
|
|
|
PrepareOutput();
|
|
}
|
|
|
|
bool CompactionIterator::InvokeFilterIfNeeded(bool* need_skip,
|
|
Slice* skip_until) {
|
|
if (compaction_filter_ != nullptr &&
|
|
(ikey_.type == kTypeValue || ikey_.type == kTypeBlobIndex)) {
|
|
// If the user has specified a compaction filter and the sequence
|
|
// number is greater than any external snapshot, then invoke the
|
|
// filter. If the return value of the compaction filter is true,
|
|
// replace the entry with a deletion marker.
|
|
CompactionFilter::Decision filter;
|
|
compaction_filter_value_.clear();
|
|
compaction_filter_skip_until_.Clear();
|
|
CompactionFilter::ValueType value_type =
|
|
ikey_.type == kTypeValue ? CompactionFilter::ValueType::kValue
|
|
: CompactionFilter::ValueType::kBlobIndex;
|
|
// Hack: pass internal key to BlobIndexCompactionFilter since it needs
|
|
// to get sequence number.
|
|
Slice& filter_key = ikey_.type == kTypeValue ? ikey_.user_key : key_;
|
|
{
|
|
StopWatchNano timer(env_, report_detailed_time_);
|
|
filter = compaction_filter_->FilterV2(
|
|
compaction_->level(), filter_key, value_type, value_,
|
|
&compaction_filter_value_, compaction_filter_skip_until_.rep());
|
|
iter_stats_.total_filter_time +=
|
|
env_ != nullptr && report_detailed_time_ ? timer.ElapsedNanos() : 0;
|
|
}
|
|
|
|
if (filter == CompactionFilter::Decision::kRemoveAndSkipUntil &&
|
|
cmp_->Compare(*compaction_filter_skip_until_.rep(), ikey_.user_key) <=
|
|
0) {
|
|
// Can't skip to a key smaller than the current one.
|
|
// Keep the key as per FilterV2 documentation.
|
|
filter = CompactionFilter::Decision::kKeep;
|
|
}
|
|
|
|
if (filter == CompactionFilter::Decision::kRemove) {
|
|
// convert the current key to a delete; key_ is pointing into
|
|
// current_key_ at this point, so updating current_key_ updates key()
|
|
ikey_.type = kTypeDeletion;
|
|
current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion);
|
|
// no value associated with delete
|
|
value_.clear();
|
|
iter_stats_.num_record_drop_user++;
|
|
} else if (filter == CompactionFilter::Decision::kChangeValue) {
|
|
if (ikey_.type == kTypeBlobIndex) {
|
|
// value transfer from blob file to inlined data
|
|
ikey_.type = kTypeValue;
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
}
|
|
value_ = compaction_filter_value_;
|
|
} else if (filter == CompactionFilter::Decision::kRemoveAndSkipUntil) {
|
|
*need_skip = true;
|
|
compaction_filter_skip_until_.ConvertFromUserKey(kMaxSequenceNumber,
|
|
kValueTypeForSeek);
|
|
*skip_until = compaction_filter_skip_until_.Encode();
|
|
} else if (filter == CompactionFilter::Decision::kChangeBlobIndex) {
|
|
if (ikey_.type == kTypeValue) {
|
|
// value transfer from inlined data to blob file
|
|
ikey_.type = kTypeBlobIndex;
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
}
|
|
value_ = compaction_filter_value_;
|
|
} else if (filter == CompactionFilter::Decision::kIOError) {
|
|
status_ =
|
|
Status::IOError("Failed to access blob during compaction filter");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CompactionIterator::NextFromInput() {
|
|
at_next_ = false;
|
|
valid_ = false;
|
|
|
|
while (!valid_ && input_->Valid() && !IsPausingManualCompaction() &&
|
|
!IsShuttingDown()) {
|
|
key_ = input_->key();
|
|
value_ = input_->value();
|
|
iter_stats_.num_input_records++;
|
|
|
|
Status pik_status = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
|
|
if (!pik_status.ok()) {
|
|
iter_stats_.num_input_corrupt_records++;
|
|
|
|
// If `expect_valid_internal_key_` is false, return the corrupted key
|
|
// and let the caller decide what to do with it.
|
|
if (expect_valid_internal_key_) {
|
|
status_ = pik_status;
|
|
return;
|
|
}
|
|
key_ = current_key_.SetInternalKey(key_);
|
|
has_current_user_key_ = false;
|
|
current_user_key_sequence_ = kMaxSequenceNumber;
|
|
current_user_key_snapshot_ = 0;
|
|
valid_ = true;
|
|
break;
|
|
}
|
|
TEST_SYNC_POINT_CALLBACK("CompactionIterator:ProcessKV", &ikey_);
|
|
|
|
// Update input statistics
|
|
if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion ||
|
|
ikey_.type == kTypeDeletionWithTimestamp) {
|
|
iter_stats_.num_input_deletion_records++;
|
|
}
|
|
iter_stats_.total_input_raw_key_bytes += key_.size();
|
|
iter_stats_.total_input_raw_value_bytes += value_.size();
|
|
|
|
// If need_skip is true, we should seek the input iterator
|
|
// to internal key skip_until and continue from there.
|
|
bool need_skip = false;
|
|
// Points either into compaction_filter_skip_until_ or into
|
|
// merge_helper_->compaction_filter_skip_until_.
|
|
Slice skip_until;
|
|
|
|
int cmp_user_key_without_ts = 0;
|
|
int cmp_ts = 0;
|
|
if (has_current_user_key_) {
|
|
cmp_user_key_without_ts =
|
|
timestamp_size_
|
|
? cmp_->CompareWithoutTimestamp(ikey_.user_key, current_user_key_)
|
|
: cmp_->Compare(ikey_.user_key, current_user_key_);
|
|
// if timestamp_size_ > 0, then curr_ts_ has been initialized by a
|
|
// previous key.
|
|
cmp_ts = timestamp_size_ ? cmp_->CompareTimestamp(
|
|
ExtractTimestampFromUserKey(
|
|
ikey_.user_key, timestamp_size_),
|
|
curr_ts_)
|
|
: 0;
|
|
}
|
|
|
|
// Check whether the user key changed. After this if statement current_key_
|
|
// is a copy of the current input key (maybe converted to a delete by the
|
|
// compaction filter). ikey_.user_key is pointing to the copy.
|
|
if (!has_current_user_key_ || cmp_user_key_without_ts != 0 || cmp_ts != 0) {
|
|
// First occurrence of this user key
|
|
// Copy key for output
|
|
key_ = current_key_.SetInternalKey(key_, &ikey_);
|
|
|
|
// If timestamp_size_ > 0, then copy from ikey_ to curr_ts_ for the use
|
|
// in next iteration to compare with the timestamp of next key.
|
|
UpdateTimestampAndCompareWithFullHistoryLow();
|
|
|
|
// If
|
|
// (1) !has_current_user_key_, OR
|
|
// (2) timestamp is disabled, OR
|
|
// (3) all history will be preserved, OR
|
|
// (4) user key (excluding timestamp) is different from previous key, OR
|
|
// (5) timestamp is NO older than *full_history_ts_low_
|
|
// then current_user_key_ must be treated as a different user key.
|
|
// This means, if a user key (excluding ts) is the same as the previous
|
|
// user key, and its ts is older than *full_history_ts_low_, then we
|
|
// consider this key for GC, e.g. it may be dropped if certain conditions
|
|
// match.
|
|
if (!has_current_user_key_ || !timestamp_size_ || !full_history_ts_low_ ||
|
|
0 != cmp_user_key_without_ts || cmp_with_history_ts_low_ >= 0) {
|
|
// Initialize for future comparison for rule (A) and etc.
|
|
current_user_key_sequence_ = kMaxSequenceNumber;
|
|
current_user_key_snapshot_ = 0;
|
|
has_current_user_key_ = true;
|
|
}
|
|
current_user_key_ = ikey_.user_key;
|
|
|
|
has_outputted_key_ = false;
|
|
|
|
current_key_committed_ = KeyCommitted(ikey_.sequence);
|
|
|
|
// Apply the compaction filter to the first committed version of the user
|
|
// key.
|
|
if (current_key_committed_ &&
|
|
!InvokeFilterIfNeeded(&need_skip, &skip_until)) {
|
|
break;
|
|
}
|
|
} else {
|
|
// Update the current key to reflect the new sequence number/type without
|
|
// copying the user key.
|
|
// TODO(rven): Compaction filter does not process keys in this path
|
|
// Need to have the compaction filter process multiple versions
|
|
// if we have versions on both sides of a snapshot
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
key_ = current_key_.GetInternalKey();
|
|
ikey_.user_key = current_key_.GetUserKey();
|
|
|
|
// Note that newer version of a key is ordered before older versions. If a
|
|
// newer version of a key is committed, so as the older version. No need
|
|
// to query snapshot_checker_ in that case.
|
|
if (UNLIKELY(!current_key_committed_)) {
|
|
assert(snapshot_checker_ != nullptr);
|
|
current_key_committed_ = KeyCommitted(ikey_.sequence);
|
|
// Apply the compaction filter to the first committed version of the
|
|
// user key.
|
|
if (current_key_committed_ &&
|
|
!InvokeFilterIfNeeded(&need_skip, &skip_until)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (UNLIKELY(!current_key_committed_)) {
|
|
assert(snapshot_checker_ != nullptr);
|
|
valid_ = true;
|
|
break;
|
|
}
|
|
|
|
// If there are no snapshots, then this kv affect visibility at tip.
|
|
// Otherwise, search though all existing snapshots to find the earliest
|
|
// snapshot that is affected by this kv.
|
|
SequenceNumber last_sequence = current_user_key_sequence_;
|
|
current_user_key_sequence_ = ikey_.sequence;
|
|
SequenceNumber last_snapshot = current_user_key_snapshot_;
|
|
SequenceNumber prev_snapshot = 0; // 0 means no previous snapshot
|
|
current_user_key_snapshot_ =
|
|
visible_at_tip_
|
|
? earliest_snapshot_
|
|
: findEarliestVisibleSnapshot(ikey_.sequence, &prev_snapshot);
|
|
|
|
if (need_skip) {
|
|
// This case is handled below.
|
|
} else if (clear_and_output_next_key_) {
|
|
// In the previous iteration we encountered a single delete that we could
|
|
// not compact out. We will keep this Put, but can drop it's data.
|
|
// (See Optimization 3, below.)
|
|
assert(ikey_.type == kTypeValue);
|
|
if (ikey_.type != kTypeValue) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"Unexpected key type %d for compaction output",
|
|
ikey_.type);
|
|
}
|
|
assert(current_user_key_snapshot_ == last_snapshot);
|
|
if (current_user_key_snapshot_ != last_snapshot) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"current_user_key_snapshot_ (%" PRIu64
|
|
") != last_snapshot (%" PRIu64 ")",
|
|
current_user_key_snapshot_, last_snapshot);
|
|
}
|
|
|
|
value_.clear();
|
|
valid_ = true;
|
|
clear_and_output_next_key_ = false;
|
|
} else if (ikey_.type == kTypeSingleDeletion) {
|
|
// We can compact out a SingleDelete if:
|
|
// 1) We encounter the corresponding PUT -OR- we know that this key
|
|
// doesn't appear past this output level
|
|
// =AND=
|
|
// 2) We've already returned a record in this snapshot -OR-
|
|
// there are no earlier earliest_write_conflict_snapshot.
|
|
//
|
|
// Rule 1 is needed for SingleDelete correctness. Rule 2 is needed to
|
|
// allow Transactions to do write-conflict checking (if we compacted away
|
|
// all keys, then we wouldn't know that a write happened in this
|
|
// snapshot). If there is no earlier snapshot, then we know that there
|
|
// are no active transactions that need to know about any writes.
|
|
//
|
|
// Optimization 3:
|
|
// If we encounter a SingleDelete followed by a PUT and Rule 2 is NOT
|
|
// true, then we must output a SingleDelete. In this case, we will decide
|
|
// to also output the PUT. While we are compacting less by outputting the
|
|
// PUT now, hopefully this will lead to better compaction in the future
|
|
// when Rule 2 is later true (Ie, We are hoping we can later compact out
|
|
// both the SingleDelete and the Put, while we couldn't if we only
|
|
// outputted the SingleDelete now).
|
|
// In this case, we can save space by removing the PUT's value as it will
|
|
// never be read.
|
|
//
|
|
// Deletes and Merges are not supported on the same key that has a
|
|
// SingleDelete as it is not possible to correctly do any partial
|
|
// compaction of such a combination of operations. The result of mixing
|
|
// those operations for a given key is documented as being undefined. So
|
|
// we can choose how to handle such a combinations of operations. We will
|
|
// try to compact out as much as we can in these cases.
|
|
// We will report counts on these anomalous cases.
|
|
|
|
// The easiest way to process a SingleDelete during iteration is to peek
|
|
// ahead at the next key.
|
|
ParsedInternalKey next_ikey;
|
|
input_->Next();
|
|
|
|
// Check whether the next key exists, is not corrupt, and is the same key
|
|
// as the single delete.
|
|
if (input_->Valid() &&
|
|
ParseInternalKey(input_->key(), &next_ikey, allow_data_in_errors_)
|
|
.ok() &&
|
|
cmp_->Equal(ikey_.user_key, next_ikey.user_key)) {
|
|
// Check whether the next key belongs to the same snapshot as the
|
|
// SingleDelete.
|
|
if (prev_snapshot == 0 ||
|
|
DEFINITELY_NOT_IN_SNAPSHOT(next_ikey.sequence, prev_snapshot)) {
|
|
if (next_ikey.type == kTypeSingleDeletion) {
|
|
// We encountered two SingleDeletes in a row. This could be due to
|
|
// unexpected user input.
|
|
// Skip the first SingleDelete and let the next iteration decide how
|
|
// to handle the second SingleDelete
|
|
|
|
// First SingleDelete has been skipped since we already called
|
|
// input_->Next().
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
++iter_stats_.num_single_del_mismatch;
|
|
} else if (has_outputted_key_ ||
|
|
DEFINITELY_IN_SNAPSHOT(
|
|
ikey_.sequence, earliest_write_conflict_snapshot_)) {
|
|
// Found a matching value, we can drop the single delete and the
|
|
// value. It is safe to drop both records since we've already
|
|
// outputted a key in this snapshot, or there is no earlier
|
|
// snapshot (Rule 2 above).
|
|
|
|
// Note: it doesn't matter whether the second key is a Put or if it
|
|
// is an unexpected Merge or Delete. We will compact it out
|
|
// either way. We will maintain counts of how many mismatches
|
|
// happened
|
|
if (next_ikey.type != kTypeValue &&
|
|
next_ikey.type != kTypeBlobIndex) {
|
|
++iter_stats_.num_single_del_mismatch;
|
|
}
|
|
|
|
++iter_stats_.num_record_drop_hidden;
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
// Already called input_->Next() once. Call it a second time to
|
|
// skip past the second key.
|
|
input_->Next();
|
|
} else {
|
|
// Found a matching value, but we cannot drop both keys since
|
|
// there is an earlier snapshot and we need to leave behind a record
|
|
// to know that a write happened in this snapshot (Rule 2 above).
|
|
// Clear the value and output the SingleDelete. (The value will be
|
|
// outputted on the next iteration.)
|
|
|
|
// Setting valid_ to true will output the current SingleDelete
|
|
valid_ = true;
|
|
|
|
// Set up the Put to be outputted in the next iteration.
|
|
// (Optimization 3).
|
|
clear_and_output_next_key_ = true;
|
|
}
|
|
} else {
|
|
// We hit the next snapshot without hitting a put, so the iterator
|
|
// returns the single delete.
|
|
valid_ = true;
|
|
}
|
|
} else {
|
|
// We are at the end of the input, could not parse the next key, or hit
|
|
// a different key. The iterator returns the single delete if the key
|
|
// possibly exists beyond the current output level. We set
|
|
// has_current_user_key to false so that if the iterator is at the next
|
|
// key, we do not compare it again against the previous key at the next
|
|
// iteration. If the next key is corrupt, we return before the
|
|
// comparison, so the value of has_current_user_key does not matter.
|
|
has_current_user_key_ = false;
|
|
if (compaction_ != nullptr && IN_EARLIEST_SNAPSHOT(ikey_.sequence) &&
|
|
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
|
|
&level_ptrs_)) {
|
|
// Key doesn't exist outside of this range.
|
|
// Can compact out this SingleDelete.
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
++iter_stats_.num_single_del_fallthru;
|
|
if (!bottommost_level_) {
|
|
++iter_stats_.num_optimized_del_drop_obsolete;
|
|
}
|
|
} else {
|
|
// Output SingleDelete
|
|
valid_ = true;
|
|
}
|
|
}
|
|
|
|
if (valid_) {
|
|
at_next_ = true;
|
|
}
|
|
} else if (last_snapshot == current_user_key_snapshot_ ||
|
|
(last_snapshot > 0 &&
|
|
last_snapshot < current_user_key_snapshot_)) {
|
|
// If the earliest snapshot is which this key is visible in
|
|
// is the same as the visibility of a previous instance of the
|
|
// same key, then this kv is not visible in any snapshot.
|
|
// Hidden by an newer entry for same user key
|
|
//
|
|
// Note: Dropping this key will not affect TransactionDB write-conflict
|
|
// checking since there has already been a record returned for this key
|
|
// in this snapshot.
|
|
assert(last_sequence >= current_user_key_sequence_);
|
|
if (last_sequence < current_user_key_sequence_) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"last_sequence (%" PRIu64
|
|
") < current_user_key_sequence_ (%" PRIu64 ")",
|
|
last_sequence, current_user_key_sequence_);
|
|
}
|
|
|
|
++iter_stats_.num_record_drop_hidden; // rule (A)
|
|
input_->Next();
|
|
} else if (compaction_ != nullptr &&
|
|
(ikey_.type == kTypeDeletion ||
|
|
(ikey_.type == kTypeDeletionWithTimestamp &&
|
|
cmp_with_history_ts_low_ < 0)) &&
|
|
IN_EARLIEST_SNAPSHOT(ikey_.sequence) &&
|
|
ikeyNotNeededForIncrementalSnapshot() &&
|
|
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
|
|
&level_ptrs_)) {
|
|
// TODO(noetzli): This is the only place where we use compaction_
|
|
// (besides the constructor). We should probably get rid of this
|
|
// dependency and find a way to do similar filtering during flushes.
|
|
//
|
|
// For this user key:
|
|
// (1) there is no data in higher levels
|
|
// (2) data in lower levels will have larger sequence numbers
|
|
// (3) data in layers that are being compacted here and have
|
|
// smaller sequence numbers will be dropped in the next
|
|
// few iterations of this loop (by rule (A) above).
|
|
// Therefore this deletion marker is obsolete and can be dropped.
|
|
//
|
|
// Note: Dropping this Delete will not affect TransactionDB
|
|
// write-conflict checking since it is earlier than any snapshot.
|
|
//
|
|
// It seems that we can also drop deletion later than earliest snapshot
|
|
// given that:
|
|
// (1) The deletion is earlier than earliest_write_conflict_snapshot, and
|
|
// (2) No value exist earlier than the deletion.
|
|
//
|
|
// Note also that a deletion marker of type kTypeDeletionWithTimestamp
|
|
// will be treated as a different user key unless the timestamp is older
|
|
// than *full_history_ts_low_.
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
if (!bottommost_level_) {
|
|
++iter_stats_.num_optimized_del_drop_obsolete;
|
|
}
|
|
input_->Next();
|
|
} else if ((ikey_.type == kTypeDeletion ||
|
|
(ikey_.type == kTypeDeletionWithTimestamp &&
|
|
cmp_with_history_ts_low_ < 0)) &&
|
|
bottommost_level_ && ikeyNotNeededForIncrementalSnapshot()) {
|
|
// Handle the case where we have a delete key at the bottom most level
|
|
// We can skip outputting the key iff there are no subsequent puts for this
|
|
// key
|
|
assert(!compaction_ || compaction_->KeyNotExistsBeyondOutputLevel(
|
|
ikey_.user_key, &level_ptrs_));
|
|
ParsedInternalKey next_ikey;
|
|
input_->Next();
|
|
// Skip over all versions of this key that happen to occur in the same
|
|
// snapshot range as the delete.
|
|
//
|
|
// Note that a deletion marker of type kTypeDeletionWithTimestamp will be
|
|
// considered to have a different user key unless the timestamp is older
|
|
// than *full_history_ts_low_.
|
|
while (!IsPausingManualCompaction() && !IsShuttingDown() &&
|
|
input_->Valid() &&
|
|
(ParseInternalKey(input_->key(), &next_ikey, allow_data_in_errors_)
|
|
.ok()) &&
|
|
0 == cmp_->CompareWithoutTimestamp(ikey_.user_key,
|
|
next_ikey.user_key) &&
|
|
(prev_snapshot == 0 ||
|
|
DEFINITELY_NOT_IN_SNAPSHOT(next_ikey.sequence, prev_snapshot))) {
|
|
input_->Next();
|
|
}
|
|
// If you find you still need to output a row with this key, we need to output the
|
|
// delete too
|
|
if (input_->Valid() &&
|
|
(ParseInternalKey(input_->key(), &next_ikey, allow_data_in_errors_)
|
|
.ok()) &&
|
|
0 == cmp_->CompareWithoutTimestamp(ikey_.user_key,
|
|
next_ikey.user_key)) {
|
|
valid_ = true;
|
|
at_next_ = true;
|
|
}
|
|
} else if (ikey_.type == kTypeMerge) {
|
|
if (!merge_helper_->HasOperator()) {
|
|
status_ = Status::InvalidArgument(
|
|
"merge_operator is not properly initialized.");
|
|
return;
|
|
}
|
|
|
|
pinned_iters_mgr_.StartPinning();
|
|
// We know the merge type entry is not hidden, otherwise we would
|
|
// have hit (A)
|
|
// We encapsulate the merge related state machine in a different
|
|
// object to minimize change to the existing flow.
|
|
Status s =
|
|
merge_helper_->MergeUntil(input_, range_del_agg_, prev_snapshot,
|
|
bottommost_level_, allow_data_in_errors_);
|
|
merge_out_iter_.SeekToFirst();
|
|
|
|
if (!s.ok() && !s.IsMergeInProgress()) {
|
|
status_ = s;
|
|
return;
|
|
} else if (merge_out_iter_.Valid()) {
|
|
// NOTE: key, value, and ikey_ refer to old entries.
|
|
// These will be correctly set below.
|
|
key_ = merge_out_iter_.key();
|
|
value_ = merge_out_iter_.value();
|
|
pik_status = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
|
|
// MergeUntil stops when it encounters a corrupt key and does not
|
|
// include them in the result, so we expect the keys here to valid.
|
|
assert(pik_status.ok());
|
|
if (!pik_status.ok()) {
|
|
ROCKS_LOG_FATAL(info_log_, "Invalid key in compaction. %s",
|
|
pik_status.getState());
|
|
}
|
|
// Keep current_key_ in sync.
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
key_ = current_key_.GetInternalKey();
|
|
ikey_.user_key = current_key_.GetUserKey();
|
|
valid_ = true;
|
|
} else {
|
|
// all merge operands were filtered out. reset the user key, since the
|
|
// batch consumed by the merge operator should not shadow any keys
|
|
// coming after the merges
|
|
has_current_user_key_ = false;
|
|
pinned_iters_mgr_.ReleasePinnedData();
|
|
|
|
if (merge_helper_->FilteredUntil(&skip_until)) {
|
|
need_skip = true;
|
|
}
|
|
}
|
|
} else {
|
|
// 1. new user key -OR-
|
|
// 2. different snapshot stripe
|
|
bool should_delete = range_del_agg_->ShouldDelete(
|
|
key_, RangeDelPositioningMode::kForwardTraversal);
|
|
if (should_delete) {
|
|
++iter_stats_.num_record_drop_hidden;
|
|
++iter_stats_.num_record_drop_range_del;
|
|
input_->Next();
|
|
} else {
|
|
valid_ = true;
|
|
}
|
|
}
|
|
|
|
if (need_skip) {
|
|
input_->Seek(skip_until);
|
|
}
|
|
}
|
|
|
|
if (!valid_ && IsShuttingDown()) {
|
|
status_ = Status::ShutdownInProgress();
|
|
}
|
|
|
|
if (IsPausingManualCompaction()) {
|
|
status_ = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
|
|
}
|
|
}
|
|
|
|
bool CompactionIterator::ExtractLargeValueIfNeededImpl() {
|
|
if (!blob_file_builder_) {
|
|
return false;
|
|
}
|
|
|
|
blob_index_.clear();
|
|
const Status s = blob_file_builder_->Add(user_key(), value_, &blob_index_);
|
|
|
|
if (!s.ok()) {
|
|
status_ = s;
|
|
valid_ = false;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (blob_index_.empty()) {
|
|
return false;
|
|
}
|
|
|
|
value_ = blob_index_;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CompactionIterator::ExtractLargeValueIfNeeded() {
|
|
assert(ikey_.type == kTypeValue);
|
|
|
|
if (!ExtractLargeValueIfNeededImpl()) {
|
|
return;
|
|
}
|
|
|
|
ikey_.type = kTypeBlobIndex;
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
}
|
|
|
|
void CompactionIterator::GarbageCollectBlobIfNeeded() {
|
|
assert(ikey_.type == kTypeBlobIndex);
|
|
|
|
if (!compaction_) {
|
|
return;
|
|
}
|
|
|
|
// GC for integrated BlobDB
|
|
if (compaction_->enable_blob_garbage_collection()) {
|
|
BlobIndex blob_index;
|
|
|
|
{
|
|
const Status s = blob_index.DecodeFrom(value_);
|
|
|
|
if (!s.ok()) {
|
|
status_ = s;
|
|
valid_ = false;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (blob_index.IsInlined() || blob_index.HasTTL()) {
|
|
status_ = Status::Corruption("Unexpected TTL/inlined blob index");
|
|
valid_ = false;
|
|
|
|
return;
|
|
}
|
|
|
|
if (blob_index.file_number() >=
|
|
blob_garbage_collection_cutoff_file_number_) {
|
|
return;
|
|
}
|
|
|
|
const Version* const version = compaction_->input_version();
|
|
assert(version);
|
|
|
|
{
|
|
const Status s =
|
|
version->GetBlob(ReadOptions(), user_key(), blob_index, &blob_value_);
|
|
|
|
if (!s.ok()) {
|
|
status_ = s;
|
|
valid_ = false;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
value_ = blob_value_;
|
|
|
|
if (ExtractLargeValueIfNeededImpl()) {
|
|
return;
|
|
}
|
|
|
|
ikey_.type = kTypeValue;
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
|
|
return;
|
|
}
|
|
|
|
// GC for stacked BlobDB
|
|
if (compaction_filter_) {
|
|
const auto blob_decision = compaction_filter_->PrepareBlobOutput(
|
|
user_key(), value_, &compaction_filter_value_);
|
|
|
|
if (blob_decision == CompactionFilter::BlobDecision::kCorruption) {
|
|
status_ =
|
|
Status::Corruption("Corrupted blob reference encountered during GC");
|
|
valid_ = false;
|
|
|
|
return;
|
|
}
|
|
|
|
if (blob_decision == CompactionFilter::BlobDecision::kIOError) {
|
|
status_ = Status::IOError("Could not relocate blob during GC");
|
|
valid_ = false;
|
|
|
|
return;
|
|
}
|
|
|
|
if (blob_decision == CompactionFilter::BlobDecision::kChangeValue) {
|
|
value_ = compaction_filter_value_;
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompactionIterator::PrepareOutput() {
|
|
if (valid_) {
|
|
if (ikey_.type == kTypeValue) {
|
|
ExtractLargeValueIfNeeded();
|
|
} else if (ikey_.type == kTypeBlobIndex) {
|
|
GarbageCollectBlobIfNeeded();
|
|
}
|
|
|
|
// Zeroing out the sequence number leads to better compression.
|
|
// If this is the bottommost level (no files in lower levels)
|
|
// and the earliest snapshot is larger than this seqno
|
|
// and the userkey differs from the last userkey in compaction
|
|
// then we can squash the seqno to zero.
|
|
//
|
|
// This is safe for TransactionDB write-conflict checking since transactions
|
|
// only care about sequence number larger than any active snapshots.
|
|
//
|
|
// Can we do the same for levels above bottom level as long as
|
|
// KeyNotExistsBeyondOutputLevel() return true?
|
|
if (valid_ && compaction_ != nullptr &&
|
|
!compaction_->allow_ingest_behind() &&
|
|
ikeyNotNeededForIncrementalSnapshot() && bottommost_level_ &&
|
|
IN_EARLIEST_SNAPSHOT(ikey_.sequence) && ikey_.type != kTypeMerge) {
|
|
assert(ikey_.type != kTypeDeletion && ikey_.type != kTypeSingleDeletion);
|
|
if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"Unexpected key type %d for seq-zero optimization",
|
|
ikey_.type);
|
|
}
|
|
ikey_.sequence = 0;
|
|
if (!timestamp_size_) {
|
|
current_key_.UpdateInternalKey(0, ikey_.type);
|
|
} else if (full_history_ts_low_ && cmp_with_history_ts_low_ < 0) {
|
|
// We can also zero out timestamp for better compression.
|
|
// For the same user key (excluding timestamp), the timestamp-based
|
|
// history can be collapsed to save some space if the timestamp is
|
|
// older than *full_history_ts_low_.
|
|
const std::string kTsMin(timestamp_size_, static_cast<char>(0));
|
|
const Slice ts_slice = kTsMin;
|
|
ikey_.SetTimestamp(ts_slice);
|
|
current_key_.UpdateInternalKey(0, ikey_.type, &ts_slice);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot(
|
|
SequenceNumber in, SequenceNumber* prev_snapshot) {
|
|
assert(snapshots_->size());
|
|
if (snapshots_->size() == 0) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"No snapshot left in findEarliestVisibleSnapshot");
|
|
}
|
|
auto snapshots_iter = std::lower_bound(
|
|
snapshots_->begin(), snapshots_->end(), in);
|
|
if (snapshots_iter == snapshots_->begin()) {
|
|
*prev_snapshot = 0;
|
|
} else {
|
|
*prev_snapshot = *std::prev(snapshots_iter);
|
|
assert(*prev_snapshot < in);
|
|
if (*prev_snapshot >= in) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"*prev_snapshot >= in in findEarliestVisibleSnapshot");
|
|
}
|
|
}
|
|
if (snapshot_checker_ == nullptr) {
|
|
return snapshots_iter != snapshots_->end()
|
|
? *snapshots_iter : kMaxSequenceNumber;
|
|
}
|
|
bool has_released_snapshot = !released_snapshots_.empty();
|
|
for (; snapshots_iter != snapshots_->end(); ++snapshots_iter) {
|
|
auto cur = *snapshots_iter;
|
|
assert(in <= cur);
|
|
if (in > cur) {
|
|
ROCKS_LOG_FATAL(info_log_, "in > cur in findEarliestVisibleSnapshot");
|
|
}
|
|
// Skip if cur is in released_snapshots.
|
|
if (has_released_snapshot && released_snapshots_.count(cur) > 0) {
|
|
continue;
|
|
}
|
|
auto res = snapshot_checker_->CheckInSnapshot(in, cur);
|
|
if (res == SnapshotCheckerResult::kInSnapshot) {
|
|
return cur;
|
|
} else if (res == SnapshotCheckerResult::kSnapshotReleased) {
|
|
released_snapshots_.insert(cur);
|
|
}
|
|
*prev_snapshot = cur;
|
|
}
|
|
return kMaxSequenceNumber;
|
|
}
|
|
|
|
// used in 2 places - prevents deletion markers to be dropped if they may be
|
|
// needed and disables seqnum zero-out in PrepareOutput for recent keys.
|
|
inline bool CompactionIterator::ikeyNotNeededForIncrementalSnapshot() {
|
|
return (!compaction_->preserve_deletes()) ||
|
|
(ikey_.sequence < preserve_deletes_seqnum_);
|
|
}
|
|
|
|
bool CompactionIterator::IsInEarliestSnapshot(SequenceNumber sequence) {
|
|
assert(snapshot_checker_ != nullptr);
|
|
bool pre_condition = (earliest_snapshot_ == kMaxSequenceNumber ||
|
|
(earliest_snapshot_iter_ != snapshots_->end() &&
|
|
*earliest_snapshot_iter_ == earliest_snapshot_));
|
|
assert(pre_condition);
|
|
if (!pre_condition) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"Pre-Condition is not hold in IsInEarliestSnapshot");
|
|
}
|
|
auto in_snapshot =
|
|
snapshot_checker_->CheckInSnapshot(sequence, earliest_snapshot_);
|
|
while (UNLIKELY(in_snapshot == SnapshotCheckerResult::kSnapshotReleased)) {
|
|
// Avoid the the current earliest_snapshot_ being return as
|
|
// earliest visible snapshot for the next value. So if a value's sequence
|
|
// is zero-ed out by PrepareOutput(), the next value will be compact out.
|
|
released_snapshots_.insert(earliest_snapshot_);
|
|
earliest_snapshot_iter_++;
|
|
|
|
if (earliest_snapshot_iter_ == snapshots_->end()) {
|
|
earliest_snapshot_ = kMaxSequenceNumber;
|
|
} else {
|
|
earliest_snapshot_ = *earliest_snapshot_iter_;
|
|
}
|
|
in_snapshot =
|
|
snapshot_checker_->CheckInSnapshot(sequence, earliest_snapshot_);
|
|
}
|
|
assert(in_snapshot != SnapshotCheckerResult::kSnapshotReleased);
|
|
if (in_snapshot == SnapshotCheckerResult::kSnapshotReleased) {
|
|
ROCKS_LOG_FATAL(info_log_,
|
|
"Unexpected released snapshot in IsInEarliestSnapshot");
|
|
}
|
|
return in_snapshot == SnapshotCheckerResult::kInSnapshot;
|
|
}
|
|
|
|
uint64_t CompactionIterator::ComputeBlobGarbageCollectionCutoffFileNumber(
|
|
const CompactionProxy* compaction) {
|
|
if (!compaction) {
|
|
return 0;
|
|
}
|
|
|
|
if (!compaction->enable_blob_garbage_collection()) {
|
|
return 0;
|
|
}
|
|
|
|
Version* const version = compaction->input_version();
|
|
assert(version);
|
|
|
|
const VersionStorageInfo* const storage_info = version->storage_info();
|
|
assert(storage_info);
|
|
|
|
const auto& blob_files = storage_info->GetBlobFiles();
|
|
|
|
auto it = blob_files.begin();
|
|
std::advance(
|
|
it, compaction->blob_garbage_collection_age_cutoff() * blob_files.size());
|
|
|
|
return it != blob_files.end() ? it->first
|
|
: std::numeric_limits<uint64_t>::max();
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|