rocksdb/db/version_set_test.cc
Changyu Bi 648fe25bc0 Always clear files marked for compaction in ComputeCompactionScore() (#11946)
Summary:
We were seeing the following stress test failures:
```LevelCompactionBuilder::PickFileToCompact(const rocksdb::autovector<std::pair<int, rocksdb::FileMetaData*> >&, bool): Assertion `!level_file.second->being_compacted' failed```

This can happen when we are picking a file to be compacted from some files marked for compaction, but that file is already being_compacted. We prevent this by always calling `ComputeCompactionScore()` after we pick a compaction and mark some files as being_compacted. However, if SetOptions() is called to disable marking certain files to be compacted, say `enable_blob_garbage_collection`, we currently just skip the relevant logic in `ComputeCompactionScore()` without clearing the existing files already marked for compaction. This PR fixes this issue by already clearing these files.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11946

Test Plan: existing tests.

Reviewed By: akankshamahajan15

Differential Revision: D50232608

Pulled By: cbi42

fbshipit-source-id: 11e4fb5e9d48b0f946ad33b18f7c005f0161f496
2023-10-12 15:26:10 -07:00

3681 lines
131 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/version_set.h"
#include <algorithm>
#include "db/db_impl/db_impl.h"
#include "db/db_test_util.h"
#include "db/log_writer.h"
#include "db/version_edit.h"
#include "rocksdb/advanced_options.h"
#include "rocksdb/convenience.h"
#include "rocksdb/file_system.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/mock_table.h"
#include "table/unique_id_impl.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
class GenerateLevelFilesBriefTest : public testing::Test {
public:
std::vector<FileMetaData*> files_;
LevelFilesBrief file_level_;
Arena arena_;
GenerateLevelFilesBriefTest() {}
~GenerateLevelFilesBriefTest() override {
for (size_t i = 0; i < files_.size(); i++) {
delete files_[i];
}
}
void Add(const char* smallest, const char* largest,
SequenceNumber smallest_seq = 100,
SequenceNumber largest_seq = 100) {
FileMetaData* f = new FileMetaData(
files_.size() + 1, 0, 0,
InternalKey(smallest, smallest_seq, kTypeValue),
InternalKey(largest, largest_seq, kTypeValue), smallest_seq,
largest_seq, /* marked_for_compact */ false, Temperature::kUnknown,
kInvalidBlobFileNumber, kUnknownOldestAncesterTime,
kUnknownFileCreationTime, kUnknownEpochNumber, kUnknownFileChecksum,
kUnknownFileChecksumFuncName, kNullUniqueId64x2, 0, 0,
/* user_defined_timestamps_persisted */ true);
files_.push_back(f);
}
int Compare() {
int diff = 0;
for (size_t i = 0; i < files_.size(); i++) {
if (file_level_.files[i].fd.GetNumber() != files_[i]->fd.GetNumber()) {
diff++;
}
}
return diff;
}
};
TEST_F(GenerateLevelFilesBriefTest, Empty) {
DoGenerateLevelFilesBrief(&file_level_, files_, &arena_);
ASSERT_EQ(0u, file_level_.num_files);
ASSERT_EQ(0, Compare());
}
TEST_F(GenerateLevelFilesBriefTest, Single) {
Add("p", "q");
DoGenerateLevelFilesBrief(&file_level_, files_, &arena_);
ASSERT_EQ(1u, file_level_.num_files);
ASSERT_EQ(0, Compare());
}
TEST_F(GenerateLevelFilesBriefTest, Multiple) {
Add("150", "200");
Add("200", "250");
Add("300", "350");
Add("400", "450");
DoGenerateLevelFilesBrief(&file_level_, files_, &arena_);
ASSERT_EQ(4u, file_level_.num_files);
ASSERT_EQ(0, Compare());
}
class CountingLogger : public Logger {
public:
CountingLogger() : log_count(0) {}
using Logger::Logv;
void Logv(const char* /*format*/, va_list /*ap*/) override { log_count++; }
int log_count;
};
Options GetOptionsWithNumLevels(int num_levels,
std::shared_ptr<CountingLogger> logger) {
Options opt;
opt.num_levels = num_levels;
opt.info_log = logger;
return opt;
}
class VersionStorageInfoTestBase : public testing::Test {
public:
const Comparator* ucmp_;
InternalKeyComparator icmp_;
std::shared_ptr<CountingLogger> logger_;
Options options_;
ImmutableOptions ioptions_;
MutableCFOptions mutable_cf_options_;
VersionStorageInfo vstorage_;
InternalKey GetInternalKey(const char* ukey,
SequenceNumber smallest_seq = 100) {
return InternalKey(ukey, smallest_seq, kTypeValue);
}
explicit VersionStorageInfoTestBase(const Comparator* ucmp)
: ucmp_(ucmp),
icmp_(ucmp_),
logger_(new CountingLogger()),
options_(GetOptionsWithNumLevels(6, logger_)),
ioptions_(options_),
mutable_cf_options_(options_),
vstorage_(&icmp_, ucmp_, 6, kCompactionStyleLevel,
/*src_vstorage=*/nullptr,
/*_force_consistency_checks=*/false,
EpochNumberRequirement::kMustPresent, ioptions_.clock,
mutable_cf_options_.bottommost_file_compaction_delay) {}
~VersionStorageInfoTestBase() override {
for (int i = 0; i < vstorage_.num_levels(); ++i) {
for (auto* f : vstorage_.LevelFiles(i)) {
if (--f->refs == 0) {
delete f;
}
}
}
}
void Add(int level, uint32_t file_number, const char* smallest,
const char* largest, uint64_t file_size = 0,
uint64_t oldest_blob_file_number = kInvalidBlobFileNumber,
uint64_t compensated_range_deletion_size = 0) {
constexpr SequenceNumber dummy_seq = 0;
Add(level, file_number, GetInternalKey(smallest, dummy_seq),
GetInternalKey(largest, dummy_seq), file_size, oldest_blob_file_number,
compensated_range_deletion_size);
}
void Add(int level, uint32_t file_number, const InternalKey& smallest,
const InternalKey& largest, uint64_t file_size = 0,
uint64_t oldest_blob_file_number = kInvalidBlobFileNumber,
uint64_t compensated_range_deletion_size = 0) {
assert(level < vstorage_.num_levels());
FileMetaData* f = new FileMetaData(
file_number, 0, file_size, smallest, largest, /* smallest_seq */ 0,
/* largest_seq */ 0, /* marked_for_compact */ false,
Temperature::kUnknown, oldest_blob_file_number,
kUnknownOldestAncesterTime, kUnknownFileCreationTime,
kUnknownEpochNumber, kUnknownFileChecksum, kUnknownFileChecksumFuncName,
kNullUniqueId64x2, compensated_range_deletion_size, 0,
/* user_defined_timestamps_persisted */ true);
vstorage_.AddFile(level, f);
}
void AddBlob(uint64_t blob_file_number, uint64_t total_blob_count,
uint64_t total_blob_bytes,
BlobFileMetaData::LinkedSsts linked_ssts,
uint64_t garbage_blob_count, uint64_t garbage_blob_bytes) {
auto shared_meta = SharedBlobFileMetaData::Create(
blob_file_number, total_blob_count, total_blob_bytes,
/* checksum_method */ std::string(),
/* checksum_value */ std::string());
auto meta =
BlobFileMetaData::Create(std::move(shared_meta), std::move(linked_ssts),
garbage_blob_count, garbage_blob_bytes);
vstorage_.AddBlobFile(std::move(meta));
}
void UpdateVersionStorageInfo() {
vstorage_.PrepareForVersionAppend(ioptions_, mutable_cf_options_);
vstorage_.SetFinalized();
}
std::string GetOverlappingFiles(int level, const InternalKey& begin,
const InternalKey& end) {
std::vector<FileMetaData*> inputs;
vstorage_.GetOverlappingInputs(level, &begin, &end, &inputs);
std::string result;
for (size_t i = 0; i < inputs.size(); ++i) {
if (i > 0) {
result += ",";
}
AppendNumberTo(&result, inputs[i]->fd.GetNumber());
}
return result;
}
};
class VersionStorageInfoTest : public VersionStorageInfoTestBase {
public:
VersionStorageInfoTest() : VersionStorageInfoTestBase(BytewiseComparator()) {}
~VersionStorageInfoTest() override {}
};
TEST_F(VersionStorageInfoTest, MaxBytesForLevelStatic) {
ioptions_.level_compaction_dynamic_level_bytes = false;
mutable_cf_options_.max_bytes_for_level_base = 10;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
Add(4, 100U, "1", "2", 100U);
Add(5, 101U, "1", "2", 100U);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_.MaxBytesForLevel(1), 10U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(2), 50U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(3), 250U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(4), 1250U);
ASSERT_EQ(0, logger_->log_count);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamic_1) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
Add(5, 1U, "1", "2", 500U);
UpdateVersionStorageInfo();
ASSERT_EQ(0, logger_->log_count);
ASSERT_EQ(vstorage_.base_level(), 5);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamic_2) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
Add(5, 1U, "1", "2", 500U);
Add(5, 2U, "3", "4", 550U);
UpdateVersionStorageInfo();
ASSERT_EQ(0, logger_->log_count);
ASSERT_EQ(vstorage_.MaxBytesForLevel(4), 1000U);
ASSERT_EQ(vstorage_.base_level(), 4);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamic_3) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
Add(5, 1U, "1", "2", 500U);
Add(5, 2U, "3", "4", 550U);
Add(4, 3U, "3", "4", 550U);
UpdateVersionStorageInfo();
ASSERT_EQ(0, logger_->log_count);
ASSERT_EQ(vstorage_.MaxBytesForLevel(4), 1000U);
ASSERT_EQ(vstorage_.base_level(), 4);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamic_4) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
Add(5, 1U, "1", "2", 500U);
Add(5, 2U, "3", "4", 550U);
Add(4, 3U, "3", "4", 550U);
Add(3, 4U, "3", "4", 250U);
Add(3, 5U, "5", "7", 300U);
UpdateVersionStorageInfo();
ASSERT_EQ(1, logger_->log_count);
ASSERT_EQ(vstorage_.MaxBytesForLevel(4), 1005U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(3), 1000U);
ASSERT_EQ(vstorage_.base_level(), 3);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamic_5) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
Add(5, 1U, "1", "2", 500U);
Add(5, 2U, "3", "4", 550U);
Add(4, 3U, "3", "4", 550U);
Add(3, 4U, "3", "4", 250U);
Add(3, 5U, "5", "7", 300U);
Add(1, 6U, "3", "4", 5U);
Add(1, 7U, "8", "9", 5U);
UpdateVersionStorageInfo();
ASSERT_EQ(1, logger_->log_count);
ASSERT_GT(vstorage_.MaxBytesForLevel(4), 1005U);
ASSERT_GT(vstorage_.MaxBytesForLevel(3), 1005U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(2), 1005U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(1), 1000U);
ASSERT_EQ(vstorage_.base_level(), 1);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamicLotsOfData) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 100;
mutable_cf_options_.max_bytes_for_level_multiplier = 2;
Add(0, 1U, "1", "2", 50U);
Add(1, 2U, "1", "2", 50U);
Add(2, 3U, "1", "2", 500U);
Add(3, 4U, "1", "2", 500U);
Add(4, 5U, "1", "2", 1700U);
Add(5, 6U, "1", "2", 500U);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_.MaxBytesForLevel(4), 800U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(3), 400U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(2), 200U);
ASSERT_EQ(vstorage_.MaxBytesForLevel(1), 100U);
ASSERT_EQ(vstorage_.base_level(), 1);
ASSERT_EQ(0, logger_->log_count);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamicLargeLevel) {
uint64_t kOneGB = 1000U * 1000U * 1000U;
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 10U * kOneGB;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
Add(0, 1U, "1", "2", 50U);
Add(3, 4U, "1", "2", 32U * kOneGB);
Add(4, 5U, "1", "2", 500U * kOneGB);
Add(5, 6U, "1", "2", 3000U * kOneGB);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_.MaxBytesForLevel(5), 3000U * kOneGB);
ASSERT_EQ(vstorage_.MaxBytesForLevel(4), 300U * kOneGB);
ASSERT_EQ(vstorage_.MaxBytesForLevel(3), 30U * kOneGB);
ASSERT_EQ(vstorage_.MaxBytesForLevel(2), 10U * kOneGB);
ASSERT_EQ(vstorage_.base_level(), 2);
ASSERT_EQ(0, logger_->log_count);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamicWithLargeL0_1) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 40000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
Add(0, 1U, "1", "2", 10000U);
Add(0, 2U, "1", "2", 10000U);
Add(0, 3U, "1", "2", 10000U);
Add(5, 4U, "1", "2", 1286250U);
Add(4, 5U, "1", "2", 200000U);
Add(3, 6U, "1", "2", 40000U);
Add(2, 7U, "1", "2", 8000U);
UpdateVersionStorageInfo();
ASSERT_EQ(0, logger_->log_count);
ASSERT_EQ(2, vstorage_.base_level());
// level multiplier should be 3.5
ASSERT_EQ(vstorage_.level_multiplier(), 5.0);
ASSERT_EQ(40000U, vstorage_.MaxBytesForLevel(2));
ASSERT_EQ(51450U, vstorage_.MaxBytesForLevel(3));
ASSERT_EQ(257250U, vstorage_.MaxBytesForLevel(4));
vstorage_.ComputeCompactionScore(ioptions_, mutable_cf_options_);
// Only L0 hits compaction.
ASSERT_EQ(vstorage_.CompactionScoreLevel(0), 0);
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamicWithLargeL0_2) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 10000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
mutable_cf_options_.level0_file_num_compaction_trigger = 4;
Add(0, 11U, "1", "2", 10000U);
Add(0, 12U, "1", "2", 10000U);
Add(0, 13U, "1", "2", 10000U);
// Level size should be around 10,000, 10,290, 51,450, 257,250
Add(5, 4U, "1", "2", 1286250U);
Add(4, 5U, "1", "2", 258000U); // unadjusted score 1.003
Add(3, 6U, "1", "2", 53000U); // unadjusted score 1.03
Add(2, 7U, "1", "2", 20000U); // unadjusted score 1.94
UpdateVersionStorageInfo();
ASSERT_EQ(0, logger_->log_count);
ASSERT_EQ(1, vstorage_.base_level());
ASSERT_EQ(10000U, vstorage_.MaxBytesForLevel(1));
ASSERT_EQ(10290U, vstorage_.MaxBytesForLevel(2));
ASSERT_EQ(51450U, vstorage_.MaxBytesForLevel(3));
ASSERT_EQ(257250U, vstorage_.MaxBytesForLevel(4));
vstorage_.ComputeCompactionScore(ioptions_, mutable_cf_options_);
// Although L2 and l3 have higher unadjusted compaction score, considering
// a relatively large L0 being compacted down soon, L4 is picked up for
// compaction.
// L0 is still picked up for oversizing.
ASSERT_EQ(0, vstorage_.CompactionScoreLevel(0));
ASSERT_EQ(4, vstorage_.CompactionScoreLevel(1));
}
TEST_F(VersionStorageInfoTest, MaxBytesForLevelDynamicWithLargeL0_3) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 20000;
mutable_cf_options_.max_bytes_for_level_multiplier = 5;
mutable_cf_options_.level0_file_num_compaction_trigger = 5;
Add(0, 11U, "1", "2", 2500U);
Add(0, 12U, "1", "2", 2500U);
Add(0, 13U, "1", "2", 2500U);
Add(0, 14U, "1", "2", 2500U);
// Level size should be around 20,000, 53000, 258000
Add(5, 4U, "1", "2", 1286250U);
Add(4, 5U, "1", "2", 260000U); // Unadjusted score 1.01, adjusted about 4.3
Add(3, 6U, "1", "2", 85000U); // Unadjusted score 1.42, adjusted about 11.6
Add(2, 7U, "1", "2", 30000); // Unadjusted score 1.5, adjusted about 10.0
UpdateVersionStorageInfo();
ASSERT_EQ(0, logger_->log_count);
ASSERT_EQ(2, vstorage_.base_level());
ASSERT_EQ(20000U, vstorage_.MaxBytesForLevel(2));
vstorage_.ComputeCompactionScore(ioptions_, mutable_cf_options_);
// Although L2 has higher unadjusted compaction score, considering
// a relatively large L0 being compacted down soon, L3 is picked up for
// compaction.
ASSERT_EQ(3, vstorage_.CompactionScoreLevel(0));
ASSERT_EQ(2, vstorage_.CompactionScoreLevel(1));
ASSERT_EQ(4, vstorage_.CompactionScoreLevel(2));
}
TEST_F(VersionStorageInfoTest, DrainUnnecessaryLevel) {
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
// Create a few unnecessary levels.
// See if score is calculated correctly.
Add(5, 1U, "1", "2", 2000U); // target size 1010000
Add(4, 2U, "1", "2", 200U); // target size 101000
// Unnecessary levels
Add(3, 3U, "1", "2", 100U); // target size 10100
// Level 2: target size 1010
Add(1, 4U, "1", "2",
10U); // target size 1000 = max(base_bytes_min + 1, base_bytes_max)
UpdateVersionStorageInfo();
ASSERT_EQ(1, vstorage_.base_level());
ASSERT_EQ(1000, vstorage_.MaxBytesForLevel(1));
ASSERT_EQ(10100, vstorage_.MaxBytesForLevel(3));
vstorage_.ComputeCompactionScore(ioptions_, mutable_cf_options_);
// Tests that levels 1 and 3 are eligible for compaction.
// Levels 1 and 3 are much smaller than target size,
// so size does not contribute to a high compaction score.
ASSERT_EQ(1, vstorage_.CompactionScoreLevel(0));
ASSERT_GT(vstorage_.CompactionScore(0), 10);
ASSERT_EQ(3, vstorage_.CompactionScoreLevel(1));
ASSERT_GT(vstorage_.CompactionScore(1), 10);
}
TEST_F(VersionStorageInfoTest, EstimateLiveDataSize) {
// Test whether the overlaps are detected as expected
Add(1, 1U, "4", "7", 1U); // Perfect overlap with last level
Add(2, 2U, "3", "5", 1U); // Partial overlap with last level
Add(2, 3U, "6", "8", 1U); // Partial overlap with last level
Add(3, 4U, "1", "9", 1U); // Contains range of last level
Add(4, 5U, "4", "5", 1U); // Inside range of last level
Add(4, 6U, "6", "7", 1U); // Inside range of last level
Add(5, 7U, "4", "7", 10U);
UpdateVersionStorageInfo();
ASSERT_EQ(10U, vstorage_.EstimateLiveDataSize());
}
TEST_F(VersionStorageInfoTest, EstimateLiveDataSize2) {
Add(0, 1U, "9", "9", 1U); // Level 0 is not ordered
Add(0, 2U, "5", "6", 1U); // Ignored because of [5,6] in l1
Add(1, 3U, "1", "2", 1U); // Ignored because of [2,3] in l2
Add(1, 4U, "3", "4", 1U); // Ignored because of [2,3] in l2
Add(1, 5U, "5", "6", 1U);
Add(2, 6U, "2", "3", 1U);
Add(3, 7U, "7", "8", 1U);
UpdateVersionStorageInfo();
ASSERT_EQ(4U, vstorage_.EstimateLiveDataSize());
}
TEST_F(VersionStorageInfoTest, GetOverlappingInputs) {
// Two files that overlap at the range deletion tombstone sentinel.
Add(1, 1U, {"a", 0, kTypeValue},
{"b", kMaxSequenceNumber, kTypeRangeDeletion}, 1);
Add(1, 2U, {"b", 0, kTypeValue}, {"c", 0, kTypeValue}, 1);
// Two files that overlap at the same user key.
Add(1, 3U, {"d", 0, kTypeValue}, {"e", kMaxSequenceNumber, kTypeValue}, 1);
Add(1, 4U, {"e", 0, kTypeValue}, {"f", 0, kTypeValue}, 1);
// Two files that do not overlap.
Add(1, 5U, {"g", 0, kTypeValue}, {"h", 0, kTypeValue}, 1);
Add(1, 6U, {"i", 0, kTypeValue}, {"j", 0, kTypeValue}, 1);
UpdateVersionStorageInfo();
ASSERT_EQ("1,2",
GetOverlappingFiles(1, {"a", 0, kTypeValue}, {"b", 0, kTypeValue}));
ASSERT_EQ("1",
GetOverlappingFiles(1, {"a", 0, kTypeValue},
{"b", kMaxSequenceNumber, kTypeRangeDeletion}));
ASSERT_EQ("2", GetOverlappingFiles(1, {"b", kMaxSequenceNumber, kTypeValue},
{"c", 0, kTypeValue}));
ASSERT_EQ("3,4",
GetOverlappingFiles(1, {"d", 0, kTypeValue}, {"e", 0, kTypeValue}));
ASSERT_EQ("3",
GetOverlappingFiles(1, {"d", 0, kTypeValue},
{"e", kMaxSequenceNumber, kTypeRangeDeletion}));
ASSERT_EQ("3,4", GetOverlappingFiles(1, {"e", kMaxSequenceNumber, kTypeValue},
{"f", 0, kTypeValue}));
ASSERT_EQ("3,4",
GetOverlappingFiles(1, {"e", 0, kTypeValue}, {"f", 0, kTypeValue}));
ASSERT_EQ("5",
GetOverlappingFiles(1, {"g", 0, kTypeValue}, {"h", 0, kTypeValue}));
ASSERT_EQ("6",
GetOverlappingFiles(1, {"i", 0, kTypeValue}, {"j", 0, kTypeValue}));
}
TEST_F(VersionStorageInfoTest, FileLocationAndMetaDataByNumber) {
Add(0, 11U, "1", "2", 5000U);
Add(0, 12U, "1", "2", 5000U);
Add(2, 7U, "1", "2", 8000U);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_.GetFileLocation(11U),
VersionStorageInfo::FileLocation(0, 0));
ASSERT_NE(vstorage_.GetFileMetaDataByNumber(11U), nullptr);
ASSERT_EQ(vstorage_.GetFileLocation(12U),
VersionStorageInfo::FileLocation(0, 1));
ASSERT_NE(vstorage_.GetFileMetaDataByNumber(12U), nullptr);
ASSERT_EQ(vstorage_.GetFileLocation(7U),
VersionStorageInfo::FileLocation(2, 0));
ASSERT_NE(vstorage_.GetFileMetaDataByNumber(7U), nullptr);
ASSERT_FALSE(vstorage_.GetFileLocation(999U).IsValid());
ASSERT_EQ(vstorage_.GetFileMetaDataByNumber(999U), nullptr);
}
TEST_F(VersionStorageInfoTest, ForcedBlobGCEmpty) {
// No SST or blob files in VersionStorageInfo
UpdateVersionStorageInfo();
constexpr double age_cutoff = 0.5;
constexpr double force_threshold = 0.75;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
TEST_F(VersionStorageInfoTest, ForcedBlobGCSingleBatch) {
// Test the edge case when all blob files are part of the oldest batch.
// We have one L0 SST file #1, and four blob files #10, #11, #12, and #13.
// The oldest blob file used by SST #1 is blob file #10.
constexpr int level = 0;
constexpr uint64_t sst = 1;
constexpr uint64_t first_blob = 10;
constexpr uint64_t second_blob = 11;
constexpr uint64_t third_blob = 12;
constexpr uint64_t fourth_blob = 13;
{
constexpr char smallest[] = "bar1";
constexpr char largest[] = "foo1";
constexpr uint64_t file_size = 1000;
Add(level, sst, smallest, largest, file_size, first_blob);
}
{
constexpr uint64_t total_blob_count = 10;
constexpr uint64_t total_blob_bytes = 100000;
constexpr uint64_t garbage_blob_count = 2;
constexpr uint64_t garbage_blob_bytes = 15000;
AddBlob(first_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{sst}, garbage_blob_count,
garbage_blob_bytes);
}
{
constexpr uint64_t total_blob_count = 4;
constexpr uint64_t total_blob_bytes = 400000;
constexpr uint64_t garbage_blob_count = 3;
constexpr uint64_t garbage_blob_bytes = 235000;
AddBlob(second_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{}, garbage_blob_count,
garbage_blob_bytes);
}
{
constexpr uint64_t total_blob_count = 20;
constexpr uint64_t total_blob_bytes = 1000000;
constexpr uint64_t garbage_blob_count = 8;
constexpr uint64_t garbage_blob_bytes = 400000;
AddBlob(third_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{}, garbage_blob_count,
garbage_blob_bytes);
}
{
constexpr uint64_t total_blob_count = 128;
constexpr uint64_t total_blob_bytes = 1000000;
constexpr uint64_t garbage_blob_count = 67;
constexpr uint64_t garbage_blob_bytes = 600000;
AddBlob(fourth_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{}, garbage_blob_count,
garbage_blob_bytes);
}
UpdateVersionStorageInfo();
assert(vstorage_.num_levels() > 0);
const auto& level_files = vstorage_.LevelFiles(level);
assert(level_files.size() == 1);
assert(level_files[0] && level_files[0]->fd.GetNumber() == sst);
// No blob files eligible for GC due to the age cutoff
{
constexpr double age_cutoff = 0.1;
constexpr double force_threshold = 0.0;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Part of the oldest batch of blob files (specifically, #12 and #13) is
// ineligible for GC due to the age cutoff
{
constexpr double age_cutoff = 0.5;
constexpr double force_threshold = 0.0;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Oldest batch is eligible based on age cutoff but its overall garbage ratio
// is below threshold
{
constexpr double age_cutoff = 1.0;
constexpr double force_threshold = 0.6;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Oldest batch is eligible based on age cutoff and its overall garbage ratio
// meets threshold
{
constexpr double age_cutoff = 1.0;
constexpr double force_threshold = 0.5;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
auto ssts_to_be_compacted = vstorage_.FilesMarkedForForcedBlobGC();
ASSERT_EQ(ssts_to_be_compacted.size(), 1);
const autovector<std::pair<int, FileMetaData*>>
expected_ssts_to_be_compacted{{level, level_files[0]}};
ASSERT_EQ(ssts_to_be_compacted[0], expected_ssts_to_be_compacted[0]);
}
}
TEST_F(VersionStorageInfoTest, ForcedBlobGCMultipleBatches) {
// Add three L0 SSTs (1, 2, and 3) and four blob files (10, 11, 12, and 13).
// The first two SSTs have the same oldest blob file, namely, the very oldest
// one (10), while the third SST's oldest blob file reference points to the
// third blob file (12). Thus, the oldest batch of blob files contains the
// first two blob files 10 and 11, and assuming they are eligible for GC based
// on the age cutoff, compacting away the SSTs 1 and 2 will eliminate them.
constexpr int level = 0;
constexpr uint64_t first_sst = 1;
constexpr uint64_t second_sst = 2;
constexpr uint64_t third_sst = 3;
constexpr uint64_t first_blob = 10;
constexpr uint64_t second_blob = 11;
constexpr uint64_t third_blob = 12;
constexpr uint64_t fourth_blob = 13;
{
constexpr char smallest[] = "bar1";
constexpr char largest[] = "foo1";
constexpr uint64_t file_size = 1000;
Add(level, first_sst, smallest, largest, file_size, first_blob);
}
{
constexpr char smallest[] = "bar2";
constexpr char largest[] = "foo2";
constexpr uint64_t file_size = 2000;
Add(level, second_sst, smallest, largest, file_size, first_blob);
}
{
constexpr char smallest[] = "bar3";
constexpr char largest[] = "foo3";
constexpr uint64_t file_size = 3000;
Add(level, third_sst, smallest, largest, file_size, third_blob);
}
{
constexpr uint64_t total_blob_count = 10;
constexpr uint64_t total_blob_bytes = 100000;
constexpr uint64_t garbage_blob_count = 2;
constexpr uint64_t garbage_blob_bytes = 15000;
AddBlob(first_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{first_sst, second_sst},
garbage_blob_count, garbage_blob_bytes);
}
{
constexpr uint64_t total_blob_count = 4;
constexpr uint64_t total_blob_bytes = 400000;
constexpr uint64_t garbage_blob_count = 3;
constexpr uint64_t garbage_blob_bytes = 235000;
AddBlob(second_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{}, garbage_blob_count,
garbage_blob_bytes);
}
{
constexpr uint64_t total_blob_count = 20;
constexpr uint64_t total_blob_bytes = 1000000;
constexpr uint64_t garbage_blob_count = 8;
constexpr uint64_t garbage_blob_bytes = 123456;
AddBlob(third_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{third_sst}, garbage_blob_count,
garbage_blob_bytes);
}
{
constexpr uint64_t total_blob_count = 128;
constexpr uint64_t total_blob_bytes = 789012345;
constexpr uint64_t garbage_blob_count = 67;
constexpr uint64_t garbage_blob_bytes = 88888888;
AddBlob(fourth_blob, total_blob_count, total_blob_bytes,
BlobFileMetaData::LinkedSsts{}, garbage_blob_count,
garbage_blob_bytes);
}
UpdateVersionStorageInfo();
assert(vstorage_.num_levels() > 0);
const auto& level_files = vstorage_.LevelFiles(level);
assert(level_files.size() == 3);
assert(level_files[0] && level_files[0]->fd.GetNumber() == first_sst);
assert(level_files[1] && level_files[1]->fd.GetNumber() == second_sst);
assert(level_files[2] && level_files[2]->fd.GetNumber() == third_sst);
// No blob files eligible for GC due to the age cutoff
{
constexpr double age_cutoff = 0.1;
constexpr double force_threshold = 0.0;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Part of the oldest batch of blob files (specifically, the second file) is
// ineligible for GC due to the age cutoff
{
constexpr double age_cutoff = 0.25;
constexpr double force_threshold = 0.0;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Oldest batch is eligible based on age cutoff but its overall garbage ratio
// is below threshold
{
constexpr double age_cutoff = 0.5;
constexpr double force_threshold = 0.6;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Oldest batch is eligible based on age cutoff and its overall garbage ratio
// meets threshold
{
constexpr double age_cutoff = 0.5;
constexpr double force_threshold = 0.5;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
auto ssts_to_be_compacted = vstorage_.FilesMarkedForForcedBlobGC();
ASSERT_EQ(ssts_to_be_compacted.size(), 2);
std::sort(ssts_to_be_compacted.begin(), ssts_to_be_compacted.end(),
[](const std::pair<int, FileMetaData*>& lhs,
const std::pair<int, FileMetaData*>& rhs) {
assert(lhs.second);
assert(rhs.second);
return lhs.second->fd.GetNumber() < rhs.second->fd.GetNumber();
});
const autovector<std::pair<int, FileMetaData*>>
expected_ssts_to_be_compacted{{level, level_files[0]},
{level, level_files[1]}};
ASSERT_EQ(ssts_to_be_compacted[0], expected_ssts_to_be_compacted[0]);
ASSERT_EQ(ssts_to_be_compacted[1], expected_ssts_to_be_compacted[1]);
}
// Now try the last two cases again with a greater than necessary age cutoff
// Oldest batch is eligible based on age cutoff but its overall garbage ratio
// is below threshold
{
constexpr double age_cutoff = 0.75;
constexpr double force_threshold = 0.6;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
ASSERT_TRUE(vstorage_.FilesMarkedForForcedBlobGC().empty());
}
// Oldest batch is eligible based on age cutoff and its overall garbage ratio
// meets threshold
{
constexpr double age_cutoff = 0.75;
constexpr double force_threshold = 0.5;
vstorage_.ComputeFilesMarkedForForcedBlobGC(
age_cutoff, force_threshold, /*enable_blob_garbage_collection=*/true);
auto ssts_to_be_compacted = vstorage_.FilesMarkedForForcedBlobGC();
ASSERT_EQ(ssts_to_be_compacted.size(), 2);
std::sort(ssts_to_be_compacted.begin(), ssts_to_be_compacted.end(),
[](const std::pair<int, FileMetaData*>& lhs,
const std::pair<int, FileMetaData*>& rhs) {
assert(lhs.second);
assert(rhs.second);
return lhs.second->fd.GetNumber() < rhs.second->fd.GetNumber();
});
const autovector<std::pair<int, FileMetaData*>>
expected_ssts_to_be_compacted{{level, level_files[0]},
{level, level_files[1]}};
ASSERT_EQ(ssts_to_be_compacted[0], expected_ssts_to_be_compacted[0]);
ASSERT_EQ(ssts_to_be_compacted[1], expected_ssts_to_be_compacted[1]);
}
}
class VersionStorageInfoTimestampTest : public VersionStorageInfoTestBase {
public:
VersionStorageInfoTimestampTest()
: VersionStorageInfoTestBase(test::BytewiseComparatorWithU64TsWrapper()) {
}
~VersionStorageInfoTimestampTest() override {}
std::string Timestamp(uint64_t ts) const {
std::string ret;
PutFixed64(&ret, ts);
return ret;
}
std::string PackUserKeyAndTimestamp(const Slice& ukey, uint64_t ts) const {
std::string ret;
ret.assign(ukey.data(), ukey.size());
PutFixed64(&ret, ts);
return ret;
}
};
TEST_F(VersionStorageInfoTimestampTest, GetOverlappingInputs) {
Add(/*level=*/1, /*file_number=*/1, /*smallest=*/
{PackUserKeyAndTimestamp("a", /*ts=*/9), /*s=*/0, kTypeValue},
/*largest=*/
{PackUserKeyAndTimestamp("a", /*ts=*/8), /*s=*/0, kTypeValue},
/*file_size=*/100);
Add(/*level=*/1, /*file_number=*/2, /*smallest=*/
{PackUserKeyAndTimestamp("a", /*ts=*/5), /*s=*/0, kTypeValue},
/*largest=*/
{PackUserKeyAndTimestamp("b", /*ts=*/10), /*s=*/0, kTypeValue},
/*file_size=*/100);
Add(/*level=*/1, /*file_number=*/3, /*smallest=*/
{PackUserKeyAndTimestamp("c", /*ts=*/12), /*s=*/0, kTypeValue},
/*largest=*/
{PackUserKeyAndTimestamp("d", /*ts=*/1), /*s=*/0, kTypeValue},
/*file_size=*/100);
UpdateVersionStorageInfo();
ASSERT_EQ(
"1,2",
GetOverlappingFiles(
/*level=*/1,
{PackUserKeyAndTimestamp("a", /*ts=*/12), /*s=*/0, kTypeValue},
{PackUserKeyAndTimestamp("a", /*ts=*/11), /*s=*/0, kTypeValue}));
ASSERT_EQ("3",
GetOverlappingFiles(
/*level=*/1,
{PackUserKeyAndTimestamp("c", /*ts=*/15), /*s=*/0, kTypeValue},
{PackUserKeyAndTimestamp("c", /*ts=*/2), /*s=*/0, kTypeValue}));
}
class FindLevelFileTest : public testing::Test {
public:
LevelFilesBrief file_level_;
bool disjoint_sorted_files_;
Arena arena_;
FindLevelFileTest() : disjoint_sorted_files_(true) {}
~FindLevelFileTest() override {}
void LevelFileInit(size_t num = 0) {
char* mem = arena_.AllocateAligned(num * sizeof(FdWithKeyRange));
file_level_.files = new (mem) FdWithKeyRange[num];
file_level_.num_files = 0;
}
void Add(const char* smallest, const char* largest,
SequenceNumber smallest_seq = 100,
SequenceNumber largest_seq = 100) {
InternalKey smallest_key = InternalKey(smallest, smallest_seq, kTypeValue);
InternalKey largest_key = InternalKey(largest, largest_seq, kTypeValue);
Slice smallest_slice = smallest_key.Encode();
Slice largest_slice = largest_key.Encode();
char* mem =
arena_.AllocateAligned(smallest_slice.size() + largest_slice.size());
memcpy(mem, smallest_slice.data(), smallest_slice.size());
memcpy(mem + smallest_slice.size(), largest_slice.data(),
largest_slice.size());
// add to file_level_
size_t num = file_level_.num_files;
auto& file = file_level_.files[num];
file.fd = FileDescriptor(num + 1, 0, 0);
file.smallest_key = Slice(mem, smallest_slice.size());
file.largest_key = Slice(mem + smallest_slice.size(), largest_slice.size());
file_level_.num_files++;
}
int Find(const char* key) {
InternalKey target(key, 100, kTypeValue);
InternalKeyComparator cmp(BytewiseComparator());
return FindFile(cmp, file_level_, target.Encode());
}
bool Overlaps(const char* smallest, const char* largest) {
InternalKeyComparator cmp(BytewiseComparator());
Slice s(smallest != nullptr ? smallest : "");
Slice l(largest != nullptr ? largest : "");
return SomeFileOverlapsRange(cmp, disjoint_sorted_files_, file_level_,
(smallest != nullptr ? &s : nullptr),
(largest != nullptr ? &l : nullptr));
}
};
TEST_F(FindLevelFileTest, LevelEmpty) {
LevelFileInit(0);
ASSERT_EQ(0, Find("foo"));
ASSERT_TRUE(!Overlaps("a", "z"));
ASSERT_TRUE(!Overlaps(nullptr, "z"));
ASSERT_TRUE(!Overlaps("a", nullptr));
ASSERT_TRUE(!Overlaps(nullptr, nullptr));
}
TEST_F(FindLevelFileTest, LevelSingle) {
LevelFileInit(1);
Add("p", "q");
ASSERT_EQ(0, Find("a"));
ASSERT_EQ(0, Find("p"));
ASSERT_EQ(0, Find("p1"));
ASSERT_EQ(0, Find("q"));
ASSERT_EQ(1, Find("q1"));
ASSERT_EQ(1, Find("z"));
ASSERT_TRUE(!Overlaps("a", "b"));
ASSERT_TRUE(!Overlaps("z1", "z2"));
ASSERT_TRUE(Overlaps("a", "p"));
ASSERT_TRUE(Overlaps("a", "q"));
ASSERT_TRUE(Overlaps("a", "z"));
ASSERT_TRUE(Overlaps("p", "p1"));
ASSERT_TRUE(Overlaps("p", "q"));
ASSERT_TRUE(Overlaps("p", "z"));
ASSERT_TRUE(Overlaps("p1", "p2"));
ASSERT_TRUE(Overlaps("p1", "z"));
ASSERT_TRUE(Overlaps("q", "q"));
ASSERT_TRUE(Overlaps("q", "q1"));
ASSERT_TRUE(!Overlaps(nullptr, "j"));
ASSERT_TRUE(!Overlaps("r", nullptr));
ASSERT_TRUE(Overlaps(nullptr, "p"));
ASSERT_TRUE(Overlaps(nullptr, "p1"));
ASSERT_TRUE(Overlaps("q", nullptr));
ASSERT_TRUE(Overlaps(nullptr, nullptr));
}
TEST_F(FindLevelFileTest, LevelMultiple) {
LevelFileInit(4);
Add("150", "200");
Add("200", "250");
Add("300", "350");
Add("400", "450");
ASSERT_EQ(0, Find("100"));
ASSERT_EQ(0, Find("150"));
ASSERT_EQ(0, Find("151"));
ASSERT_EQ(0, Find("199"));
ASSERT_EQ(0, Find("200"));
ASSERT_EQ(1, Find("201"));
ASSERT_EQ(1, Find("249"));
ASSERT_EQ(1, Find("250"));
ASSERT_EQ(2, Find("251"));
ASSERT_EQ(2, Find("299"));
ASSERT_EQ(2, Find("300"));
ASSERT_EQ(2, Find("349"));
ASSERT_EQ(2, Find("350"));
ASSERT_EQ(3, Find("351"));
ASSERT_EQ(3, Find("400"));
ASSERT_EQ(3, Find("450"));
ASSERT_EQ(4, Find("451"));
ASSERT_TRUE(!Overlaps("100", "149"));
ASSERT_TRUE(!Overlaps("251", "299"));
ASSERT_TRUE(!Overlaps("451", "500"));
ASSERT_TRUE(!Overlaps("351", "399"));
ASSERT_TRUE(Overlaps("100", "150"));
ASSERT_TRUE(Overlaps("100", "200"));
ASSERT_TRUE(Overlaps("100", "300"));
ASSERT_TRUE(Overlaps("100", "400"));
ASSERT_TRUE(Overlaps("100", "500"));
ASSERT_TRUE(Overlaps("375", "400"));
ASSERT_TRUE(Overlaps("450", "450"));
ASSERT_TRUE(Overlaps("450", "500"));
}
TEST_F(FindLevelFileTest, LevelMultipleNullBoundaries) {
LevelFileInit(4);
Add("150", "200");
Add("200", "250");
Add("300", "350");
Add("400", "450");
ASSERT_TRUE(!Overlaps(nullptr, "149"));
ASSERT_TRUE(!Overlaps("451", nullptr));
ASSERT_TRUE(Overlaps(nullptr, nullptr));
ASSERT_TRUE(Overlaps(nullptr, "150"));
ASSERT_TRUE(Overlaps(nullptr, "199"));
ASSERT_TRUE(Overlaps(nullptr, "200"));
ASSERT_TRUE(Overlaps(nullptr, "201"));
ASSERT_TRUE(Overlaps(nullptr, "400"));
ASSERT_TRUE(Overlaps(nullptr, "800"));
ASSERT_TRUE(Overlaps("100", nullptr));
ASSERT_TRUE(Overlaps("200", nullptr));
ASSERT_TRUE(Overlaps("449", nullptr));
ASSERT_TRUE(Overlaps("450", nullptr));
}
TEST_F(FindLevelFileTest, LevelOverlapSequenceChecks) {
LevelFileInit(1);
Add("200", "200", 5000, 3000);
ASSERT_TRUE(!Overlaps("199", "199"));
ASSERT_TRUE(!Overlaps("201", "300"));
ASSERT_TRUE(Overlaps("200", "200"));
ASSERT_TRUE(Overlaps("190", "200"));
ASSERT_TRUE(Overlaps("200", "210"));
}
TEST_F(FindLevelFileTest, LevelOverlappingFiles) {
LevelFileInit(2);
Add("150", "600");
Add("400", "500");
disjoint_sorted_files_ = false;
ASSERT_TRUE(!Overlaps("100", "149"));
ASSERT_TRUE(!Overlaps("601", "700"));
ASSERT_TRUE(Overlaps("100", "150"));
ASSERT_TRUE(Overlaps("100", "200"));
ASSERT_TRUE(Overlaps("100", "300"));
ASSERT_TRUE(Overlaps("100", "400"));
ASSERT_TRUE(Overlaps("100", "500"));
ASSERT_TRUE(Overlaps("375", "400"));
ASSERT_TRUE(Overlaps("450", "450"));
ASSERT_TRUE(Overlaps("450", "500"));
ASSERT_TRUE(Overlaps("450", "700"));
ASSERT_TRUE(Overlaps("600", "700"));
}
class VersionSetTestBase {
public:
const static std::string kColumnFamilyName1;
const static std::string kColumnFamilyName2;
const static std::string kColumnFamilyName3;
int num_initial_edits_;
explicit VersionSetTestBase(const std::string& name)
: env_(nullptr),
dbname_(test::PerThreadDBPath(name)),
options_(),
db_options_(options_),
cf_options_(options_),
immutable_options_(db_options_, cf_options_),
mutable_cf_options_(cf_options_),
table_cache_(NewLRUCache(50000, 16)),
write_buffer_manager_(db_options_.db_write_buffer_size),
shutting_down_(false),
mock_table_factory_(std::make_shared<mock::MockTableFactory>()) {
EXPECT_OK(test::CreateEnvFromSystem(ConfigOptions(), &env_, &env_guard_));
if (env_ == Env::Default() && getenv("MEM_ENV")) {
env_guard_.reset(NewMemEnv(Env::Default()));
env_ = env_guard_.get();
}
EXPECT_NE(nullptr, env_);
fs_ = env_->GetFileSystem();
EXPECT_OK(fs_->CreateDirIfMissing(dbname_, IOOptions(), nullptr));
options_.env = env_;
db_options_.env = env_;
db_options_.fs = fs_;
immutable_options_.env = env_;
immutable_options_.fs = fs_;
immutable_options_.clock = env_->GetSystemClock().get();
versions_.reset(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
reactive_versions_ = std::make_shared<ReactiveVersionSet>(
dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_, nullptr);
db_options_.db_paths.emplace_back(dbname_,
std::numeric_limits<uint64_t>::max());
}
virtual ~VersionSetTestBase() {
if (getenv("KEEP_DB")) {
fprintf(stdout, "DB is still at %s\n", dbname_.c_str());
} else {
Options options;
options.env = env_;
EXPECT_OK(DestroyDB(dbname_, options));
}
}
protected:
virtual void PrepareManifest(
std::vector<ColumnFamilyDescriptor>* column_families,
SequenceNumber* last_seqno, std::unique_ptr<log::Writer>* log_writer) {
assert(column_families != nullptr);
assert(last_seqno != nullptr);
assert(log_writer != nullptr);
VersionEdit new_db;
if (db_options_.write_dbid_to_manifest) {
DBOptions tmp_db_options;
tmp_db_options.env = env_;
std::unique_ptr<DBImpl> impl(new DBImpl(tmp_db_options, dbname_));
std::string db_id;
ASSERT_OK(impl->GetDbIdentityFromIdentityFile(&db_id));
new_db.SetDBId(db_id);
}
new_db.SetLogNumber(0);
new_db.SetNextFile(2);
new_db.SetLastSequence(0);
const std::vector<std::string> cf_names = {
kDefaultColumnFamilyName, kColumnFamilyName1, kColumnFamilyName2,
kColumnFamilyName3};
const int kInitialNumOfCfs = static_cast<int>(cf_names.size());
autovector<VersionEdit> new_cfs;
uint64_t last_seq = 1;
uint32_t cf_id = 1;
for (int i = 1; i != kInitialNumOfCfs; ++i) {
VersionEdit new_cf;
new_cf.AddColumnFamily(cf_names[i]);
new_cf.SetColumnFamily(cf_id++);
new_cf.SetLogNumber(0);
new_cf.SetNextFile(2);
new_cf.SetLastSequence(last_seq++);
new_cfs.emplace_back(new_cf);
}
*last_seqno = last_seq;
num_initial_edits_ = static_cast<int>(new_cfs.size() + 1);
std::unique_ptr<WritableFileWriter> file_writer;
const std::string manifest = DescriptorFileName(dbname_, 1);
const auto& fs = env_->GetFileSystem();
Status s = WritableFileWriter::Create(
fs, manifest, fs->OptimizeForManifestWrite(env_options_), &file_writer,
nullptr);
ASSERT_OK(s);
{
log_writer->reset(new log::Writer(std::move(file_writer), 0, false));
std::string record;
new_db.EncodeTo(&record);
s = (*log_writer)->AddRecord(record);
for (const auto& e : new_cfs) {
record.clear();
e.EncodeTo(&record);
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
}
}
ASSERT_OK(s);
cf_options_.table_factory = mock_table_factory_;
for (const auto& cf_name : cf_names) {
column_families->emplace_back(cf_name, cf_options_);
}
}
// Create DB with 3 column families.
void NewDB() {
SequenceNumber last_seqno;
std::unique_ptr<log::Writer> log_writer;
ASSERT_OK(SetIdentityFile(env_, dbname_));
PrepareManifest(&column_families_, &last_seqno, &log_writer);
log_writer.reset();
// Make "CURRENT" file point to the new manifest file.
Status s = SetCurrentFile(fs_.get(), dbname_, 1, nullptr);
ASSERT_OK(s);
EXPECT_OK(versions_->Recover(column_families_, false));
EXPECT_EQ(column_families_.size(),
versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
}
void ReopenDB() {
versions_.reset(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
EXPECT_OK(versions_->Recover(column_families_, false));
}
void VerifyManifest(std::string* manifest_path) const {
assert(manifest_path != nullptr);
uint64_t manifest_file_number = 0;
Status s = versions_->GetCurrentManifestPath(
dbname_, fs_.get(), manifest_path, &manifest_file_number);
ASSERT_OK(s);
ASSERT_EQ(1, manifest_file_number);
}
Status LogAndApplyToDefaultCF(VersionEdit& edit) {
mutex_.Lock();
Status s = versions_->LogAndApply(
versions_->GetColumnFamilySet()->GetDefault(), mutable_cf_options_,
read_options_, &edit, &mutex_, nullptr);
mutex_.Unlock();
return s;
}
Status LogAndApplyToDefaultCF(
const autovector<std::unique_ptr<VersionEdit>>& edits) {
autovector<VersionEdit*> vedits;
for (auto& e : edits) {
vedits.push_back(e.get());
}
mutex_.Lock();
Status s = versions_->LogAndApply(
versions_->GetColumnFamilySet()->GetDefault(), mutable_cf_options_,
read_options_, vedits, &mutex_, nullptr);
mutex_.Unlock();
return s;
}
void CreateNewManifest() {
constexpr FSDirectory* db_directory = nullptr;
constexpr bool new_descriptor_log = true;
mutex_.Lock();
VersionEdit dummy;
ASSERT_OK(versions_->LogAndApply(
versions_->GetColumnFamilySet()->GetDefault(), mutable_cf_options_,
read_options_, &dummy, &mutex_, db_directory, new_descriptor_log));
mutex_.Unlock();
}
ColumnFamilyData* CreateColumnFamily(const std::string& cf_name,
const ColumnFamilyOptions& cf_options) {
VersionEdit new_cf;
new_cf.AddColumnFamily(cf_name);
uint32_t new_id = versions_->GetColumnFamilySet()->GetNextColumnFamilyID();
new_cf.SetColumnFamily(new_id);
new_cf.SetLogNumber(0);
new_cf.SetComparatorName(cf_options.comparator->Name());
new_cf.SetPersistUserDefinedTimestamps(
cf_options.persist_user_defined_timestamps);
Status s;
mutex_.Lock();
s = versions_->LogAndApply(/*column_family_data=*/nullptr,
MutableCFOptions(cf_options), read_options_,
&new_cf, &mutex_,
/*db_directory=*/nullptr,
/*new_descriptor_log=*/false, &cf_options);
mutex_.Unlock();
EXPECT_OK(s);
ColumnFamilyData* cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(cf_name);
EXPECT_NE(nullptr, cfd);
return cfd;
}
Env* mem_env_;
Env* env_;
std::shared_ptr<Env> env_guard_;
std::shared_ptr<FileSystem> fs_;
const std::string dbname_;
EnvOptions env_options_;
Options options_;
ImmutableDBOptions db_options_;
ColumnFamilyOptions cf_options_;
ImmutableOptions immutable_options_;
MutableCFOptions mutable_cf_options_;
const ReadOptions read_options_;
std::shared_ptr<Cache> table_cache_;
WriteController write_controller_;
WriteBufferManager write_buffer_manager_;
std::shared_ptr<VersionSet> versions_;
std::shared_ptr<ReactiveVersionSet> reactive_versions_;
InstrumentedMutex mutex_;
std::atomic<bool> shutting_down_;
std::shared_ptr<mock::MockTableFactory> mock_table_factory_;
std::vector<ColumnFamilyDescriptor> column_families_;
};
const std::string VersionSetTestBase::kColumnFamilyName1 = "alice";
const std::string VersionSetTestBase::kColumnFamilyName2 = "bob";
const std::string VersionSetTestBase::kColumnFamilyName3 = "charles";
class VersionSetTest : public VersionSetTestBase, public testing::Test {
public:
VersionSetTest() : VersionSetTestBase("version_set_test") {}
};
TEST_F(VersionSetTest, SameColumnFamilyGroupCommit) {
NewDB();
const int kGroupSize = 5;
const ReadOptions read_options;
autovector<VersionEdit> edits;
for (int i = 0; i != kGroupSize; ++i) {
edits.emplace_back(VersionEdit());
}
autovector<ColumnFamilyData*> cfds;
autovector<const MutableCFOptions*> all_mutable_cf_options;
autovector<autovector<VersionEdit*>> edit_lists;
for (int i = 0; i != kGroupSize; ++i) {
cfds.emplace_back(versions_->GetColumnFamilySet()->GetDefault());
all_mutable_cf_options.emplace_back(&mutable_cf_options_);
autovector<VersionEdit*> edit_list;
edit_list.emplace_back(&edits[i]);
edit_lists.emplace_back(edit_list);
}
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
int count = 0;
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::ProcessManifestWrites:SameColumnFamily", [&](void* arg) {
uint32_t* cf_id = reinterpret_cast<uint32_t*>(arg);
EXPECT_EQ(0u, *cf_id);
++count;
});
SyncPoint::GetInstance()->EnableProcessing();
mutex_.Lock();
Status s = versions_->LogAndApply(cfds, all_mutable_cf_options, read_options,
edit_lists, &mutex_, nullptr);
mutex_.Unlock();
EXPECT_OK(s);
EXPECT_EQ(kGroupSize - 1, count);
}
TEST_F(VersionSetTest, PersistBlobFileStateInNewManifest) {
// Initialize the database and add a couple of blob files, one with some
// garbage in it, and one without any garbage.
NewDB();
assert(versions_);
assert(versions_->GetColumnFamilySet());
ColumnFamilyData* const cfd = versions_->GetColumnFamilySet()->GetDefault();
assert(cfd);
Version* const version = cfd->current();
assert(version);
VersionStorageInfo* const storage_info = version->storage_info();
assert(storage_info);
{
constexpr uint64_t blob_file_number = 123;
constexpr uint64_t total_blob_count = 456;
constexpr uint64_t total_blob_bytes = 77777777;
constexpr char checksum_method[] = "SHA1";
constexpr char checksum_value[] =
"\xbd\xb7\xf3\x4a\x59\xdf\xa1\x59\x2c\xe7\xf5\x2e\x99\xf9\x8c\x57\x0c"
"\x52\x5c\xbd";
auto shared_meta = SharedBlobFileMetaData::Create(
blob_file_number, total_blob_count, total_blob_bytes, checksum_method,
checksum_value);
constexpr uint64_t garbage_blob_count = 89;
constexpr uint64_t garbage_blob_bytes = 1000000;
auto meta = BlobFileMetaData::Create(
std::move(shared_meta), BlobFileMetaData::LinkedSsts(),
garbage_blob_count, garbage_blob_bytes);
storage_info->AddBlobFile(std::move(meta));
}
{
constexpr uint64_t blob_file_number = 234;
constexpr uint64_t total_blob_count = 555;
constexpr uint64_t total_blob_bytes = 66666;
constexpr char checksum_method[] = "CRC32";
constexpr char checksum_value[] = "\x3d\x87\xff\x57";
auto shared_meta = SharedBlobFileMetaData::Create(
blob_file_number, total_blob_count, total_blob_bytes, checksum_method,
checksum_value);
constexpr uint64_t garbage_blob_count = 0;
constexpr uint64_t garbage_blob_bytes = 0;
auto meta = BlobFileMetaData::Create(
std::move(shared_meta), BlobFileMetaData::LinkedSsts(),
garbage_blob_count, garbage_blob_bytes);
storage_info->AddBlobFile(std::move(meta));
}
// Force the creation of a new manifest file and make sure metadata for
// the blob files is re-persisted.
size_t addition_encoded = 0;
SyncPoint::GetInstance()->SetCallBack(
"BlobFileAddition::EncodeTo::CustomFields",
[&](void* /* arg */) { ++addition_encoded; });
size_t garbage_encoded = 0;
SyncPoint::GetInstance()->SetCallBack(
"BlobFileGarbage::EncodeTo::CustomFields",
[&](void* /* arg */) { ++garbage_encoded; });
SyncPoint::GetInstance()->EnableProcessing();
CreateNewManifest();
ASSERT_EQ(addition_encoded, 2);
ASSERT_EQ(garbage_encoded, 1);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(VersionSetTest, AddLiveBlobFiles) {
// Initialize the database and add a blob file.
NewDB();
assert(versions_);
assert(versions_->GetColumnFamilySet());
ColumnFamilyData* const cfd = versions_->GetColumnFamilySet()->GetDefault();
assert(cfd);
Version* const first_version = cfd->current();
assert(first_version);
VersionStorageInfo* const first_storage_info = first_version->storage_info();
assert(first_storage_info);
constexpr uint64_t first_blob_file_number = 234;
constexpr uint64_t first_total_blob_count = 555;
constexpr uint64_t first_total_blob_bytes = 66666;
constexpr char first_checksum_method[] = "CRC32";
constexpr char first_checksum_value[] = "\x3d\x87\xff\x57";
auto first_shared_meta = SharedBlobFileMetaData::Create(
first_blob_file_number, first_total_blob_count, first_total_blob_bytes,
first_checksum_method, first_checksum_value);
constexpr uint64_t garbage_blob_count = 0;
constexpr uint64_t garbage_blob_bytes = 0;
auto first_meta = BlobFileMetaData::Create(
std::move(first_shared_meta), BlobFileMetaData::LinkedSsts(),
garbage_blob_count, garbage_blob_bytes);
first_storage_info->AddBlobFile(first_meta);
// Reference the version so it stays alive even after the following version
// edit.
first_version->Ref();
// Get live files directly from version.
std::vector<uint64_t> version_table_files;
std::vector<uint64_t> version_blob_files;
first_version->AddLiveFiles(&version_table_files, &version_blob_files);
ASSERT_EQ(version_blob_files.size(), 1);
ASSERT_EQ(version_blob_files[0], first_blob_file_number);
// Create a new version containing an additional blob file.
versions_->TEST_CreateAndAppendVersion(cfd);
Version* const second_version = cfd->current();
assert(second_version);
assert(second_version != first_version);
VersionStorageInfo* const second_storage_info =
second_version->storage_info();
assert(second_storage_info);
constexpr uint64_t second_blob_file_number = 456;
constexpr uint64_t second_total_blob_count = 100;
constexpr uint64_t second_total_blob_bytes = 2000000;
constexpr char second_checksum_method[] = "CRC32B";
constexpr char second_checksum_value[] = "\x6d\xbd\xf2\x3a";
auto second_shared_meta = SharedBlobFileMetaData::Create(
second_blob_file_number, second_total_blob_count, second_total_blob_bytes,
second_checksum_method, second_checksum_value);
auto second_meta = BlobFileMetaData::Create(
std::move(second_shared_meta), BlobFileMetaData::LinkedSsts(),
garbage_blob_count, garbage_blob_bytes);
second_storage_info->AddBlobFile(std::move(first_meta));
second_storage_info->AddBlobFile(std::move(second_meta));
// Get all live files from version set. Note that the result contains
// duplicates.
std::vector<uint64_t> all_table_files;
std::vector<uint64_t> all_blob_files;
versions_->AddLiveFiles(&all_table_files, &all_blob_files);
ASSERT_EQ(all_blob_files.size(), 3);
ASSERT_EQ(all_blob_files[0], first_blob_file_number);
ASSERT_EQ(all_blob_files[1], first_blob_file_number);
ASSERT_EQ(all_blob_files[2], second_blob_file_number);
// Clean up previous version.
first_version->Unref();
}
TEST_F(VersionSetTest, ObsoleteBlobFile) {
// Initialize the database and add a blob file that is entirely garbage
// and thus can immediately be marked obsolete.
NewDB();
VersionEdit edit;
constexpr uint64_t blob_file_number = 234;
constexpr uint64_t total_blob_count = 555;
constexpr uint64_t total_blob_bytes = 66666;
constexpr char checksum_method[] = "CRC32";
constexpr char checksum_value[] = "\x3d\x87\xff\x57";
edit.AddBlobFile(blob_file_number, total_blob_count, total_blob_bytes,
checksum_method, checksum_value);
edit.AddBlobFileGarbage(blob_file_number, total_blob_count, total_blob_bytes);
mutex_.Lock();
Status s = versions_->LogAndApply(
versions_->GetColumnFamilySet()->GetDefault(), mutable_cf_options_,
read_options_, &edit, &mutex_, nullptr);
mutex_.Unlock();
ASSERT_OK(s);
// Make sure blob files from the pending number range are not returned
// as obsolete.
{
std::vector<ObsoleteFileInfo> table_files;
std::vector<ObsoleteBlobFileInfo> blob_files;
std::vector<std::string> manifest_files;
constexpr uint64_t min_pending_output = blob_file_number;
versions_->GetObsoleteFiles(&table_files, &blob_files, &manifest_files,
min_pending_output);
ASSERT_TRUE(blob_files.empty());
}
// Make sure the blob file is returned as obsolete if it's not in the pending
// range.
{
std::vector<ObsoleteFileInfo> table_files;
std::vector<ObsoleteBlobFileInfo> blob_files;
std::vector<std::string> manifest_files;
constexpr uint64_t min_pending_output = blob_file_number + 1;
versions_->GetObsoleteFiles(&table_files, &blob_files, &manifest_files,
min_pending_output);
ASSERT_EQ(blob_files.size(), 1);
ASSERT_EQ(blob_files[0].GetBlobFileNumber(), blob_file_number);
}
// Make sure it's not returned a second time.
{
std::vector<ObsoleteFileInfo> table_files;
std::vector<ObsoleteBlobFileInfo> blob_files;
std::vector<std::string> manifest_files;
constexpr uint64_t min_pending_output = blob_file_number + 1;
versions_->GetObsoleteFiles(&table_files, &blob_files, &manifest_files,
min_pending_output);
ASSERT_TRUE(blob_files.empty());
}
}
TEST_F(VersionSetTest, WalEditsNotAppliedToVersion) {
NewDB();
constexpr uint64_t kNumWals = 5;
autovector<std::unique_ptr<VersionEdit>> edits;
// Add some WALs.
for (uint64_t i = 1; i <= kNumWals; i++) {
edits.emplace_back(new VersionEdit);
// WAL's size equals its log number.
edits.back()->AddWal(i, WalMetadata(i));
}
// Delete the first half of the WALs.
edits.emplace_back(new VersionEdit);
edits.back()->DeleteWalsBefore(kNumWals / 2 + 1);
autovector<Version*> versions;
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::ProcessManifestWrites:NewVersion",
[&](void* arg) { versions.push_back(reinterpret_cast<Version*>(arg)); });
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(LogAndApplyToDefaultCF(edits));
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
// Since the edits are all WAL edits, no version should be created.
ASSERT_EQ(versions.size(), 1);
ASSERT_EQ(versions[0], nullptr);
}
// Similar to WalEditsNotAppliedToVersion, but contains a non-WAL edit.
TEST_F(VersionSetTest, NonWalEditsAppliedToVersion) {
NewDB();
const std::string kDBId = "db_db";
constexpr uint64_t kNumWals = 5;
autovector<std::unique_ptr<VersionEdit>> edits;
// Add some WALs.
for (uint64_t i = 1; i <= kNumWals; i++) {
edits.emplace_back(new VersionEdit);
// WAL's size equals its log number.
edits.back()->AddWal(i, WalMetadata(i));
}
// Delete the first half of the WALs.
edits.emplace_back(new VersionEdit);
edits.back()->DeleteWalsBefore(kNumWals / 2 + 1);
edits.emplace_back(new VersionEdit);
edits.back()->SetDBId(kDBId);
autovector<Version*> versions;
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::ProcessManifestWrites:NewVersion",
[&](void* arg) { versions.push_back(reinterpret_cast<Version*>(arg)); });
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(LogAndApplyToDefaultCF(edits));
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
// Since the edits are all WAL edits, no version should be created.
ASSERT_EQ(versions.size(), 1);
ASSERT_NE(versions[0], nullptr);
}
TEST_F(VersionSetTest, WalAddition) {
NewDB();
constexpr WalNumber kLogNumber = 10;
constexpr uint64_t kSizeInBytes = 111;
// A WAL is just created.
{
VersionEdit edit;
edit.AddWal(kLogNumber);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_FALSE(wals.at(kLogNumber).HasSyncedSize());
}
// The WAL is synced for several times before closing.
{
for (uint64_t size_delta = 100; size_delta > 0; size_delta /= 2) {
uint64_t size = kSizeInBytes - size_delta;
WalMetadata wal(size);
VersionEdit edit;
edit.AddWal(kLogNumber, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_TRUE(wals.at(kLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kLogNumber).GetSyncedSizeInBytes(), size);
}
}
// The WAL is closed.
{
WalMetadata wal(kSizeInBytes);
VersionEdit edit;
edit.AddWal(kLogNumber, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_TRUE(wals.at(kLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kLogNumber).GetSyncedSizeInBytes(), kSizeInBytes);
}
// Recover a new VersionSet.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(new_versions->Recover(column_families_, /*read_only=*/false));
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_TRUE(wals.at(kLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kLogNumber).GetSyncedSizeInBytes(), kSizeInBytes);
}
}
TEST_F(VersionSetTest, WalCloseWithoutSync) {
NewDB();
constexpr WalNumber kLogNumber = 10;
constexpr uint64_t kSizeInBytes = 111;
constexpr uint64_t kSyncedSizeInBytes = kSizeInBytes / 2;
// A WAL is just created.
{
VersionEdit edit;
edit.AddWal(kLogNumber);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_FALSE(wals.at(kLogNumber).HasSyncedSize());
}
// The WAL is synced before closing.
{
WalMetadata wal(kSyncedSizeInBytes);
VersionEdit edit;
edit.AddWal(kLogNumber, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_TRUE(wals.at(kLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kLogNumber).GetSyncedSizeInBytes(), kSyncedSizeInBytes);
}
// A new WAL with larger log number is created,
// implicitly marking the current WAL closed.
{
VersionEdit edit;
edit.AddWal(kLogNumber + 1);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 2);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_TRUE(wals.at(kLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kLogNumber).GetSyncedSizeInBytes(), kSyncedSizeInBytes);
ASSERT_TRUE(wals.find(kLogNumber + 1) != wals.end());
ASSERT_FALSE(wals.at(kLogNumber + 1).HasSyncedSize());
}
// Recover a new VersionSet.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(new_versions->Recover(column_families_, false));
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 2);
ASSERT_TRUE(wals.find(kLogNumber) != wals.end());
ASSERT_TRUE(wals.at(kLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kLogNumber).GetSyncedSizeInBytes(), kSyncedSizeInBytes);
}
}
TEST_F(VersionSetTest, WalDeletion) {
NewDB();
constexpr WalNumber kClosedLogNumber = 10;
constexpr WalNumber kNonClosedLogNumber = 20;
constexpr uint64_t kSizeInBytes = 111;
// Add a non-closed and a closed WAL.
{
VersionEdit edit;
edit.AddWal(kClosedLogNumber, WalMetadata(kSizeInBytes));
edit.AddWal(kNonClosedLogNumber);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 2);
ASSERT_TRUE(wals.find(kNonClosedLogNumber) != wals.end());
ASSERT_TRUE(wals.find(kClosedLogNumber) != wals.end());
ASSERT_FALSE(wals.at(kNonClosedLogNumber).HasSyncedSize());
ASSERT_TRUE(wals.at(kClosedLogNumber).HasSyncedSize());
ASSERT_EQ(wals.at(kClosedLogNumber).GetSyncedSizeInBytes(), kSizeInBytes);
}
// Delete the closed WAL.
{
VersionEdit edit;
edit.DeleteWalsBefore(kNonClosedLogNumber);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
const auto& wals = versions_->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kNonClosedLogNumber) != wals.end());
ASSERT_FALSE(wals.at(kNonClosedLogNumber).HasSyncedSize());
}
// Recover a new VersionSet, only the non-closed WAL should show up.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(new_versions->Recover(column_families_, false));
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kNonClosedLogNumber) != wals.end());
ASSERT_FALSE(wals.at(kNonClosedLogNumber).HasSyncedSize());
}
// Force the creation of a new MANIFEST file,
// only the non-closed WAL should be written to the new MANIFEST.
{
std::vector<WalAddition> wal_additions;
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::WriteCurrentStateToManifest:SaveWal", [&](void* arg) {
VersionEdit* edit = reinterpret_cast<VersionEdit*>(arg);
ASSERT_TRUE(edit->IsWalAddition());
for (auto& addition : edit->GetWalAdditions()) {
wal_additions.push_back(addition);
}
});
SyncPoint::GetInstance()->EnableProcessing();
CreateNewManifest();
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
ASSERT_EQ(wal_additions.size(), 1);
ASSERT_EQ(wal_additions[0].GetLogNumber(), kNonClosedLogNumber);
ASSERT_FALSE(wal_additions[0].GetMetadata().HasSyncedSize());
}
// Recover from the new MANIFEST, only the non-closed WAL should show up.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(new_versions->Recover(column_families_, false));
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kNonClosedLogNumber) != wals.end());
ASSERT_FALSE(wals.at(kNonClosedLogNumber).HasSyncedSize());
}
}
TEST_F(VersionSetTest, WalCreateTwice) {
NewDB();
constexpr WalNumber kLogNumber = 10;
VersionEdit edit;
edit.AddWal(kLogNumber);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
Status s = LogAndApplyToDefaultCF(edit);
ASSERT_TRUE(s.IsCorruption());
ASSERT_TRUE(s.ToString().find("WAL 10 is created more than once") !=
std::string::npos)
<< s.ToString();
}
TEST_F(VersionSetTest, WalCreateAfterClose) {
NewDB();
constexpr WalNumber kLogNumber = 10;
constexpr uint64_t kSizeInBytes = 111;
{
// Add a closed WAL.
VersionEdit edit;
edit.AddWal(kLogNumber);
WalMetadata wal(kSizeInBytes);
edit.AddWal(kLogNumber, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
}
{
// Create the same WAL again.
VersionEdit edit;
edit.AddWal(kLogNumber);
Status s = LogAndApplyToDefaultCF(edit);
ASSERT_TRUE(s.IsCorruption());
ASSERT_TRUE(s.ToString().find("WAL 10 is created more than once") !=
std::string::npos)
<< s.ToString();
}
}
TEST_F(VersionSetTest, AddWalWithSmallerSize) {
NewDB();
assert(versions_);
constexpr WalNumber kLogNumber = 10;
constexpr uint64_t kSizeInBytes = 111;
{
// Add a closed WAL.
VersionEdit edit;
WalMetadata wal(kSizeInBytes);
edit.AddWal(kLogNumber, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
}
// Copy for future comparison.
const std::map<WalNumber, WalMetadata> wals1 =
versions_->GetWalSet().GetWals();
{
// Add the same WAL with smaller synced size.
VersionEdit edit;
WalMetadata wal(kSizeInBytes / 2);
edit.AddWal(kLogNumber, wal);
Status s = LogAndApplyToDefaultCF(edit);
ASSERT_OK(s);
}
const std::map<WalNumber, WalMetadata> wals2 =
versions_->GetWalSet().GetWals();
ASSERT_EQ(wals1, wals2);
}
TEST_F(VersionSetTest, DeleteWalsBeforeNonExistingWalNumber) {
NewDB();
constexpr WalNumber kLogNumber0 = 10;
constexpr WalNumber kLogNumber1 = 20;
constexpr WalNumber kNonExistingNumber = 15;
constexpr uint64_t kSizeInBytes = 111;
{
// Add closed WALs.
VersionEdit edit;
WalMetadata wal(kSizeInBytes);
edit.AddWal(kLogNumber0, wal);
edit.AddWal(kLogNumber1, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
}
{
// Delete WALs before a non-existing WAL.
VersionEdit edit;
edit.DeleteWalsBefore(kNonExistingNumber);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
}
// Recover a new VersionSet, WAL0 is deleted, WAL1 is not.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(new_versions->Recover(column_families_, false));
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kLogNumber1) != wals.end());
}
}
TEST_F(VersionSetTest, DeleteAllWals) {
NewDB();
constexpr WalNumber kMaxLogNumber = 10;
constexpr uint64_t kSizeInBytes = 111;
{
// Add a closed WAL.
VersionEdit edit;
WalMetadata wal(kSizeInBytes);
edit.AddWal(kMaxLogNumber, wal);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
}
{
VersionEdit edit;
edit.DeleteWalsBefore(kMaxLogNumber + 10);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
}
// Recover a new VersionSet, all WALs are deleted.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(new_versions->Recover(column_families_, false));
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 0);
}
}
TEST_F(VersionSetTest, AtomicGroupWithWalEdits) {
NewDB();
constexpr int kAtomicGroupSize = 7;
constexpr uint64_t kNumWals = 5;
const std::string kDBId = "db_db";
int remaining = kAtomicGroupSize;
autovector<std::unique_ptr<VersionEdit>> edits;
// Add 5 WALs.
for (uint64_t i = 1; i <= kNumWals; i++) {
edits.emplace_back(new VersionEdit);
// WAL's size equals its log number.
edits.back()->AddWal(i, WalMetadata(i));
edits.back()->MarkAtomicGroup(--remaining);
}
// One edit with the min log number set.
edits.emplace_back(new VersionEdit);
edits.back()->SetDBId(kDBId);
edits.back()->MarkAtomicGroup(--remaining);
// Delete the first added 4 WALs.
edits.emplace_back(new VersionEdit);
edits.back()->DeleteWalsBefore(kNumWals);
edits.back()->MarkAtomicGroup(--remaining);
ASSERT_EQ(remaining, 0);
ASSERT_OK(LogAndApplyToDefaultCF(edits));
// Recover a new VersionSet, the min log number and the last WAL should be
// kept.
{
std::unique_ptr<VersionSet> new_versions(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
std::string db_id;
ASSERT_OK(
new_versions->Recover(column_families_, /*read_only=*/false, &db_id));
ASSERT_EQ(db_id, kDBId);
const auto& wals = new_versions->GetWalSet().GetWals();
ASSERT_EQ(wals.size(), 1);
ASSERT_TRUE(wals.find(kNumWals) != wals.end());
ASSERT_TRUE(wals.at(kNumWals).HasSyncedSize());
ASSERT_EQ(wals.at(kNumWals).GetSyncedSizeInBytes(), kNumWals);
}
}
TEST_F(VersionStorageInfoTest, AddRangeDeletionCompensatedFileSize) {
// Tests that compensated range deletion size is added to compensated file
// size.
Add(4, 100U, "1", "2", 100U, kInvalidBlobFileNumber, 1000U);
UpdateVersionStorageInfo();
auto meta = vstorage_.GetFileMetaDataByNumber(100U);
ASSERT_EQ(meta->compensated_file_size, 100U + 1000U);
}
class VersionSetWithTimestampTest : public VersionSetTest {
public:
static const std::string kNewCfName;
explicit VersionSetWithTimestampTest() : VersionSetTest() {}
void SetUp() override {
NewDB();
Options options;
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
cfd_ = CreateColumnFamily(kNewCfName, options);
EXPECT_NE(nullptr, cfd_);
EXPECT_NE(nullptr, cfd_->GetLatestMutableCFOptions());
column_families_.emplace_back(kNewCfName, options);
}
void TearDown() override {
for (auto* e : edits_) {
delete e;
}
edits_.clear();
}
void GenVersionEditsToSetFullHistoryTsLow(
const std::vector<uint64_t>& ts_lbs) {
for (const auto ts_lb : ts_lbs) {
VersionEdit* edit = new VersionEdit;
edit->SetColumnFamily(cfd_->GetID());
std::string ts_str = test::EncodeInt(ts_lb);
edit->SetFullHistoryTsLow(ts_str);
edits_.emplace_back(edit);
}
}
void VerifyFullHistoryTsLow(uint64_t expected_ts_low) {
std::unique_ptr<VersionSet> vset(
new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(),
&write_buffer_manager_, &write_controller_,
/*block_cache_tracer=*/nullptr, /*io_tracer=*/nullptr,
/*db_id*/ "", /*db_session_id*/ ""));
ASSERT_OK(vset->Recover(column_families_, /*read_only=*/false,
/*db_id=*/nullptr));
for (auto* cfd : *(vset->GetColumnFamilySet())) {
ASSERT_NE(nullptr, cfd);
if (cfd->GetName() == kNewCfName) {
ASSERT_EQ(test::EncodeInt(expected_ts_low), cfd->GetFullHistoryTsLow());
} else {
ASSERT_TRUE(cfd->GetFullHistoryTsLow().empty());
}
}
}
void DoTest(const std::vector<uint64_t>& ts_lbs) {
if (ts_lbs.empty()) {
return;
}
GenVersionEditsToSetFullHistoryTsLow(ts_lbs);
Status s;
mutex_.Lock();
s = versions_->LogAndApply(cfd_, *(cfd_->GetLatestMutableCFOptions()),
read_options_, edits_, &mutex_, nullptr);
mutex_.Unlock();
ASSERT_OK(s);
VerifyFullHistoryTsLow(*std::max_element(ts_lbs.begin(), ts_lbs.end()));
}
protected:
ColumnFamilyData* cfd_{nullptr};
// edits_ must contain and own pointers to heap-alloc VersionEdit objects.
autovector<VersionEdit*> edits_;
private:
const ReadOptions read_options_;
};
const std::string VersionSetWithTimestampTest::kNewCfName("new_cf");
TEST_F(VersionSetWithTimestampTest, SetFullHistoryTsLbOnce) {
constexpr uint64_t kTsLow = 100;
DoTest({kTsLow});
}
// Simulate the application increasing full_history_ts_low.
TEST_F(VersionSetWithTimestampTest, IncreaseFullHistoryTsLb) {
const std::vector<uint64_t> ts_lbs = {100, 101, 102, 103};
DoTest(ts_lbs);
}
// Simulate the application trying to decrease full_history_ts_low
// unsuccessfully. If the application calls public API sequentially to
// decrease the lower bound ts, RocksDB will return an InvalidArgument
// status before involving VersionSet. Only when multiple threads trying
// to decrease the lower bound concurrently will this case ever happen. Even
// so, the lower bound cannot be decreased. The application will be notified
// via return value of the API.
TEST_F(VersionSetWithTimestampTest, TryDecreaseFullHistoryTsLb) {
const std::vector<uint64_t> ts_lbs = {103, 102, 101, 100};
DoTest(ts_lbs);
}
class VersionSetAtomicGroupTest : public VersionSetTestBase,
public testing::Test {
public:
VersionSetAtomicGroupTest()
: VersionSetTestBase("version_set_atomic_group_test") {}
void SetUp() override {
PrepareManifest(&column_families_, &last_seqno_, &log_writer_);
SetupTestSyncPoints();
}
void SetupValidAtomicGroup(int atomic_group_size) {
edits_.resize(atomic_group_size);
int remaining = atomic_group_size;
for (size_t i = 0; i != edits_.size(); ++i) {
edits_[i].SetLogNumber(0);
edits_[i].SetNextFile(2);
edits_[i].MarkAtomicGroup(--remaining);
edits_[i].SetLastSequence(last_seqno_++);
}
ASSERT_OK(SetCurrentFile(fs_.get(), dbname_, 1, nullptr));
}
void SetupIncompleteTrailingAtomicGroup(int atomic_group_size) {
edits_.resize(atomic_group_size);
int remaining = atomic_group_size;
for (size_t i = 0; i != edits_.size(); ++i) {
edits_[i].SetLogNumber(0);
edits_[i].SetNextFile(2);
edits_[i].MarkAtomicGroup(--remaining);
edits_[i].SetLastSequence(last_seqno_++);
}
ASSERT_OK(SetCurrentFile(fs_.get(), dbname_, 1, nullptr));
}
void SetupCorruptedAtomicGroup(int atomic_group_size) {
edits_.resize(atomic_group_size);
int remaining = atomic_group_size;
for (size_t i = 0; i != edits_.size(); ++i) {
edits_[i].SetLogNumber(0);
edits_[i].SetNextFile(2);
if (i != ((size_t)atomic_group_size / 2)) {
edits_[i].MarkAtomicGroup(--remaining);
}
edits_[i].SetLastSequence(last_seqno_++);
}
ASSERT_OK(SetCurrentFile(fs_.get(), dbname_, 1, nullptr));
}
void SetupIncorrectAtomicGroup(int atomic_group_size) {
edits_.resize(atomic_group_size);
int remaining = atomic_group_size;
for (size_t i = 0; i != edits_.size(); ++i) {
edits_[i].SetLogNumber(0);
edits_[i].SetNextFile(2);
if (i != 1) {
edits_[i].MarkAtomicGroup(--remaining);
} else {
edits_[i].MarkAtomicGroup(remaining--);
}
edits_[i].SetLastSequence(last_seqno_++);
}
ASSERT_OK(SetCurrentFile(fs_.get(), dbname_, 1, nullptr));
}
void SetupTestSyncPoints() {
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"AtomicGroupReadBuffer::AddEdit:FirstInAtomicGroup", [&](void* arg) {
VersionEdit* e = reinterpret_cast<VersionEdit*>(arg);
EXPECT_EQ(edits_.front().DebugString(),
e->DebugString()); // compare based on value
first_in_atomic_group_ = true;
});
SyncPoint::GetInstance()->SetCallBack(
"AtomicGroupReadBuffer::AddEdit:LastInAtomicGroup", [&](void* arg) {
VersionEdit* e = reinterpret_cast<VersionEdit*>(arg);
EXPECT_EQ(edits_.back().DebugString(),
e->DebugString()); // compare based on value
EXPECT_TRUE(first_in_atomic_group_);
last_in_atomic_group_ = true;
});
SyncPoint::GetInstance()->SetCallBack(
"VersionEditHandlerBase::Iterate:Finish", [&](void* arg) {
num_recovered_edits_ = *reinterpret_cast<size_t*>(arg);
});
SyncPoint::GetInstance()->SetCallBack(
"AtomicGroupReadBuffer::AddEdit:AtomicGroup",
[&](void* /* arg */) { ++num_edits_in_atomic_group_; });
SyncPoint::GetInstance()->SetCallBack(
"AtomicGroupReadBuffer::AddEdit:AtomicGroupMixedWithNormalEdits",
[&](void* arg) {
corrupted_edit_ = *reinterpret_cast<VersionEdit*>(arg);
});
SyncPoint::GetInstance()->SetCallBack(
"AtomicGroupReadBuffer::AddEdit:IncorrectAtomicGroupSize",
[&](void* arg) {
edit_with_incorrect_group_size_ =
*reinterpret_cast<VersionEdit*>(arg);
});
SyncPoint::GetInstance()->EnableProcessing();
}
void AddNewEditsToLog(int num_edits) {
for (int i = 0; i < num_edits; i++) {
std::string record;
edits_[i].EncodeTo(&record);
ASSERT_OK(log_writer_->AddRecord(record));
}
}
void TearDown() override {
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
log_writer_.reset();
}
protected:
std::vector<ColumnFamilyDescriptor> column_families_;
SequenceNumber last_seqno_;
std::vector<VersionEdit> edits_;
bool first_in_atomic_group_ = false;
bool last_in_atomic_group_ = false;
int num_edits_in_atomic_group_ = 0;
size_t num_recovered_edits_ = 0;
VersionEdit corrupted_edit_;
VersionEdit edit_with_incorrect_group_size_;
std::unique_ptr<log::Writer> log_writer_;
};
TEST_F(VersionSetAtomicGroupTest, HandleValidAtomicGroupWithVersionSetRecover) {
const int kAtomicGroupSize = 3;
SetupValidAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kAtomicGroupSize);
EXPECT_OK(versions_->Recover(column_families_, false));
EXPECT_EQ(column_families_.size(),
versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_TRUE(first_in_atomic_group_);
EXPECT_TRUE(last_in_atomic_group_);
EXPECT_EQ(num_initial_edits_ + kAtomicGroupSize, num_recovered_edits_);
}
TEST_F(VersionSetAtomicGroupTest,
HandleValidAtomicGroupWithReactiveVersionSetRecover) {
const int kAtomicGroupSize = 3;
SetupValidAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kAtomicGroupSize);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_OK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
EXPECT_EQ(column_families_.size(),
reactive_versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_TRUE(first_in_atomic_group_);
EXPECT_TRUE(last_in_atomic_group_);
// The recover should clean up the replay buffer.
EXPECT_TRUE(reactive_versions_->TEST_read_edits_in_atomic_group() == 0);
EXPECT_TRUE(reactive_versions_->replay_buffer().size() == 0);
EXPECT_EQ(num_initial_edits_ + kAtomicGroupSize, num_recovered_edits_);
}
TEST_F(VersionSetAtomicGroupTest,
HandleValidAtomicGroupWithReactiveVersionSetReadAndApply) {
const int kAtomicGroupSize = 3;
SetupValidAtomicGroup(kAtomicGroupSize);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_OK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
EXPECT_EQ(num_initial_edits_, num_recovered_edits_);
AddNewEditsToLog(kAtomicGroupSize);
InstrumentedMutex mu;
std::unordered_set<ColumnFamilyData*> cfds_changed;
mu.Lock();
EXPECT_OK(reactive_versions_->ReadAndApply(
&mu, &manifest_reader, manifest_reader_status.get(), &cfds_changed));
mu.Unlock();
EXPECT_TRUE(first_in_atomic_group_);
EXPECT_TRUE(last_in_atomic_group_);
// The recover should clean up the replay buffer.
EXPECT_TRUE(reactive_versions_->TEST_read_edits_in_atomic_group() == 0);
EXPECT_TRUE(reactive_versions_->replay_buffer().size() == 0);
EXPECT_EQ(kAtomicGroupSize, num_recovered_edits_);
}
TEST_F(VersionSetAtomicGroupTest,
HandleIncompleteTrailingAtomicGroupWithVersionSetRecover) {
const int kAtomicGroupSize = 4;
const int kNumberOfPersistedVersionEdits = kAtomicGroupSize - 1;
SetupIncompleteTrailingAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kNumberOfPersistedVersionEdits);
EXPECT_OK(versions_->Recover(column_families_, false));
EXPECT_EQ(column_families_.size(),
versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_TRUE(first_in_atomic_group_);
EXPECT_FALSE(last_in_atomic_group_);
EXPECT_EQ(kNumberOfPersistedVersionEdits, num_edits_in_atomic_group_);
EXPECT_EQ(num_initial_edits_, num_recovered_edits_);
}
TEST_F(VersionSetAtomicGroupTest,
HandleIncompleteTrailingAtomicGroupWithReactiveVersionSetRecover) {
const int kAtomicGroupSize = 4;
const int kNumberOfPersistedVersionEdits = kAtomicGroupSize - 1;
SetupIncompleteTrailingAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kNumberOfPersistedVersionEdits);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_OK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
EXPECT_EQ(column_families_.size(),
reactive_versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_TRUE(first_in_atomic_group_);
EXPECT_FALSE(last_in_atomic_group_);
EXPECT_EQ(kNumberOfPersistedVersionEdits, num_edits_in_atomic_group_);
// Reactive version set should store the edits in the replay buffer.
EXPECT_TRUE(reactive_versions_->TEST_read_edits_in_atomic_group() ==
kNumberOfPersistedVersionEdits);
EXPECT_TRUE(reactive_versions_->replay_buffer().size() == kAtomicGroupSize);
// Write the last record. The reactive version set should now apply all
// edits.
std::string last_record;
edits_[kAtomicGroupSize - 1].EncodeTo(&last_record);
EXPECT_OK(log_writer_->AddRecord(last_record));
InstrumentedMutex mu;
std::unordered_set<ColumnFamilyData*> cfds_changed;
mu.Lock();
EXPECT_OK(reactive_versions_->ReadAndApply(
&mu, &manifest_reader, manifest_reader_status.get(), &cfds_changed));
mu.Unlock();
// Reactive version set should be empty now.
EXPECT_TRUE(reactive_versions_->TEST_read_edits_in_atomic_group() == 0);
EXPECT_TRUE(reactive_versions_->replay_buffer().size() == 0);
EXPECT_EQ(num_initial_edits_, num_recovered_edits_);
}
TEST_F(VersionSetAtomicGroupTest,
HandleIncompleteTrailingAtomicGroupWithReactiveVersionSetReadAndApply) {
const int kAtomicGroupSize = 4;
const int kNumberOfPersistedVersionEdits = kAtomicGroupSize - 1;
SetupIncompleteTrailingAtomicGroup(kAtomicGroupSize);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
// No edits in an atomic group.
EXPECT_OK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
EXPECT_EQ(column_families_.size(),
reactive_versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_EQ(num_initial_edits_, num_recovered_edits_);
// Write a few edits in an atomic group.
AddNewEditsToLog(kNumberOfPersistedVersionEdits);
InstrumentedMutex mu;
std::unordered_set<ColumnFamilyData*> cfds_changed;
mu.Lock();
EXPECT_OK(reactive_versions_->ReadAndApply(
&mu, &manifest_reader, manifest_reader_status.get(), &cfds_changed));
mu.Unlock();
EXPECT_TRUE(first_in_atomic_group_);
EXPECT_FALSE(last_in_atomic_group_);
EXPECT_EQ(kNumberOfPersistedVersionEdits, num_edits_in_atomic_group_);
// Reactive version set should store the edits in the replay buffer.
EXPECT_TRUE(reactive_versions_->TEST_read_edits_in_atomic_group() ==
kNumberOfPersistedVersionEdits);
EXPECT_TRUE(reactive_versions_->replay_buffer().size() == kAtomicGroupSize);
}
TEST_F(VersionSetAtomicGroupTest,
HandleCorruptedAtomicGroupWithVersionSetRecover) {
const int kAtomicGroupSize = 4;
SetupCorruptedAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kAtomicGroupSize);
EXPECT_NOK(versions_->Recover(column_families_, false));
EXPECT_EQ(column_families_.size(),
versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_EQ(edits_[kAtomicGroupSize / 2].DebugString(),
corrupted_edit_.DebugString());
}
TEST_F(VersionSetAtomicGroupTest,
HandleCorruptedAtomicGroupWithReactiveVersionSetRecover) {
const int kAtomicGroupSize = 4;
SetupCorruptedAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kAtomicGroupSize);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_NOK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
EXPECT_EQ(column_families_.size(),
reactive_versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_EQ(edits_[kAtomicGroupSize / 2].DebugString(),
corrupted_edit_.DebugString());
}
TEST_F(VersionSetAtomicGroupTest,
HandleCorruptedAtomicGroupWithReactiveVersionSetReadAndApply) {
const int kAtomicGroupSize = 4;
SetupCorruptedAtomicGroup(kAtomicGroupSize);
InstrumentedMutex mu;
std::unordered_set<ColumnFamilyData*> cfds_changed;
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_OK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
// Write the corrupted edits.
AddNewEditsToLog(kAtomicGroupSize);
mu.Lock();
EXPECT_NOK(reactive_versions_->ReadAndApply(
&mu, &manifest_reader, manifest_reader_status.get(), &cfds_changed));
mu.Unlock();
EXPECT_EQ(edits_[kAtomicGroupSize / 2].DebugString(),
corrupted_edit_.DebugString());
}
TEST_F(VersionSetAtomicGroupTest,
HandleIncorrectAtomicGroupSizeWithVersionSetRecover) {
const int kAtomicGroupSize = 4;
SetupIncorrectAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kAtomicGroupSize);
EXPECT_NOK(versions_->Recover(column_families_, false));
EXPECT_EQ(column_families_.size(),
versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_EQ(edits_[1].DebugString(),
edit_with_incorrect_group_size_.DebugString());
}
TEST_F(VersionSetAtomicGroupTest,
HandleIncorrectAtomicGroupSizeWithReactiveVersionSetRecover) {
const int kAtomicGroupSize = 4;
SetupIncorrectAtomicGroup(kAtomicGroupSize);
AddNewEditsToLog(kAtomicGroupSize);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_NOK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
EXPECT_EQ(column_families_.size(),
reactive_versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
EXPECT_EQ(edits_[1].DebugString(),
edit_with_incorrect_group_size_.DebugString());
}
TEST_F(VersionSetAtomicGroupTest,
HandleIncorrectAtomicGroupSizeWithReactiveVersionSetReadAndApply) {
const int kAtomicGroupSize = 4;
SetupIncorrectAtomicGroup(kAtomicGroupSize);
InstrumentedMutex mu;
std::unordered_set<ColumnFamilyData*> cfds_changed;
std::unique_ptr<log::FragmentBufferedReader> manifest_reader;
std::unique_ptr<log::Reader::Reporter> manifest_reporter;
std::unique_ptr<Status> manifest_reader_status;
EXPECT_OK(reactive_versions_->Recover(column_families_, &manifest_reader,
&manifest_reporter,
&manifest_reader_status));
AddNewEditsToLog(kAtomicGroupSize);
mu.Lock();
EXPECT_NOK(reactive_versions_->ReadAndApply(
&mu, &manifest_reader, manifest_reader_status.get(), &cfds_changed));
mu.Unlock();
EXPECT_EQ(edits_[1].DebugString(),
edit_with_incorrect_group_size_.DebugString());
}
class VersionSetTestDropOneCF : public VersionSetTestBase,
public testing::TestWithParam<std::string> {
public:
VersionSetTestDropOneCF()
: VersionSetTestBase("version_set_test_drop_one_cf") {}
};
// This test simulates the following execution sequence
// Time thread1 bg_flush_thr
// | Prepare version edits (e1,e2,e3) for atomic
// | flush cf1, cf2, cf3
// | Enqueue e to drop cfi
// | to manifest_writers_
// | Enqueue (e1,e2,e3) to manifest_writers_
// |
// | Apply e,
// | cfi.IsDropped() is true
// | Apply (e1,e2,e3),
// | since cfi.IsDropped() == true, we need to
// | drop ei and write the rest to MANIFEST.
// V
//
// Repeat the test for i = 1, 2, 3 to simulate dropping the first, middle and
// last column family in an atomic group.
TEST_P(VersionSetTestDropOneCF, HandleDroppedColumnFamilyInAtomicGroup) {
const ReadOptions read_options;
std::vector<ColumnFamilyDescriptor> column_families;
SequenceNumber last_seqno;
std::unique_ptr<log::Writer> log_writer;
PrepareManifest(&column_families, &last_seqno, &log_writer);
Status s = SetCurrentFile(fs_.get(), dbname_, 1, nullptr);
ASSERT_OK(s);
EXPECT_OK(versions_->Recover(column_families, false /* read_only */));
EXPECT_EQ(column_families.size(),
versions_->GetColumnFamilySet()->NumberOfColumnFamilies());
const int kAtomicGroupSize = 3;
const std::vector<std::string> non_default_cf_names = {
kColumnFamilyName1, kColumnFamilyName2, kColumnFamilyName3};
// Drop one column family
VersionEdit drop_cf_edit;
drop_cf_edit.DropColumnFamily();
const std::string cf_to_drop_name(GetParam());
auto cfd_to_drop =
versions_->GetColumnFamilySet()->GetColumnFamily(cf_to_drop_name);
ASSERT_NE(nullptr, cfd_to_drop);
// Increase its refcount because cfd_to_drop is used later, and we need to
// prevent it from being deleted.
cfd_to_drop->Ref();
drop_cf_edit.SetColumnFamily(cfd_to_drop->GetID());
mutex_.Lock();
s = versions_->LogAndApply(cfd_to_drop,
*cfd_to_drop->GetLatestMutableCFOptions(),
read_options, &drop_cf_edit, &mutex_, nullptr);
mutex_.Unlock();
ASSERT_OK(s);
std::vector<VersionEdit> edits(kAtomicGroupSize);
uint32_t remaining = kAtomicGroupSize;
size_t i = 0;
autovector<ColumnFamilyData*> cfds;
autovector<const MutableCFOptions*> mutable_cf_options_list;
autovector<autovector<VersionEdit*>> edit_lists;
for (const auto& cf_name : non_default_cf_names) {
auto cfd = (cf_name != cf_to_drop_name)
? versions_->GetColumnFamilySet()->GetColumnFamily(cf_name)
: cfd_to_drop;
ASSERT_NE(nullptr, cfd);
cfds.push_back(cfd);
mutable_cf_options_list.emplace_back(cfd->GetLatestMutableCFOptions());
edits[i].SetColumnFamily(cfd->GetID());
edits[i].SetLogNumber(0);
edits[i].SetNextFile(2);
edits[i].MarkAtomicGroup(--remaining);
edits[i].SetLastSequence(last_seqno++);
autovector<VersionEdit*> tmp_edits;
tmp_edits.push_back(&edits[i]);
edit_lists.emplace_back(tmp_edits);
++i;
}
int called = 0;
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::ProcessManifestWrites:CheckOneAtomicGroup", [&](void* arg) {
std::vector<VersionEdit*>* tmp_edits =
reinterpret_cast<std::vector<VersionEdit*>*>(arg);
EXPECT_EQ(kAtomicGroupSize - 1, tmp_edits->size());
for (const auto e : *tmp_edits) {
bool found = false;
for (const auto& e2 : edits) {
if (&e2 == e) {
found = true;
break;
}
}
ASSERT_TRUE(found);
}
++called;
});
SyncPoint::GetInstance()->EnableProcessing();
mutex_.Lock();
s = versions_->LogAndApply(cfds, mutable_cf_options_list, read_options,
edit_lists, &mutex_, nullptr);
mutex_.Unlock();
ASSERT_OK(s);
ASSERT_EQ(1, called);
cfd_to_drop->UnrefAndTryDelete();
}
INSTANTIATE_TEST_CASE_P(
AtomicGroup, VersionSetTestDropOneCF,
testing::Values(VersionSetTestBase::kColumnFamilyName1,
VersionSetTestBase::kColumnFamilyName2,
VersionSetTestBase::kColumnFamilyName3));
class EmptyDefaultCfNewManifest : public VersionSetTestBase,
public testing::Test {
public:
EmptyDefaultCfNewManifest() : VersionSetTestBase("version_set_new_db_test") {}
// Emulate DBImpl::NewDB()
void PrepareManifest(std::vector<ColumnFamilyDescriptor>* /*column_families*/,
SequenceNumber* /*last_seqno*/,
std::unique_ptr<log::Writer>* log_writer) override {
assert(log_writer != nullptr);
VersionEdit new_db;
new_db.SetLogNumber(0);
const std::string manifest_path = DescriptorFileName(dbname_, 1);
const auto& fs = env_->GetFileSystem();
std::unique_ptr<WritableFileWriter> file_writer;
Status s = WritableFileWriter::Create(
fs, manifest_path, fs->OptimizeForManifestWrite(env_options_),
&file_writer, nullptr);
ASSERT_OK(s);
log_writer->reset(new log::Writer(std::move(file_writer), 0, true));
std::string record;
ASSERT_TRUE(new_db.EncodeTo(&record));
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
// Create new column family
VersionEdit new_cf;
new_cf.AddColumnFamily(VersionSetTestBase::kColumnFamilyName1);
new_cf.SetColumnFamily(1);
new_cf.SetLastSequence(2);
new_cf.SetNextFile(2);
record.clear();
ASSERT_TRUE(new_cf.EncodeTo(&record));
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
}
protected:
bool write_dbid_to_manifest_ = false;
std::unique_ptr<log::Writer> log_writer_;
};
// Create db, create column family. Cf creation will switch to a new MANIFEST.
// Then reopen db, trying to recover.
TEST_F(EmptyDefaultCfNewManifest, Recover) {
PrepareManifest(nullptr, nullptr, &log_writer_);
log_writer_.reset();
Status s =
SetCurrentFile(fs_.get(), dbname_, 1, /*directory_to_fsync=*/nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.emplace_back(kDefaultColumnFamilyName, cf_options_);
column_families.emplace_back(VersionSetTestBase::kColumnFamilyName1,
cf_options_);
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(
manifest_path, column_families, false, &db_id, &has_missing_table_file);
ASSERT_OK(s);
ASSERT_FALSE(has_missing_table_file);
}
class VersionSetTestEmptyDb
: public VersionSetTestBase,
public testing::TestWithParam<
std::tuple<bool, bool, std::vector<std::string>>> {
public:
static const std::string kUnknownColumnFamilyName;
VersionSetTestEmptyDb() : VersionSetTestBase("version_set_test_empty_db") {}
protected:
void PrepareManifest(std::vector<ColumnFamilyDescriptor>* /*column_families*/,
SequenceNumber* /*last_seqno*/,
std::unique_ptr<log::Writer>* log_writer) override {
assert(nullptr != log_writer);
VersionEdit new_db;
if (db_options_.write_dbid_to_manifest) {
ASSERT_OK(SetIdentityFile(env_, dbname_));
DBOptions tmp_db_options;
tmp_db_options.env = env_;
std::unique_ptr<DBImpl> impl(new DBImpl(tmp_db_options, dbname_));
std::string db_id;
ASSERT_OK(impl->GetDbIdentityFromIdentityFile(&db_id));
new_db.SetDBId(db_id);
}
const std::string manifest_path = DescriptorFileName(dbname_, 1);
const auto& fs = env_->GetFileSystem();
std::unique_ptr<WritableFileWriter> file_writer;
Status s = WritableFileWriter::Create(
fs, manifest_path, fs->OptimizeForManifestWrite(env_options_),
&file_writer, nullptr);
ASSERT_OK(s);
{
log_writer->reset(new log::Writer(std::move(file_writer), 0, false));
std::string record;
new_db.EncodeTo(&record);
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
}
}
std::unique_ptr<log::Writer> log_writer_;
};
const std::string VersionSetTestEmptyDb::kUnknownColumnFamilyName = "unknown";
TEST_P(VersionSetTestEmptyDb, OpenFromIncompleteManifest0) {
db_options_.write_dbid_to_manifest = std::get<0>(GetParam());
PrepareManifest(nullptr, nullptr, &log_writer_);
log_writer_.reset();
Status s =
SetCurrentFile(fs_.get(), dbname_, 1, /*directory_to_fsync=*/nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
bool read_only = std::get<1>(GetParam());
const std::vector<std::string> cf_names = std::get<2>(GetParam());
std::vector<ColumnFamilyDescriptor> column_families;
for (const auto& cf_name : cf_names) {
column_families.emplace_back(cf_name, cf_options_);
}
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families,
read_only, &db_id,
&has_missing_table_file);
auto iter =
std::find(cf_names.begin(), cf_names.end(), kDefaultColumnFamilyName);
if (iter == cf_names.end()) {
ASSERT_TRUE(s.IsInvalidArgument());
} else {
ASSERT_NE(s.ToString().find(manifest_path), std::string::npos);
ASSERT_TRUE(s.IsCorruption());
}
}
TEST_P(VersionSetTestEmptyDb, OpenFromIncompleteManifest1) {
db_options_.write_dbid_to_manifest = std::get<0>(GetParam());
PrepareManifest(nullptr, nullptr, &log_writer_);
// Only a subset of column families in the MANIFEST.
VersionEdit new_cf1;
new_cf1.AddColumnFamily(VersionSetTestBase::kColumnFamilyName1);
new_cf1.SetColumnFamily(1);
Status s;
{
std::string record;
new_cf1.EncodeTo(&record);
s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
log_writer_.reset();
s = SetCurrentFile(fs_.get(), dbname_, 1, /*directory_to_fsync=*/nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
bool read_only = std::get<1>(GetParam());
const std::vector<std::string>& cf_names = std::get<2>(GetParam());
std::vector<ColumnFamilyDescriptor> column_families;
for (const auto& cf_name : cf_names) {
column_families.emplace_back(cf_name, cf_options_);
}
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families,
read_only, &db_id,
&has_missing_table_file);
auto iter =
std::find(cf_names.begin(), cf_names.end(), kDefaultColumnFamilyName);
if (iter == cf_names.end()) {
ASSERT_TRUE(s.IsInvalidArgument());
} else {
ASSERT_NE(s.ToString().find(manifest_path), std::string::npos);
ASSERT_TRUE(s.IsCorruption());
}
}
TEST_P(VersionSetTestEmptyDb, OpenFromInCompleteManifest2) {
db_options_.write_dbid_to_manifest = std::get<0>(GetParam());
PrepareManifest(nullptr, nullptr, &log_writer_);
// Write all column families but no log_number, next_file_number and
// last_sequence.
const std::vector<std::string> all_cf_names = {
kDefaultColumnFamilyName, kColumnFamilyName1, kColumnFamilyName2,
kColumnFamilyName3};
uint32_t cf_id = 1;
Status s;
for (size_t i = 1; i != all_cf_names.size(); ++i) {
VersionEdit new_cf;
new_cf.AddColumnFamily(all_cf_names[i]);
new_cf.SetColumnFamily(cf_id++);
std::string record;
ASSERT_TRUE(new_cf.EncodeTo(&record));
s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
log_writer_.reset();
s = SetCurrentFile(fs_.get(), dbname_, 1, /*directory_to_fsync=*/nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
bool read_only = std::get<1>(GetParam());
const std::vector<std::string>& cf_names = std::get<2>(GetParam());
std::vector<ColumnFamilyDescriptor> column_families;
for (const auto& cf_name : cf_names) {
column_families.emplace_back(cf_name, cf_options_);
}
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families,
read_only, &db_id,
&has_missing_table_file);
auto iter =
std::find(cf_names.begin(), cf_names.end(), kDefaultColumnFamilyName);
if (iter == cf_names.end()) {
ASSERT_TRUE(s.IsInvalidArgument());
} else {
ASSERT_NE(s.ToString().find(manifest_path), std::string::npos);
ASSERT_TRUE(s.IsCorruption());
}
}
TEST_P(VersionSetTestEmptyDb, OpenManifestWithUnknownCF) {
db_options_.write_dbid_to_manifest = std::get<0>(GetParam());
PrepareManifest(nullptr, nullptr, &log_writer_);
// Write all column families but no log_number, next_file_number and
// last_sequence.
const std::vector<std::string> all_cf_names = {
kDefaultColumnFamilyName, kColumnFamilyName1, kColumnFamilyName2,
kColumnFamilyName3};
uint32_t cf_id = 1;
Status s;
for (size_t i = 1; i != all_cf_names.size(); ++i) {
VersionEdit new_cf;
new_cf.AddColumnFamily(all_cf_names[i]);
new_cf.SetColumnFamily(cf_id++);
std::string record;
ASSERT_TRUE(new_cf.EncodeTo(&record));
s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
{
VersionEdit tmp_edit;
tmp_edit.SetColumnFamily(4);
tmp_edit.SetLogNumber(0);
tmp_edit.SetNextFile(2);
tmp_edit.SetLastSequence(0);
std::string record;
ASSERT_TRUE(tmp_edit.EncodeTo(&record));
s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
log_writer_.reset();
s = SetCurrentFile(fs_.get(), dbname_, 1, /*directory_to_fsync=*/nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
bool read_only = std::get<1>(GetParam());
const std::vector<std::string>& cf_names = std::get<2>(GetParam());
std::vector<ColumnFamilyDescriptor> column_families;
for (const auto& cf_name : cf_names) {
column_families.emplace_back(cf_name, cf_options_);
}
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families,
read_only, &db_id,
&has_missing_table_file);
auto iter =
std::find(cf_names.begin(), cf_names.end(), kDefaultColumnFamilyName);
if (iter == cf_names.end()) {
ASSERT_TRUE(s.IsInvalidArgument());
} else {
ASSERT_NE(s.ToString().find(manifest_path), std::string::npos);
ASSERT_TRUE(s.IsCorruption());
}
}
TEST_P(VersionSetTestEmptyDb, OpenCompleteManifest) {
db_options_.write_dbid_to_manifest = std::get<0>(GetParam());
PrepareManifest(nullptr, nullptr, &log_writer_);
// Write all column families but no log_number, next_file_number and
// last_sequence.
const std::vector<std::string> all_cf_names = {
kDefaultColumnFamilyName, kColumnFamilyName1, kColumnFamilyName2,
kColumnFamilyName3};
uint32_t cf_id = 1;
Status s;
for (size_t i = 1; i != all_cf_names.size(); ++i) {
VersionEdit new_cf;
new_cf.AddColumnFamily(all_cf_names[i]);
new_cf.SetColumnFamily(cf_id++);
std::string record;
ASSERT_TRUE(new_cf.EncodeTo(&record));
s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
{
VersionEdit tmp_edit;
tmp_edit.SetLogNumber(0);
tmp_edit.SetNextFile(2);
tmp_edit.SetLastSequence(0);
std::string record;
ASSERT_TRUE(tmp_edit.EncodeTo(&record));
s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
log_writer_.reset();
s = SetCurrentFile(fs_.get(), dbname_, 1, /*directory_to_fsync=*/nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
bool read_only = std::get<1>(GetParam());
const std::vector<std::string>& cf_names = std::get<2>(GetParam());
std::vector<ColumnFamilyDescriptor> column_families;
for (const auto& cf_name : cf_names) {
column_families.emplace_back(cf_name, cf_options_);
}
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families,
read_only, &db_id,
&has_missing_table_file);
auto iter =
std::find(cf_names.begin(), cf_names.end(), kDefaultColumnFamilyName);
if (iter == cf_names.end()) {
ASSERT_TRUE(s.IsInvalidArgument());
} else if (read_only) {
ASSERT_OK(s);
ASSERT_FALSE(has_missing_table_file);
} else if (cf_names.size() == all_cf_names.size()) {
ASSERT_OK(s);
ASSERT_FALSE(has_missing_table_file);
} else if (cf_names.size() < all_cf_names.size()) {
ASSERT_TRUE(s.IsInvalidArgument());
} else {
ASSERT_OK(s);
ASSERT_FALSE(has_missing_table_file);
ColumnFamilyData* cfd = versions_->GetColumnFamilySet()->GetColumnFamily(
kUnknownColumnFamilyName);
ASSERT_EQ(nullptr, cfd);
}
}
INSTANTIATE_TEST_CASE_P(
BestEffortRecovery, VersionSetTestEmptyDb,
testing::Combine(
/*write_dbid_to_manifest=*/testing::Bool(),
/*read_only=*/testing::Bool(),
/*cf_names=*/
testing::Values(
std::vector<std::string>(),
std::vector<std::string>({kDefaultColumnFamilyName}),
std::vector<std::string>({VersionSetTestBase::kColumnFamilyName1,
VersionSetTestBase::kColumnFamilyName2,
VersionSetTestBase::kColumnFamilyName3}),
std::vector<std::string>({kDefaultColumnFamilyName,
VersionSetTestBase::kColumnFamilyName1}),
std::vector<std::string>({kDefaultColumnFamilyName,
VersionSetTestBase::kColumnFamilyName1,
VersionSetTestBase::kColumnFamilyName2,
VersionSetTestBase::kColumnFamilyName3}),
std::vector<std::string>(
{kDefaultColumnFamilyName,
VersionSetTestBase::kColumnFamilyName1,
VersionSetTestBase::kColumnFamilyName2,
VersionSetTestBase::kColumnFamilyName3,
VersionSetTestEmptyDb::kUnknownColumnFamilyName}))));
class VersionSetTestMissingFiles : public VersionSetTestBase,
public testing::Test {
public:
VersionSetTestMissingFiles()
: VersionSetTestBase("version_set_test_missing_files"),
block_based_table_options_(),
table_factory_(std::make_shared<BlockBasedTableFactory>(
block_based_table_options_)),
internal_comparator_(
std::make_shared<InternalKeyComparator>(options_.comparator)) {}
protected:
void PrepareManifest(std::vector<ColumnFamilyDescriptor>* column_families,
SequenceNumber* last_seqno,
std::unique_ptr<log::Writer>* log_writer) override {
assert(column_families != nullptr);
assert(last_seqno != nullptr);
assert(log_writer != nullptr);
const std::string manifest = DescriptorFileName(dbname_, 1);
const auto& fs = env_->GetFileSystem();
std::unique_ptr<WritableFileWriter> file_writer;
Status s = WritableFileWriter::Create(
fs, manifest, fs->OptimizeForManifestWrite(env_options_), &file_writer,
nullptr);
ASSERT_OK(s);
log_writer->reset(new log::Writer(std::move(file_writer), 0, false));
VersionEdit new_db;
if (db_options_.write_dbid_to_manifest) {
DBOptions tmp_db_options;
tmp_db_options.env = env_;
std::unique_ptr<DBImpl> impl(new DBImpl(tmp_db_options, dbname_));
std::string db_id;
ASSERT_OK(impl->GetDbIdentityFromIdentityFile(&db_id));
new_db.SetDBId(db_id);
}
{
std::string record;
ASSERT_TRUE(new_db.EncodeTo(&record));
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
}
const std::vector<std::string> cf_names = {
kDefaultColumnFamilyName, kColumnFamilyName1, kColumnFamilyName2,
kColumnFamilyName3};
uint32_t cf_id = 1; // default cf id is 0
cf_options_.table_factory = table_factory_;
for (const auto& cf_name : cf_names) {
column_families->emplace_back(cf_name, cf_options_);
if (cf_name == kDefaultColumnFamilyName) {
continue;
}
VersionEdit new_cf;
new_cf.AddColumnFamily(cf_name);
new_cf.SetColumnFamily(cf_id);
std::string record;
ASSERT_TRUE(new_cf.EncodeTo(&record));
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
VersionEdit cf_files;
cf_files.SetColumnFamily(cf_id);
cf_files.SetLogNumber(0);
record.clear();
ASSERT_TRUE(cf_files.EncodeTo(&record));
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
++cf_id;
}
SequenceNumber seq = 2;
{
VersionEdit edit;
edit.SetNextFile(7);
edit.SetLastSequence(seq);
std::string record;
ASSERT_TRUE(edit.EncodeTo(&record));
s = (*log_writer)->AddRecord(record);
ASSERT_OK(s);
}
*last_seqno = seq + 1;
}
struct SstInfo {
uint64_t file_number;
std::string column_family;
std::string key; // the only key
int level = 0;
uint64_t epoch_number;
SstInfo(uint64_t file_num, const std::string& cf_name,
const std::string& _key,
uint64_t _epoch_number = kUnknownEpochNumber)
: SstInfo(file_num, cf_name, _key, 0, _epoch_number) {}
SstInfo(uint64_t file_num, const std::string& cf_name,
const std::string& _key, int lvl,
uint64_t _epoch_number = kUnknownEpochNumber)
: file_number(file_num),
column_family(cf_name),
key(_key),
level(lvl),
epoch_number(_epoch_number) {}
};
// Create dummy sst, return their metadata. Note that only file name and size
// are used.
void CreateDummyTableFiles(const std::vector<SstInfo>& file_infos,
std::vector<FileMetaData>* file_metas) {
assert(file_metas != nullptr);
for (const auto& info : file_infos) {
uint64_t file_num = info.file_number;
std::string fname = MakeTableFileName(dbname_, file_num);
std::unique_ptr<FSWritableFile> file;
Status s = fs_->NewWritableFile(fname, FileOptions(), &file, nullptr);
ASSERT_OK(s);
std::unique_ptr<WritableFileWriter> fwriter(new WritableFileWriter(
std::move(file), fname, FileOptions(), env_->GetSystemClock().get()));
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::unique_ptr<TableBuilder> builder(table_factory_->NewTableBuilder(
TableBuilderOptions(
immutable_options_, mutable_cf_options_, *internal_comparator_,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
info.column_family, info.level),
fwriter.get()));
InternalKey ikey(info.key, 0, ValueType::kTypeValue);
builder->Add(ikey.Encode(), "value");
ASSERT_OK(builder->Finish());
ASSERT_OK(fwriter->Flush());
uint64_t file_size = 0;
s = fs_->GetFileSize(fname, IOOptions(), &file_size, nullptr);
ASSERT_OK(s);
ASSERT_NE(0, file_size);
file_metas->emplace_back(
file_num, /*file_path_id=*/0, file_size, ikey, ikey, 0, 0, false,
Temperature::kUnknown, 0, 0, 0, info.epoch_number,
kUnknownFileChecksum, kUnknownFileChecksumFuncName, kNullUniqueId64x2,
0, 0, /* user_defined_timestamps_persisted */ true);
}
}
// This method updates last_sequence_.
void WriteFileAdditionAndDeletionToManifest(
uint32_t cf, const std::vector<std::pair<int, FileMetaData>>& added_files,
const std::vector<std::pair<int, uint64_t>>& deleted_files) {
VersionEdit edit;
edit.SetColumnFamily(cf);
for (const auto& elem : added_files) {
int level = elem.first;
edit.AddFile(level, elem.second);
}
for (const auto& elem : deleted_files) {
int level = elem.first;
edit.DeleteFile(level, elem.second);
}
edit.SetLastSequence(last_seqno_);
++last_seqno_;
assert(log_writer_.get() != nullptr);
std::string record;
ASSERT_TRUE(edit.EncodeTo(&record, 0 /* ts_sz */));
Status s = log_writer_->AddRecord(record);
ASSERT_OK(s);
}
BlockBasedTableOptions block_based_table_options_;
std::shared_ptr<TableFactory> table_factory_;
std::shared_ptr<InternalKeyComparator> internal_comparator_;
std::vector<ColumnFamilyDescriptor> column_families_;
SequenceNumber last_seqno_;
std::unique_ptr<log::Writer> log_writer_;
};
TEST_F(VersionSetTestMissingFiles, ManifestFarBehindSst) {
std::vector<SstInfo> existing_files = {
SstInfo(100, kDefaultColumnFamilyName, "a", 100 /* epoch_number */),
SstInfo(102, kDefaultColumnFamilyName, "b", 102 /* epoch_number */),
SstInfo(103, kDefaultColumnFamilyName, "c", 103 /* epoch_number */),
SstInfo(107, kDefaultColumnFamilyName, "d", 107 /* epoch_number */),
SstInfo(110, kDefaultColumnFamilyName, "e", 110 /* epoch_number */)};
std::vector<FileMetaData> file_metas;
CreateDummyTableFiles(existing_files, &file_metas);
PrepareManifest(&column_families_, &last_seqno_, &log_writer_);
std::vector<std::pair<int, FileMetaData>> added_files;
for (uint64_t file_num = 10; file_num < 15; ++file_num) {
std::string smallest_ukey = "a";
std::string largest_ukey = "b";
InternalKey smallest_ikey(smallest_ukey, 1, ValueType::kTypeValue);
InternalKey largest_ikey(largest_ukey, 1, ValueType::kTypeValue);
FileMetaData meta = FileMetaData(
file_num, /*file_path_id=*/0, /*file_size=*/12, smallest_ikey,
largest_ikey, 0, 0, false, Temperature::kUnknown, 0, 0, 0,
file_num /* epoch_number */, kUnknownFileChecksum,
kUnknownFileChecksumFuncName, kNullUniqueId64x2, 0, 0,
/* user_defined_timestamps_persisted */ true);
added_files.emplace_back(0, meta);
}
WriteFileAdditionAndDeletionToManifest(
/*cf=*/0, added_files, std::vector<std::pair<int, uint64_t>>());
std::vector<std::pair<int, uint64_t>> deleted_files;
deleted_files.emplace_back(0, 10);
WriteFileAdditionAndDeletionToManifest(
/*cf=*/0, std::vector<std::pair<int, FileMetaData>>(), deleted_files);
log_writer_.reset();
Status s = SetCurrentFile(fs_.get(), dbname_, 1, nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families_,
/*read_only=*/false, &db_id,
&has_missing_table_file);
ASSERT_OK(s);
ASSERT_TRUE(has_missing_table_file);
for (ColumnFamilyData* cfd : *(versions_->GetColumnFamilySet())) {
VersionStorageInfo* vstorage = cfd->current()->storage_info();
const std::vector<FileMetaData*>& files = vstorage->LevelFiles(0);
ASSERT_TRUE(files.empty());
}
}
TEST_F(VersionSetTestMissingFiles, ManifestAheadofSst) {
std::vector<SstInfo> existing_files = {
SstInfo(100, kDefaultColumnFamilyName, "a", 0 /* level */,
100 /* epoch_number */),
SstInfo(102, kDefaultColumnFamilyName, "b", 0 /* level */,
102 /* epoch_number */),
SstInfo(103, kDefaultColumnFamilyName, "c", 0 /* level */,
103 /* epoch_number */),
SstInfo(107, kDefaultColumnFamilyName, "d", 0 /* level */,
107 /* epoch_number */),
SstInfo(110, kDefaultColumnFamilyName, "e", 0 /* level */,
110 /* epoch_number */)};
std::vector<FileMetaData> file_metas;
CreateDummyTableFiles(existing_files, &file_metas);
PrepareManifest(&column_families_, &last_seqno_, &log_writer_);
std::vector<std::pair<int, FileMetaData>> added_files;
for (size_t i = 3; i != 5; ++i) {
added_files.emplace_back(0, file_metas[i]);
}
WriteFileAdditionAndDeletionToManifest(
/*cf=*/0, added_files, std::vector<std::pair<int, uint64_t>>());
added_files.clear();
for (uint64_t file_num = 120; file_num < 130; ++file_num) {
std::string smallest_ukey = "a";
std::string largest_ukey = "b";
InternalKey smallest_ikey(smallest_ukey, 1, ValueType::kTypeValue);
InternalKey largest_ikey(largest_ukey, 1, ValueType::kTypeValue);
FileMetaData meta = FileMetaData(
file_num, /*file_path_id=*/0, /*file_size=*/12, smallest_ikey,
largest_ikey, 0, 0, false, Temperature::kUnknown, 0, 0, 0,
file_num /* epoch_number */, kUnknownFileChecksum,
kUnknownFileChecksumFuncName, kNullUniqueId64x2, 0, 0,
/* user_defined_timestamps_persisted */ true);
added_files.emplace_back(0, meta);
}
WriteFileAdditionAndDeletionToManifest(
/*cf=*/0, added_files, std::vector<std::pair<int, uint64_t>>());
log_writer_.reset();
Status s = SetCurrentFile(fs_.get(), dbname_, 1, nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families_,
/*read_only=*/false, &db_id,
&has_missing_table_file);
ASSERT_OK(s);
ASSERT_TRUE(has_missing_table_file);
for (ColumnFamilyData* cfd : *(versions_->GetColumnFamilySet())) {
VersionStorageInfo* vstorage = cfd->current()->storage_info();
const std::vector<FileMetaData*>& files = vstorage->LevelFiles(0);
if (cfd->GetName() == kDefaultColumnFamilyName) {
ASSERT_EQ(2, files.size());
for (const auto* fmeta : files) {
if (fmeta->fd.GetNumber() != 107 && fmeta->fd.GetNumber() != 110) {
ASSERT_FALSE(true);
}
}
} else {
ASSERT_TRUE(files.empty());
}
}
}
TEST_F(VersionSetTestMissingFiles, NoFileMissing) {
std::vector<SstInfo> existing_files = {
SstInfo(100, kDefaultColumnFamilyName, "a", 0 /* level */,
100 /* epoch_number */),
SstInfo(102, kDefaultColumnFamilyName, "b", 0 /* level */,
102 /* epoch_number */),
SstInfo(103, kDefaultColumnFamilyName, "c", 0 /* level */,
103 /* epoch_number */),
SstInfo(107, kDefaultColumnFamilyName, "d", 0 /* level */,
107 /* epoch_number */),
SstInfo(110, kDefaultColumnFamilyName, "e", 0 /* level */,
110 /* epoch_number */)};
std::vector<FileMetaData> file_metas;
CreateDummyTableFiles(existing_files, &file_metas);
PrepareManifest(&column_families_, &last_seqno_, &log_writer_);
std::vector<std::pair<int, FileMetaData>> added_files;
for (const auto& meta : file_metas) {
added_files.emplace_back(0, meta);
}
WriteFileAdditionAndDeletionToManifest(
/*cf=*/0, added_files, std::vector<std::pair<int, uint64_t>>());
std::vector<std::pair<int, uint64_t>> deleted_files;
deleted_files.emplace_back(/*level=*/0, 100);
WriteFileAdditionAndDeletionToManifest(
/*cf=*/0, std::vector<std::pair<int, FileMetaData>>(), deleted_files);
log_writer_.reset();
Status s = SetCurrentFile(fs_.get(), dbname_, 1, nullptr);
ASSERT_OK(s);
std::string manifest_path;
VerifyManifest(&manifest_path);
std::string db_id;
bool has_missing_table_file = false;
s = versions_->TryRecoverFromOneManifest(manifest_path, column_families_,
/*read_only=*/false, &db_id,
&has_missing_table_file);
ASSERT_OK(s);
ASSERT_FALSE(has_missing_table_file);
for (ColumnFamilyData* cfd : *(versions_->GetColumnFamilySet())) {
VersionStorageInfo* vstorage = cfd->current()->storage_info();
const std::vector<FileMetaData*>& files = vstorage->LevelFiles(0);
if (cfd->GetName() == kDefaultColumnFamilyName) {
ASSERT_EQ(existing_files.size() - deleted_files.size(), files.size());
bool has_deleted_file = false;
for (const auto* fmeta : files) {
if (fmeta->fd.GetNumber() == 100) {
has_deleted_file = true;
break;
}
}
ASSERT_FALSE(has_deleted_file);
} else {
ASSERT_TRUE(files.empty());
}
}
}
TEST_F(VersionSetTestMissingFiles, MinLogNumberToKeep2PC) {
db_options_.allow_2pc = true;
NewDB();
SstInfo sst(100, kDefaultColumnFamilyName, "a", 0 /* level */,
100 /* epoch_number */);
std::vector<FileMetaData> file_metas;
CreateDummyTableFiles({sst}, &file_metas);
constexpr WalNumber kMinWalNumberToKeep2PC = 10;
VersionEdit edit;
edit.AddFile(0, file_metas[0]);
edit.SetMinLogNumberToKeep(kMinWalNumberToKeep2PC);
ASSERT_OK(LogAndApplyToDefaultCF(edit));
ASSERT_EQ(versions_->min_log_number_to_keep(), kMinWalNumberToKeep2PC);
for (int i = 0; i < 3; i++) {
CreateNewManifest();
ReopenDB();
ASSERT_EQ(versions_->min_log_number_to_keep(), kMinWalNumberToKeep2PC);
}
}
class ChargeFileMetadataTest : public DBTestBase {
public:
ChargeFileMetadataTest()
: DBTestBase("charge_file_metadata_test", /*env_do_fsync=*/true) {}
};
class ChargeFileMetadataTestWithParam
: public ChargeFileMetadataTest,
public testing::WithParamInterface<CacheEntryRoleOptions::Decision> {
public:
ChargeFileMetadataTestWithParam() {}
};
INSTANTIATE_TEST_CASE_P(
ChargeFileMetadataTestWithParam, ChargeFileMetadataTestWithParam,
::testing::Values(CacheEntryRoleOptions::Decision::kEnabled,
CacheEntryRoleOptions::Decision::kDisabled));
TEST_P(ChargeFileMetadataTestWithParam, Basic) {
Options options;
options.level_compaction_dynamic_level_bytes = false;
BlockBasedTableOptions table_options;
CacheEntryRoleOptions::Decision charge_file_metadata = GetParam();
table_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kFileMetadata, {/*.charged = */ charge_file_metadata}});
std::shared_ptr<TargetCacheChargeTrackingCache<CacheEntryRole::kFileMetadata>>
file_metadata_charge_only_cache = std::make_shared<
TargetCacheChargeTrackingCache<CacheEntryRole::kFileMetadata>>(
NewLRUCache(
4 * CacheReservationManagerImpl<
CacheEntryRole::kFileMetadata>::GetDummyEntrySize(),
0 /* num_shard_bits */, true /* strict_capacity_limit */));
table_options.block_cache = file_metadata_charge_only_cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.create_if_missing = true;
options.disable_auto_compactions = true;
DestroyAndReopen(options);
// Create 128 file metadata, each of which is roughly 1024 bytes.
// This results in 1 *
// CacheReservationManagerImpl<CacheEntryRole::kFileMetadata>::GetDummyEntrySize()
// cache reservation for file metadata.
for (int i = 1; i <= 128; ++i) {
ASSERT_OK(Put(std::string(1024, 'a'), "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Flush());
}
if (charge_file_metadata == CacheEntryRoleOptions::Decision::kEnabled) {
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(),
1 * CacheReservationManagerImpl<
CacheEntryRole::kFileMetadata>::GetDummyEntrySize());
} else {
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(), 0);
}
// Create another 128 file metadata.
// This increases the file metadata cache reservation to 2 *
// CacheReservationManagerImpl<CacheEntryRole::kFileMetadata>::GetDummyEntrySize().
for (int i = 1; i <= 128; ++i) {
ASSERT_OK(Put(std::string(1024, 'a'), "vva"));
ASSERT_OK(Put("b", "vvb"));
ASSERT_OK(Flush());
}
if (charge_file_metadata == CacheEntryRoleOptions::Decision::kEnabled) {
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(),
2 * CacheReservationManagerImpl<
CacheEntryRole::kFileMetadata>::GetDummyEntrySize());
} else {
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(), 0);
}
// Compaction will create 1 new file metadata, obsolete and delete all 256
// file metadata above. This results in 1 *
// CacheReservationManagerImpl<CacheEntryRole::kFileMetadata>::GetDummyEntrySize()
// cache reservation for file metadata.
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCallCompaction:PurgedObsoleteFiles",
"ChargeFileMetadataTestWithParam::"
"PreVerifyingCacheReservationRelease"}});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ("0,1", FilesPerLevel(0));
TEST_SYNC_POINT(
"ChargeFileMetadataTestWithParam::PreVerifyingCacheReservationRelease");
if (charge_file_metadata == CacheEntryRoleOptions::Decision::kEnabled) {
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(),
1 * CacheReservationManagerImpl<
CacheEntryRole::kFileMetadata>::GetDummyEntrySize());
} else {
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(), 0);
}
SyncPoint::GetInstance()->DisableProcessing();
// Destroying the db will delete the remaining 1 new file metadata
// This results in no cache reservation for file metadata.
Destroy(options);
EXPECT_EQ(file_metadata_charge_only_cache->GetCacheCharge(),
0 * CacheReservationManagerImpl<
CacheEntryRole::kFileMetadata>::GetDummyEntrySize());
// Reopen the db with a smaller cache in order to test failure in allocating
// file metadata due to memory limit based on cache capacity
file_metadata_charge_only_cache = std::make_shared<
TargetCacheChargeTrackingCache<CacheEntryRole::kFileMetadata>>(
NewLRUCache(1 * CacheReservationManagerImpl<
CacheEntryRole::kFileMetadata>::GetDummyEntrySize(),
0 /* num_shard_bits */, true /* strict_capacity_limit */));
table_options.block_cache = file_metadata_charge_only_cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_OK(Put(std::string(1024, 'a'), "va"));
ASSERT_OK(Put("b", "vb"));
Status s = Flush();
if (charge_file_metadata == CacheEntryRoleOptions::Decision::kEnabled) {
EXPECT_TRUE(s.IsMemoryLimit());
EXPECT_TRUE(s.ToString().find(
kCacheEntryRoleToCamelString[static_cast<std::uint32_t>(
CacheEntryRole::kFileMetadata)]) != std::string::npos);
EXPECT_TRUE(s.ToString().find("memory limit based on cache capacity") !=
std::string::npos);
} else {
EXPECT_TRUE(s.ok());
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}