rocksdb/table/compaction_merging_iterator.cc
Changyu Bi 229297d1b8 Refactor AddRangeDels() + consider range tombstone during compaction file cutting (#11113)
Summary:
A second attempt after https://github.com/facebook/rocksdb/issues/10802, with bug fixes and refactoring. This PR updates compaction logic to take range tombstones into account when determining whether to cut the current compaction output file (https://github.com/facebook/rocksdb/issues/4811). Before this change, only point keys were considered, and range tombstones could cause large compactions. For example, if the current compaction outputs is a range tombstone [a, b) and 2 point keys y, z, they would be added to the same file, and may overlap with too many files in the next level and cause a large compaction in the future. This PR also includes ajkr's effort to simplify the logic to add range tombstones to compaction output files in `AddRangeDels()` ([https://github.com/facebook/rocksdb/issues/11078](https://github.com/facebook/rocksdb/pull/11078#issuecomment-1386078861)).

The main change is for `CompactionIterator` to emit range tombstone start keys to be processed by `CompactionOutputs`. A new class `CompactionMergingIterator` is introduced to replace `MergingIterator` under `CompactionIterator` to enable emitting of range tombstone start keys. Further improvement after this PR include cutting compaction output at some grandparent boundary key (instead of the next output key) when cutting within a range tombstone to reduce overlap with grandparents.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11113

Test Plan:
* added unit test in db_range_del_test
* crash test with a small key range: `python3 tools/db_crashtest.py blackbox --simple --max_key=100 --interval=600 --write_buffer_size=262144 --target_file_size_base=256 --max_bytes_for_level_base=262144 --block_size=128 --value_size_mult=33 --subcompactions=10 --use_multiget=1 --delpercent=3 --delrangepercent=2 --verify_iterator_with_expected_state_one_in=2 --num_iterations=10`

Reviewed By: ajkr

Differential Revision: D42655709

Pulled By: cbi42

fbshipit-source-id: 8367e36ef5640e8f21c14a3855d4a8d6e360a34c
2023-02-22 12:28:18 -08:00

371 lines
12 KiB
C++

// Copyright (c) Meta Platforms, Inc. and affiliates.
//
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "table/compaction_merging_iterator.h"
namespace ROCKSDB_NAMESPACE {
class CompactionMergingIterator : public InternalIterator {
public:
CompactionMergingIterator(
const InternalKeyComparator* comparator, InternalIterator** children,
int n, bool is_arena_mode,
std::vector<
std::pair<TruncatedRangeDelIterator*, TruncatedRangeDelIterator***>>
range_tombstones)
: is_arena_mode_(is_arena_mode),
comparator_(comparator),
current_(nullptr),
minHeap_(CompactionHeapItemComparator(comparator_)),
pinned_iters_mgr_(nullptr) {
children_.resize(n);
for (int i = 0; i < n; i++) {
children_[i].level = i;
children_[i].iter.Set(children[i]);
assert(children_[i].type == HeapItem::ITERATOR);
}
assert(range_tombstones.size() == static_cast<size_t>(n));
for (auto& p : range_tombstones) {
range_tombstone_iters_.push_back(p.first);
}
pinned_heap_item_.resize(n);
for (int i = 0; i < n; ++i) {
if (range_tombstones[i].second) {
// for LevelIterator
*range_tombstones[i].second = &range_tombstone_iters_[i];
}
pinned_heap_item_[i].level = i;
pinned_heap_item_[i].type = HeapItem::DELETE_RANGE_START;
}
}
void considerStatus(const Status& s) {
if (!s.ok() && status_.ok()) {
status_ = s;
}
}
~CompactionMergingIterator() override {
// TODO: use unique_ptr for range_tombstone_iters_
for (auto child : range_tombstone_iters_) {
delete child;
}
for (auto& child : children_) {
child.iter.DeleteIter(is_arena_mode_);
}
status_.PermitUncheckedError();
}
bool Valid() const override { return current_ != nullptr && status_.ok(); }
Status status() const override { return status_; }
void SeekToFirst() override;
void Seek(const Slice& target) override;
void Next() override;
Slice key() const override {
assert(Valid());
return current_->key();
}
Slice value() const override {
assert(Valid());
if (LIKELY(current_->type == HeapItem::ITERATOR)) {
return current_->iter.value();
} else {
return dummy_tombstone_val;
}
}
// Here we simply relay MayBeOutOfLowerBound/MayBeOutOfUpperBound result
// from current child iterator. Potentially as long as one of child iterator
// report out of bound is not possible, we know current key is within bound.
bool MayBeOutOfLowerBound() override {
assert(Valid());
return current_->type == HeapItem::DELETE_RANGE_START ||
current_->iter.MayBeOutOfLowerBound();
}
IterBoundCheck UpperBoundCheckResult() override {
assert(Valid());
return current_->type == HeapItem::DELETE_RANGE_START
? IterBoundCheck::kUnknown
: current_->iter.UpperBoundCheckResult();
}
void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override {
pinned_iters_mgr_ = pinned_iters_mgr;
for (auto& child : children_) {
child.iter.SetPinnedItersMgr(pinned_iters_mgr);
}
}
bool IsDeleteRangeSentinelKey() const override {
assert(Valid());
return current_->type == HeapItem::DELETE_RANGE_START;
}
// Compaction uses the above subset of InternalIterator interface.
void SeekToLast() override { assert(false); }
void SeekForPrev(const Slice&) override { assert(false); }
void Prev() override { assert(false); }
bool NextAndGetResult(IterateResult*) override {
assert(false);
return false;
}
bool IsKeyPinned() const override {
assert(false);
return false;
}
bool IsValuePinned() const override {
assert(false);
return false;
}
bool PrepareValue() override {
assert(false);
return false;
}
private:
struct HeapItem {
HeapItem() = default;
IteratorWrapper iter;
size_t level = 0;
std::string tombstone_str;
enum Type { ITERATOR, DELETE_RANGE_START };
Type type = ITERATOR;
explicit HeapItem(size_t _level, InternalIteratorBase<Slice>* _iter)
: level(_level), type(Type::ITERATOR) {
iter.Set(_iter);
}
void SetTombstoneForCompaction(const ParsedInternalKey&& pik) {
tombstone_str.clear();
AppendInternalKey(&tombstone_str, pik);
}
[[nodiscard]] Slice key() const {
return type == ITERATOR ? iter.key() : tombstone_str;
}
};
class CompactionHeapItemComparator {
public:
explicit CompactionHeapItemComparator(
const InternalKeyComparator* comparator)
: comparator_(comparator) {}
bool operator()(HeapItem* a, HeapItem* b) const {
int r = comparator_->Compare(a->key(), b->key());
// For each file, we assume all range tombstone start keys come before
// its file boundary sentinel key (file's meta.largest key).
// In the case when meta.smallest = meta.largest and range tombstone start
// key is truncated at meta.smallest, the start key will have op_type =
// kMaxValid to make it smaller (see TruncatedRangeDelIterator
// constructor). The following assertion validates this assumption.
assert(a->type == b->type || r != 0);
return r > 0;
}
private:
const InternalKeyComparator* comparator_;
};
using CompactionMinHeap = BinaryHeap<HeapItem*, CompactionHeapItemComparator>;
bool is_arena_mode_;
const InternalKeyComparator* comparator_;
// HeapItem for all child point iterators.
std::vector<HeapItem> children_;
// HeapItem for range tombstones. pinned_heap_item_[i] corresponds to the
// current range tombstone from range_tombstone_iters_[i].
std::vector<HeapItem> pinned_heap_item_;
// range_tombstone_iters_[i] contains range tombstones in the sorted run that
// corresponds to children_[i]. range_tombstone_iters_[i] ==
// nullptr means the sorted run of children_[i] does not have range
// tombstones (or the current SSTable does not have range tombstones in the
// case of LevelIterator).
std::vector<TruncatedRangeDelIterator*> range_tombstone_iters_;
// Used as value for range tombstone keys
std::string dummy_tombstone_val{};
// Skip file boundary sentinel keys.
void FindNextVisibleKey();
// top of minHeap_
HeapItem* current_;
// If any of the children have non-ok status, this is one of them.
Status status_;
CompactionMinHeap minHeap_;
PinnedIteratorsManager* pinned_iters_mgr_;
// Process a child that is not in the min heap.
// If valid, add to the min heap. Otherwise, check status.
void AddToMinHeapOrCheckStatus(HeapItem*);
HeapItem* CurrentForward() const {
return !minHeap_.empty() ? minHeap_.top() : nullptr;
}
void InsertRangeTombstoneAtLevel(size_t level) {
if (range_tombstone_iters_[level]->Valid()) {
pinned_heap_item_[level].SetTombstoneForCompaction(
range_tombstone_iters_[level]->start_key());
minHeap_.push(&pinned_heap_item_[level]);
}
}
};
void CompactionMergingIterator::SeekToFirst() {
minHeap_.clear();
status_ = Status::OK();
for (auto& child : children_) {
child.iter.SeekToFirst();
AddToMinHeapOrCheckStatus(&child);
}
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
if (range_tombstone_iters_[i]) {
range_tombstone_iters_[i]->SeekToFirst();
InsertRangeTombstoneAtLevel(i);
}
}
FindNextVisibleKey();
current_ = CurrentForward();
}
void CompactionMergingIterator::Seek(const Slice& target) {
minHeap_.clear();
status_ = Status::OK();
for (auto& child : children_) {
child.iter.Seek(target);
AddToMinHeapOrCheckStatus(&child);
}
ParsedInternalKey pik;
ParseInternalKey(target, &pik, false /* log_err_key */)
.PermitUncheckedError();
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
if (range_tombstone_iters_[i]) {
range_tombstone_iters_[i]->Seek(pik.user_key);
// For compaction, output keys should all be after seek target.
while (range_tombstone_iters_[i]->Valid() &&
comparator_->Compare(range_tombstone_iters_[i]->start_key(), pik) <
0) {
range_tombstone_iters_[i]->Next();
}
InsertRangeTombstoneAtLevel(i);
}
}
FindNextVisibleKey();
current_ = CurrentForward();
}
void CompactionMergingIterator::Next() {
assert(Valid());
// For the heap modifications below to be correct, current_ must be the
// current top of the heap.
assert(current_ == CurrentForward());
// as the current points to the current record. move the iterator forward.
if (current_->type == HeapItem::ITERATOR) {
current_->iter.Next();
if (current_->iter.Valid()) {
// current is still valid after the Next() call above. Call
// replace_top() to restore the heap property. When the same child
// iterator yields a sequence of keys, this is cheap.
assert(current_->iter.status().ok());
minHeap_.replace_top(current_);
} else {
// current stopped being valid, remove it from the heap.
considerStatus(current_->iter.status());
minHeap_.pop();
}
} else {
assert(current_->type == HeapItem::DELETE_RANGE_START);
size_t level = current_->level;
assert(range_tombstone_iters_[level]);
range_tombstone_iters_[level]->Next();
if (range_tombstone_iters_[level]->Valid()) {
pinned_heap_item_[level].SetTombstoneForCompaction(
range_tombstone_iters_[level]->start_key());
minHeap_.replace_top(&pinned_heap_item_[level]);
} else {
minHeap_.pop();
}
}
FindNextVisibleKey();
current_ = CurrentForward();
}
void CompactionMergingIterator::FindNextVisibleKey() {
while (!minHeap_.empty()) {
HeapItem* current = minHeap_.top();
// IsDeleteRangeSentinelKey() here means file boundary sentinel keys.
if (current->type != HeapItem::ITERATOR ||
!current->iter.IsDeleteRangeSentinelKey()) {
return;
}
// range tombstone start keys from the same SSTable should have been
// exhausted
assert(!range_tombstone_iters_[current->level] ||
!range_tombstone_iters_[current->level]->Valid());
// current->iter is a LevelIterator, and it enters a new SST file in the
// Next() call here.
current->iter.Next();
if (current->iter.Valid()) {
assert(current->iter.status().ok());
minHeap_.replace_top(current);
} else {
minHeap_.pop();
}
if (range_tombstone_iters_[current->level]) {
InsertRangeTombstoneAtLevel(current->level);
}
}
}
void CompactionMergingIterator::AddToMinHeapOrCheckStatus(HeapItem* child) {
if (child->iter.Valid()) {
assert(child->iter.status().ok());
minHeap_.push(child);
} else {
considerStatus(child->iter.status());
}
}
InternalIterator* NewCompactionMergingIterator(
const InternalKeyComparator* comparator, InternalIterator** children, int n,
std::vector<std::pair<TruncatedRangeDelIterator*,
TruncatedRangeDelIterator***>>& range_tombstone_iters,
Arena* arena) {
assert(n >= 0);
if (n == 0) {
return NewEmptyInternalIterator<Slice>(arena);
} else {
if (arena == nullptr) {
return new CompactionMergingIterator(comparator, children, n,
false /* is_arena_mode */,
range_tombstone_iters);
} else {
auto mem = arena->AllocateAligned(sizeof(CompactionMergingIterator));
return new (mem) CompactionMergingIterator(comparator, children, n,
true /* is_arena_mode */,
range_tombstone_iters);
}
}
}
} // namespace ROCKSDB_NAMESPACE