mirror of https://github.com/facebook/rocksdb.git
8712 lines
322 KiB
C++
8712 lines
322 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#ifdef GFLAGS
|
|
#ifdef NUMA
|
|
#include <numa.h>
|
|
#endif
|
|
#ifndef OS_WIN
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <fcntl.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#ifdef __APPLE__
|
|
#include <mach/host_info.h>
|
|
#include <mach/mach_host.h>
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
#ifdef __FreeBSD__
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
#include <atomic>
|
|
#include <cinttypes>
|
|
#include <condition_variable>
|
|
#include <cstddef>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <optional>
|
|
#include <queue>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
|
|
#include "db/db_impl/db_impl.h"
|
|
#include "db/malloc_stats.h"
|
|
#include "db/version_set.h"
|
|
#include "monitoring/histogram.h"
|
|
#include "monitoring/statistics_impl.h"
|
|
#include "options/cf_options.h"
|
|
#include "port/port.h"
|
|
#include "port/stack_trace.h"
|
|
#include "rocksdb/cache.h"
|
|
#include "rocksdb/convenience.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "rocksdb/memtablerep.h"
|
|
#include "rocksdb/options.h"
|
|
#include "rocksdb/perf_context.h"
|
|
#include "rocksdb/persistent_cache.h"
|
|
#include "rocksdb/rate_limiter.h"
|
|
#include "rocksdb/secondary_cache.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/slice_transform.h"
|
|
#include "rocksdb/stats_history.h"
|
|
#include "rocksdb/table.h"
|
|
#include "rocksdb/utilities/backup_engine.h"
|
|
#include "rocksdb/utilities/object_registry.h"
|
|
#include "rocksdb/utilities/optimistic_transaction_db.h"
|
|
#include "rocksdb/utilities/options_type.h"
|
|
#include "rocksdb/utilities/options_util.h"
|
|
#include "rocksdb/utilities/replayer.h"
|
|
#include "rocksdb/utilities/sim_cache.h"
|
|
#include "rocksdb/utilities/transaction.h"
|
|
#include "rocksdb/utilities/transaction_db.h"
|
|
#include "rocksdb/write_batch.h"
|
|
#include "test_util/testutil.h"
|
|
#include "test_util/transaction_test_util.h"
|
|
#include "tools/simulated_hybrid_file_system.h"
|
|
#include "util/cast_util.h"
|
|
#include "util/compression.h"
|
|
#include "util/crc32c.h"
|
|
#include "util/file_checksum_helper.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/mutexlock.h"
|
|
#include "util/random.h"
|
|
#include "util/stderr_logger.h"
|
|
#include "util/string_util.h"
|
|
#include "util/xxhash.h"
|
|
#include "utilities/blob_db/blob_db.h"
|
|
#include "utilities/counted_fs.h"
|
|
#include "utilities/merge_operators.h"
|
|
#include "utilities/merge_operators/bytesxor.h"
|
|
#include "utilities/merge_operators/sortlist.h"
|
|
#include "utilities/persistent_cache/block_cache_tier.h"
|
|
|
|
#ifdef MEMKIND
|
|
#include "memory/memkind_kmem_allocator.h"
|
|
#endif
|
|
|
|
#ifdef OS_WIN
|
|
#include <io.h> // open/close
|
|
#endif
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
using GFLAGS_NAMESPACE::RegisterFlagValidator;
|
|
using GFLAGS_NAMESPACE::SetUsageMessage;
|
|
using GFLAGS_NAMESPACE::SetVersionString;
|
|
|
|
DEFINE_string(
|
|
benchmarks,
|
|
"fillseq,"
|
|
"fillseqdeterministic,"
|
|
"fillsync,"
|
|
"fillrandom,"
|
|
"filluniquerandomdeterministic,"
|
|
"overwrite,"
|
|
"readrandom,"
|
|
"newiterator,"
|
|
"newiteratorwhilewriting,"
|
|
"seekrandom,"
|
|
"seekrandomwhilewriting,"
|
|
"seekrandomwhilemerging,"
|
|
"readseq,"
|
|
"readreverse,"
|
|
"compact,"
|
|
"compactall,"
|
|
"flush,"
|
|
"compact0,"
|
|
"compact1,"
|
|
"waitforcompaction,"
|
|
"multireadrandom,"
|
|
"mixgraph,"
|
|
"readseq,"
|
|
"readtorowcache,"
|
|
"readtocache,"
|
|
"readreverse,"
|
|
"readwhilewriting,"
|
|
"readwhilemerging,"
|
|
"readwhilescanning,"
|
|
"readrandomwriterandom,"
|
|
"updaterandom,"
|
|
"xorupdaterandom,"
|
|
"approximatesizerandom,"
|
|
"randomwithverify,"
|
|
"fill100K,"
|
|
"crc32c,"
|
|
"xxhash,"
|
|
"xxhash64,"
|
|
"xxh3,"
|
|
"compress,"
|
|
"uncompress,"
|
|
"acquireload,"
|
|
"fillseekseq,"
|
|
"randomtransaction,"
|
|
"randomreplacekeys,"
|
|
"timeseries,"
|
|
"getmergeoperands,",
|
|
"readrandomoperands,"
|
|
"backup,"
|
|
"restore"
|
|
|
|
"Comma-separated list of operations to run in the specified"
|
|
" order. Available benchmarks:\n"
|
|
"\tfillseq -- write N values in sequential key"
|
|
" order in async mode\n"
|
|
"\tfillseqdeterministic -- write N values in the specified"
|
|
" key order and keep the shape of the LSM tree\n"
|
|
"\tfillrandom -- write N values in random key order in async"
|
|
" mode\n"
|
|
"\tfilluniquerandomdeterministic -- write N values in a random"
|
|
" key order and keep the shape of the LSM tree\n"
|
|
"\toverwrite -- overwrite N values in random key order in "
|
|
"async mode\n"
|
|
"\tfillsync -- write N/1000 values in random key order in "
|
|
"sync mode\n"
|
|
"\tfill100K -- write N/1000 100K values in random order in"
|
|
" async mode\n"
|
|
"\tdeleteseq -- delete N keys in sequential order\n"
|
|
"\tdeleterandom -- delete N keys in random order\n"
|
|
"\treadseq -- read N times sequentially\n"
|
|
"\treadtocache -- 1 thread reading database sequentially\n"
|
|
"\treadreverse -- read N times in reverse order\n"
|
|
"\treadrandom -- read N times in random order\n"
|
|
"\treadmissing -- read N missing keys in random order\n"
|
|
"\treadwhilewriting -- 1 writer, N threads doing random "
|
|
"reads\n"
|
|
"\treadwhilemerging -- 1 merger, N threads doing random "
|
|
"reads\n"
|
|
"\treadwhilescanning -- 1 thread doing full table scan, "
|
|
"N threads doing random reads\n"
|
|
"\treadrandomwriterandom -- N threads doing random-read, "
|
|
"random-write\n"
|
|
"\tupdaterandom -- N threads doing read-modify-write for random "
|
|
"keys\n"
|
|
"\txorupdaterandom -- N threads doing read-XOR-write for "
|
|
"random keys\n"
|
|
"\tappendrandom -- N threads doing read-modify-write with "
|
|
"growing values\n"
|
|
"\tmergerandom -- same as updaterandom/appendrandom using merge"
|
|
" operator. "
|
|
"Must be used with merge_operator\n"
|
|
"\treadrandommergerandom -- perform N random read-or-merge "
|
|
"operations. Must be used with merge_operator\n"
|
|
"\tnewiterator -- repeated iterator creation\n"
|
|
"\tseekrandom -- N random seeks, call Next seek_nexts times "
|
|
"per seek\n"
|
|
"\tseekrandomwhilewriting -- seekrandom and 1 thread doing "
|
|
"overwrite\n"
|
|
"\tseekrandomwhilemerging -- seekrandom and 1 thread doing "
|
|
"merge\n"
|
|
"\tcrc32c -- repeated crc32c of <block size> data\n"
|
|
"\txxhash -- repeated xxHash of <block size> data\n"
|
|
"\txxhash64 -- repeated xxHash64 of <block size> data\n"
|
|
"\txxh3 -- repeated XXH3 of <block size> data\n"
|
|
"\tacquireload -- load N*1000 times\n"
|
|
"\tfillseekseq -- write N values in sequential key, then read "
|
|
"them by seeking to each key\n"
|
|
"\trandomtransaction -- execute N random transactions and "
|
|
"verify correctness\n"
|
|
"\trandomreplacekeys -- randomly replaces N keys by deleting "
|
|
"the old version and putting the new version\n\n"
|
|
"\ttimeseries -- 1 writer generates time series data "
|
|
"and multiple readers doing random reads on id\n\n"
|
|
"Meta operations:\n"
|
|
"\tcompact -- Compact the entire DB; If multiple, randomly choose one\n"
|
|
"\tcompactall -- Compact the entire DB\n"
|
|
"\tcompact0 -- compact L0 into L1\n"
|
|
"\tcompact1 -- compact L1 into L2\n"
|
|
"\twaitforcompaction - pause until compaction is (probably) done\n"
|
|
"\tflush - flush the memtable\n"
|
|
"\tstats -- Print DB stats\n"
|
|
"\tresetstats -- Reset DB stats\n"
|
|
"\tlevelstats -- Print the number of files and bytes per level\n"
|
|
"\tmemstats -- Print memtable stats\n"
|
|
"\tsstables -- Print sstable info\n"
|
|
"\theapprofile -- Dump a heap profile (if supported by this port)\n"
|
|
"\treplay -- replay the trace file specified with trace_file\n"
|
|
"\tgetmergeoperands -- Insert lots of merge records which are a list of "
|
|
"sorted ints for a key and then compare performance of lookup for another "
|
|
"key by doing a Get followed by binary searching in the large sorted list "
|
|
"vs doing a GetMergeOperands and binary searching in the operands which "
|
|
"are sorted sub-lists. The MergeOperator used is sortlist.h\n"
|
|
"\treadrandomoperands -- read random keys using `GetMergeOperands()`. An "
|
|
"operation includes a rare but possible retry in case it got "
|
|
"`Status::Incomplete()`. This happens upon encountering more keys than "
|
|
"have ever been seen by the thread (or eight initially)\n"
|
|
"\tbackup -- Create a backup of the current DB and verify that a new backup is corrected. "
|
|
"Rate limit can be specified through --backup_rate_limit\n"
|
|
"\trestore -- Restore the DB from the latest backup available, rate limit can be specified through --restore_rate_limit\n");
|
|
|
|
DEFINE_int64(num, 1000000, "Number of key/values to place in database");
|
|
|
|
DEFINE_int64(numdistinct, 1000,
|
|
"Number of distinct keys to use. Used in RandomWithVerify to "
|
|
"read/write on fewer keys so that gets are more likely to find the"
|
|
" key and puts are more likely to update the same key");
|
|
|
|
DEFINE_int64(merge_keys, -1,
|
|
"Number of distinct keys to use for MergeRandom and "
|
|
"ReadRandomMergeRandom. "
|
|
"If negative, there will be FLAGS_num keys.");
|
|
DEFINE_int32(num_column_families, 1, "Number of Column Families to use.");
|
|
|
|
DEFINE_int32(
|
|
num_hot_column_families, 0,
|
|
"Number of Hot Column Families. If more than 0, only write to this "
|
|
"number of column families. After finishing all the writes to them, "
|
|
"create new set of column families and insert to them. Only used "
|
|
"when num_column_families > 1.");
|
|
|
|
DEFINE_string(column_family_distribution, "",
|
|
"Comma-separated list of percentages, where the ith element "
|
|
"indicates the probability of an op using the ith column family. "
|
|
"The number of elements must be `num_hot_column_families` if "
|
|
"specified; otherwise, it must be `num_column_families`. The "
|
|
"sum of elements must be 100. E.g., if `num_column_families=4`, "
|
|
"and `num_hot_column_families=0`, a valid list could be "
|
|
"\"10,20,30,40\".");
|
|
|
|
DEFINE_int64(reads, -1,
|
|
"Number of read operations to do. "
|
|
"If negative, do FLAGS_num reads.");
|
|
|
|
DEFINE_int64(deletes, -1,
|
|
"Number of delete operations to do. "
|
|
"If negative, do FLAGS_num deletions.");
|
|
|
|
DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality");
|
|
|
|
DEFINE_int64(seed, 0,
|
|
"Seed base for random number generators. "
|
|
"When 0 it is derived from the current time.");
|
|
static std::optional<int64_t> seed_base;
|
|
|
|
DEFINE_int32(threads, 1, "Number of concurrent threads to run.");
|
|
|
|
DEFINE_int32(duration, 0,
|
|
"Time in seconds for the random-ops tests to run."
|
|
" When 0 then num & reads determine the test duration");
|
|
|
|
DEFINE_string(value_size_distribution_type, "fixed",
|
|
"Value size distribution type: fixed, uniform, normal");
|
|
|
|
DEFINE_int32(value_size, 100, "Size of each value in fixed distribution");
|
|
static unsigned int value_size = 100;
|
|
|
|
DEFINE_int32(value_size_min, 100, "Min size of random value");
|
|
|
|
DEFINE_int32(value_size_max, 102400, "Max size of random value");
|
|
|
|
DEFINE_int32(seek_nexts, 0,
|
|
"How many times to call Next() after Seek() in "
|
|
"fillseekseq, seekrandom, seekrandomwhilewriting and "
|
|
"seekrandomwhilemerging");
|
|
|
|
DEFINE_bool(reverse_iterator, false,
|
|
"When true use Prev rather than Next for iterators that do "
|
|
"Seek and then Next");
|
|
|
|
DEFINE_bool(auto_prefix_mode, false, "Set auto_prefix_mode for seek benchmark");
|
|
|
|
DEFINE_int64(max_scan_distance, 0,
|
|
"Used to define iterate_upper_bound (or iterate_lower_bound "
|
|
"if FLAGS_reverse_iterator is set to true) when value is nonzero");
|
|
|
|
DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator");
|
|
|
|
DEFINE_int64(batch_size, 1, "Batch size");
|
|
|
|
static bool ValidateKeySize(const char* /*flagname*/, int32_t /*value*/) {
|
|
return true;
|
|
}
|
|
|
|
static bool ValidateUint32Range(const char* flagname, uint64_t value) {
|
|
if (value > std::numeric_limits<uint32_t>::max()) {
|
|
fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname,
|
|
(unsigned long)value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEFINE_int32(key_size, 16, "size of each key");
|
|
|
|
DEFINE_int32(user_timestamp_size, 0,
|
|
"number of bytes in a user-defined timestamp");
|
|
|
|
DEFINE_int32(num_multi_db, 0,
|
|
"Number of DBs used in the benchmark. 0 means single DB.");
|
|
|
|
DEFINE_double(compression_ratio, 0.5,
|
|
"Arrange to generate values that shrink to this fraction of "
|
|
"their original size after compression");
|
|
|
|
DEFINE_double(
|
|
overwrite_probability, 0.0,
|
|
"Used in 'filluniquerandom' benchmark: for each write operation, "
|
|
"we give a probability to perform an overwrite instead. The key used for "
|
|
"the overwrite is randomly chosen from the last 'overwrite_window_size' "
|
|
"keys previously inserted into the DB. "
|
|
"Valid overwrite_probability values: [0.0, 1.0].");
|
|
|
|
DEFINE_uint32(overwrite_window_size, 1,
|
|
"Used in 'filluniquerandom' benchmark. For each write operation,"
|
|
" when the overwrite_probability flag is set by the user, the "
|
|
"key used to perform an overwrite is randomly chosen from the "
|
|
"last 'overwrite_window_size' keys previously inserted into DB. "
|
|
"Warning: large values can affect throughput. "
|
|
"Valid overwrite_window_size values: [1, kMaxUint32].");
|
|
|
|
DEFINE_uint64(
|
|
disposable_entries_delete_delay, 0,
|
|
"Minimum delay in microseconds for the series of Deletes "
|
|
"to be issued. When 0 the insertion of the last disposable entry is "
|
|
"immediately followed by the issuance of the Deletes. "
|
|
"(only compatible with fillanddeleteuniquerandom benchmark).");
|
|
|
|
DEFINE_uint64(disposable_entries_batch_size, 0,
|
|
"Number of consecutively inserted disposable KV entries "
|
|
"that will be deleted after 'delete_delay' microseconds. "
|
|
"A series of Deletes is always issued once all the "
|
|
"disposable KV entries it targets have been inserted "
|
|
"into the DB. When 0 no deletes are issued and a "
|
|
"regular 'filluniquerandom' benchmark occurs. "
|
|
"(only compatible with fillanddeleteuniquerandom benchmark)");
|
|
|
|
DEFINE_int32(disposable_entries_value_size, 64,
|
|
"Size of the values (in bytes) of the entries targeted by "
|
|
"selective deletes. "
|
|
"(only compatible with fillanddeleteuniquerandom benchmark)");
|
|
|
|
DEFINE_uint64(
|
|
persistent_entries_batch_size, 0,
|
|
"Number of KV entries being inserted right before the deletes "
|
|
"targeting the disposable KV entries are issued. These "
|
|
"persistent keys are not targeted by the deletes, and will always "
|
|
"remain valid in the DB. (only compatible with "
|
|
"--benchmarks='fillanddeleteuniquerandom' "
|
|
"and used when--disposable_entries_batch_size is > 0).");
|
|
|
|
DEFINE_int32(persistent_entries_value_size, 64,
|
|
"Size of the values (in bytes) of the entries not targeted by "
|
|
"deletes. (only compatible with "
|
|
"--benchmarks='fillanddeleteuniquerandom' "
|
|
"and used when--disposable_entries_batch_size is > 0).");
|
|
|
|
DEFINE_double(read_random_exp_range, 0.0,
|
|
"Read random's key will be generated using distribution of "
|
|
"num * exp(-r) where r is uniform number from 0 to this value. "
|
|
"The larger the number is, the more skewed the reads are. "
|
|
"Only used in readrandom and multireadrandom benchmarks.");
|
|
|
|
DEFINE_bool(histogram, false, "Print histogram of operation timings");
|
|
|
|
DEFINE_bool(confidence_interval_only, false,
|
|
"Print 95% confidence interval upper and lower bounds only for "
|
|
"aggregate stats.");
|
|
|
|
DEFINE_bool(enable_numa, false,
|
|
"Make operations aware of NUMA architecture and bind memory "
|
|
"and cpus corresponding to nodes together. In NUMA, memory "
|
|
"in same node as CPUs are closer when compared to memory in "
|
|
"other nodes. Reads can be faster when the process is bound to "
|
|
"CPU and memory of same node. Use \"$numactl --hardware\" command "
|
|
"to see NUMA memory architecture.");
|
|
|
|
DEFINE_int64(db_write_buffer_size,
|
|
ROCKSDB_NAMESPACE::Options().db_write_buffer_size,
|
|
"Number of bytes to buffer in all memtables before compacting");
|
|
|
|
DEFINE_bool(cost_write_buffer_to_cache, false,
|
|
"The usage of memtable is costed to the block cache");
|
|
|
|
DEFINE_int64(arena_block_size, ROCKSDB_NAMESPACE::Options().arena_block_size,
|
|
"The size, in bytes, of one block in arena memory allocation.");
|
|
|
|
DEFINE_int64(write_buffer_size, ROCKSDB_NAMESPACE::Options().write_buffer_size,
|
|
"Number of bytes to buffer in memtable before compacting");
|
|
|
|
DEFINE_int32(max_write_buffer_number,
|
|
ROCKSDB_NAMESPACE::Options().max_write_buffer_number,
|
|
"The number of in-memory memtables. Each memtable is of size"
|
|
" write_buffer_size bytes.");
|
|
|
|
DEFINE_int32(min_write_buffer_number_to_merge,
|
|
ROCKSDB_NAMESPACE::Options().min_write_buffer_number_to_merge,
|
|
"The minimum number of write buffers that will be merged together"
|
|
"before writing to storage. This is cheap because it is an"
|
|
"in-memory merge. If this feature is not enabled, then all these"
|
|
"write buffers are flushed to L0 as separate files and this "
|
|
"increases read amplification because a get request has to check"
|
|
" in all of these files. Also, an in-memory merge may result in"
|
|
" writing less data to storage if there are duplicate records "
|
|
" in each of these individual write buffers.");
|
|
|
|
DEFINE_int32(max_write_buffer_number_to_maintain,
|
|
ROCKSDB_NAMESPACE::Options().max_write_buffer_number_to_maintain,
|
|
"The total maximum number of write buffers to maintain in memory "
|
|
"including copies of buffers that have already been flushed. "
|
|
"Unlike max_write_buffer_number, this parameter does not affect "
|
|
"flushing. This controls the minimum amount of write history "
|
|
"that will be available in memory for conflict checking when "
|
|
"Transactions are used. If this value is too low, some "
|
|
"transactions may fail at commit time due to not being able to "
|
|
"determine whether there were any write conflicts. Setting this "
|
|
"value to 0 will cause write buffers to be freed immediately "
|
|
"after they are flushed. If this value is set to -1, "
|
|
"'max_write_buffer_number' will be used.");
|
|
|
|
DEFINE_int64(max_write_buffer_size_to_maintain,
|
|
ROCKSDB_NAMESPACE::Options().max_write_buffer_size_to_maintain,
|
|
"The total maximum size of write buffers to maintain in memory "
|
|
"including copies of buffers that have already been flushed. "
|
|
"Unlike max_write_buffer_number, this parameter does not affect "
|
|
"flushing. This controls the minimum amount of write history "
|
|
"that will be available in memory for conflict checking when "
|
|
"Transactions are used. If this value is too low, some "
|
|
"transactions may fail at commit time due to not being able to "
|
|
"determine whether there were any write conflicts. Setting this "
|
|
"value to 0 will cause write buffers to be freed immediately "
|
|
"after they are flushed. If this value is set to -1, "
|
|
"'max_write_buffer_number' will be used.");
|
|
|
|
DEFINE_int32(max_background_jobs,
|
|
ROCKSDB_NAMESPACE::Options().max_background_jobs,
|
|
"The maximum number of concurrent background jobs that can occur "
|
|
"in parallel.");
|
|
|
|
DEFINE_int32(num_bottom_pri_threads, 0,
|
|
"The number of threads in the bottom-priority thread pool (used "
|
|
"by universal compaction only).");
|
|
|
|
DEFINE_int32(num_high_pri_threads, 0,
|
|
"The maximum number of concurrent background compactions"
|
|
" that can occur in parallel.");
|
|
|
|
DEFINE_int32(num_low_pri_threads, 0,
|
|
"The maximum number of concurrent background compactions"
|
|
" that can occur in parallel.");
|
|
|
|
DEFINE_int32(max_background_compactions,
|
|
ROCKSDB_NAMESPACE::Options().max_background_compactions,
|
|
"The maximum number of concurrent background compactions"
|
|
" that can occur in parallel.");
|
|
|
|
DEFINE_uint64(subcompactions, 1,
|
|
"For CompactRange, set max_subcompactions for each compaction "
|
|
"job in this CompactRange, for auto compactions, this is "
|
|
"Maximum number of subcompactions to divide L0-L1 compactions "
|
|
"into.");
|
|
static const bool FLAGS_subcompactions_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_subcompactions, &ValidateUint32Range);
|
|
|
|
DEFINE_int32(max_background_flushes,
|
|
ROCKSDB_NAMESPACE::Options().max_background_flushes,
|
|
"The maximum number of concurrent background flushes"
|
|
" that can occur in parallel.");
|
|
|
|
static ROCKSDB_NAMESPACE::CompactionStyle FLAGS_compaction_style_e;
|
|
DEFINE_int32(compaction_style,
|
|
(int32_t)ROCKSDB_NAMESPACE::Options().compaction_style,
|
|
"style of compaction: level-based, universal and fifo");
|
|
|
|
static ROCKSDB_NAMESPACE::CompactionPri FLAGS_compaction_pri_e;
|
|
DEFINE_int32(compaction_pri,
|
|
(int32_t)ROCKSDB_NAMESPACE::Options().compaction_pri,
|
|
"priority of files to compaction: by size or by data age");
|
|
|
|
DEFINE_int32(universal_size_ratio, 0,
|
|
"Percentage flexibility while comparing file size "
|
|
"(for universal compaction only).");
|
|
|
|
DEFINE_int32(universal_min_merge_width, 0,
|
|
"The minimum number of files in a single compaction run "
|
|
"(for universal compaction only).");
|
|
|
|
DEFINE_int32(universal_max_merge_width, 0,
|
|
"The max number of files to compact in universal style "
|
|
"compaction");
|
|
|
|
DEFINE_int32(universal_max_size_amplification_percent, 0,
|
|
"The max size amplification for universal style compaction");
|
|
|
|
DEFINE_int32(universal_compression_size_percent, -1,
|
|
"The percentage of the database to compress for universal "
|
|
"compaction. -1 means compress everything.");
|
|
|
|
DEFINE_bool(universal_allow_trivial_move, false,
|
|
"Allow trivial move in universal compaction.");
|
|
|
|
DEFINE_bool(universal_incremental, false,
|
|
"Enable incremental compactions in universal compaction.");
|
|
|
|
DEFINE_int64(cache_size, 32 << 20, // 32MB
|
|
"Number of bytes to use as a cache of uncompressed data");
|
|
|
|
DEFINE_int32(cache_numshardbits, -1,
|
|
"Number of shards for the block cache"
|
|
" is 2 ** cache_numshardbits. Negative means use default settings."
|
|
" This is applied only if FLAGS_cache_size is non-negative.");
|
|
|
|
DEFINE_double(cache_high_pri_pool_ratio, 0.0,
|
|
"Ratio of block cache reserve for high pri blocks. "
|
|
"If > 0.0, we also enable "
|
|
"cache_index_and_filter_blocks_with_high_priority.");
|
|
|
|
DEFINE_double(cache_low_pri_pool_ratio, 0.0,
|
|
"Ratio of block cache reserve for low pri blocks.");
|
|
|
|
DEFINE_string(cache_type, "lru_cache", "Type of block cache.");
|
|
|
|
DEFINE_bool(use_compressed_secondary_cache, false,
|
|
"Use the CompressedSecondaryCache as the secondary cache.");
|
|
|
|
DEFINE_int64(compressed_secondary_cache_size, 32 << 20, // 32MB
|
|
"Number of bytes to use as a cache of data");
|
|
|
|
DEFINE_int32(compressed_secondary_cache_numshardbits, 6,
|
|
"Number of shards for the block cache"
|
|
" is 2 ** compressed_secondary_cache_numshardbits."
|
|
" Negative means use default settings."
|
|
" This is applied only if FLAGS_cache_size is non-negative.");
|
|
|
|
DEFINE_double(compressed_secondary_cache_high_pri_pool_ratio, 0.0,
|
|
"Ratio of block cache reserve for high pri blocks. "
|
|
"If > 0.0, we also enable "
|
|
"cache_index_and_filter_blocks_with_high_priority.");
|
|
|
|
DEFINE_double(compressed_secondary_cache_low_pri_pool_ratio, 0.0,
|
|
"Ratio of block cache reserve for low pri blocks.");
|
|
|
|
DEFINE_string(compressed_secondary_cache_compression_type, "lz4",
|
|
"The compression algorithm to use for large "
|
|
"values stored in CompressedSecondaryCache.");
|
|
static enum ROCKSDB_NAMESPACE::CompressionType
|
|
FLAGS_compressed_secondary_cache_compression_type_e =
|
|
ROCKSDB_NAMESPACE::kLZ4Compression;
|
|
|
|
DEFINE_int32(compressed_secondary_cache_compression_level,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().level,
|
|
"Compression level. The meaning of this value is library-"
|
|
"dependent. If unset, we try to use the default for the library "
|
|
"specified in `--compressed_secondary_cache_compression_type`");
|
|
|
|
DEFINE_uint32(
|
|
compressed_secondary_cache_compress_format_version, 2,
|
|
"compress_format_version can have two values: "
|
|
"compress_format_version == 1 -- decompressed size is not included"
|
|
" in the block header."
|
|
"compress_format_version == 2 -- decompressed size is included"
|
|
" in the block header in varint32 format.");
|
|
|
|
DEFINE_bool(use_tiered_cache, false,
|
|
"If use_compressed_secondary_cache is true and "
|
|
"use_tiered_volatile_cache is true, then allocate a tiered cache "
|
|
"that distributes cache reservations proportionally over both "
|
|
"the caches.");
|
|
|
|
DEFINE_string(
|
|
tiered_adm_policy, "auto",
|
|
"Admission policy to use for the secondary cache(s) in the tiered cache. "
|
|
"Allowed values are auto, placeholder, allow_cache_hits, and three_queue.");
|
|
|
|
DEFINE_int64(simcache_size, -1,
|
|
"Number of bytes to use as a simcache of "
|
|
"uncompressed data. Nagative value disables simcache.");
|
|
|
|
DEFINE_bool(cache_index_and_filter_blocks, false,
|
|
"Cache index/filter blocks in block cache.");
|
|
|
|
DEFINE_bool(use_cache_jemalloc_no_dump_allocator, false,
|
|
"Use JemallocNodumpAllocator for block/blob cache.");
|
|
|
|
DEFINE_bool(use_cache_memkind_kmem_allocator, false,
|
|
"Use memkind kmem allocator for block/blob cache.");
|
|
|
|
DEFINE_bool(partition_index_and_filters, false,
|
|
"Partition index and filter blocks.");
|
|
|
|
DEFINE_bool(partition_index, false, "Partition index blocks");
|
|
|
|
DEFINE_bool(index_with_first_key, false, "Include first key in the index");
|
|
|
|
DEFINE_bool(
|
|
optimize_filters_for_memory,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().optimize_filters_for_memory,
|
|
"Minimize memory footprint of filters");
|
|
|
|
DEFINE_int64(
|
|
index_shortening_mode, 2,
|
|
"mode to shorten index: 0 for no shortening; 1 for only shortening "
|
|
"separaters; 2 for shortening shortening and successor");
|
|
|
|
DEFINE_int64(metadata_block_size,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().metadata_block_size,
|
|
"Max partition size when partitioning index/filters");
|
|
|
|
// The default reduces the overhead of reading time with flash. With HDD, which
|
|
// offers much less throughput, however, this number better to be set to 1.
|
|
DEFINE_int32(ops_between_duration_checks, 1000,
|
|
"Check duration limit every x ops");
|
|
|
|
DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false,
|
|
"Pin index/filter blocks of L0 files in block cache.");
|
|
|
|
DEFINE_bool(
|
|
pin_top_level_index_and_filter, false,
|
|
"Pin top-level index of partitioned index/filter blocks in block cache.");
|
|
|
|
DEFINE_int32(block_size,
|
|
static_cast<int32_t>(
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_size),
|
|
"Number of bytes in a block.");
|
|
|
|
DEFINE_int32(format_version,
|
|
static_cast<int32_t>(
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().format_version),
|
|
"Format version of SST files.");
|
|
|
|
DEFINE_int32(block_restart_interval,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_restart_interval,
|
|
"Number of keys between restart points "
|
|
"for delta encoding of keys in data block.");
|
|
|
|
DEFINE_int32(
|
|
index_block_restart_interval,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().index_block_restart_interval,
|
|
"Number of keys between restart points "
|
|
"for delta encoding of keys in index block.");
|
|
|
|
DEFINE_int32(read_amp_bytes_per_bit,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().read_amp_bytes_per_bit,
|
|
"Number of bytes per bit to be used in block read-amp bitmap");
|
|
|
|
DEFINE_bool(
|
|
enable_index_compression,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().enable_index_compression,
|
|
"Compress the index block");
|
|
|
|
DEFINE_bool(block_align,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_align,
|
|
"Align data blocks on page size");
|
|
|
|
DEFINE_int64(prepopulate_block_cache, 0,
|
|
"Pre-populate hot/warm blocks in block cache. 0 to disable and 1 "
|
|
"to insert during flush");
|
|
|
|
DEFINE_bool(use_data_block_hash_index, false,
|
|
"if use kDataBlockBinaryAndHash "
|
|
"instead of kDataBlockBinarySearch. "
|
|
"This is valid if only we use BlockTable");
|
|
|
|
DEFINE_double(data_block_hash_table_util_ratio, 0.75,
|
|
"util ratio for data block hash index table. "
|
|
"This is only valid if use_data_block_hash_index is "
|
|
"set to true");
|
|
|
|
DEFINE_int64(compressed_cache_size, -1,
|
|
"Number of bytes to use as a cache of compressed data.");
|
|
|
|
DEFINE_int64(row_cache_size, 0,
|
|
"Number of bytes to use as a cache of individual rows"
|
|
" (0 = disabled).");
|
|
|
|
DEFINE_int32(open_files, ROCKSDB_NAMESPACE::Options().max_open_files,
|
|
"Maximum number of files to keep open at the same time"
|
|
" (use default if == 0)");
|
|
|
|
DEFINE_int32(file_opening_threads,
|
|
ROCKSDB_NAMESPACE::Options().max_file_opening_threads,
|
|
"If open_files is set to -1, this option set the number of "
|
|
"threads that will be used to open files during DB::Open()");
|
|
|
|
DEFINE_uint64(compaction_readahead_size,
|
|
ROCKSDB_NAMESPACE::Options().compaction_readahead_size,
|
|
"Compaction readahead size");
|
|
|
|
DEFINE_int32(log_readahead_size, 0, "WAL and manifest readahead size");
|
|
|
|
DEFINE_int32(random_access_max_buffer_size, 1024 * 1024,
|
|
"Maximum windows randomaccess buffer size");
|
|
|
|
DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024,
|
|
"Maximum write buffer for Writable File");
|
|
|
|
DEFINE_int32(bloom_bits, -1,
|
|
"Bloom filter bits per key. Negative means use default."
|
|
"Zero disables.");
|
|
|
|
DEFINE_bool(use_ribbon_filter, false, "Use Ribbon instead of Bloom filter");
|
|
|
|
DEFINE_double(memtable_bloom_size_ratio, 0,
|
|
"Ratio of memtable size used for bloom filter. 0 means no bloom "
|
|
"filter.");
|
|
DEFINE_bool(memtable_whole_key_filtering, false,
|
|
"Try to use whole key bloom filter in memtables.");
|
|
DEFINE_bool(memtable_use_huge_page, false,
|
|
"Try to use huge page in memtables.");
|
|
|
|
DEFINE_bool(whole_key_filtering,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().whole_key_filtering,
|
|
"Use whole keys (in addition to prefixes) in SST bloom filter.");
|
|
|
|
DEFINE_bool(use_existing_db, false,
|
|
"If true, do not destroy the existing database. If you set this "
|
|
"flag and also specify a benchmark that wants a fresh database, "
|
|
"that benchmark will fail.");
|
|
|
|
DEFINE_bool(use_existing_keys, false,
|
|
"If true, uses existing keys in the DB, "
|
|
"rather than generating new ones. This involves some startup "
|
|
"latency to load all keys into memory. It is supported for the "
|
|
"same read/overwrite benchmarks as `-use_existing_db=true`, which "
|
|
"must also be set for this flag to be enabled. When this flag is "
|
|
"set, the value for `-num` will be ignored.");
|
|
|
|
DEFINE_bool(show_table_properties, false,
|
|
"If true, then per-level table"
|
|
" properties will be printed on every stats-interval when"
|
|
" stats_interval is set and stats_per_interval is on.");
|
|
|
|
DEFINE_string(db, "", "Use the db with the following name.");
|
|
|
|
DEFINE_bool(progress_reports, true,
|
|
"If true, db_bench will report number of finished operations.");
|
|
|
|
// Read cache flags
|
|
|
|
DEFINE_string(read_cache_path, "",
|
|
"If not empty string, a read cache will be used in this path");
|
|
|
|
DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024,
|
|
"Maximum size of the read cache");
|
|
|
|
DEFINE_bool(read_cache_direct_write, true,
|
|
"Whether to use Direct IO for writing to the read cache");
|
|
|
|
DEFINE_bool(read_cache_direct_read, true,
|
|
"Whether to use Direct IO for reading from read cache");
|
|
|
|
DEFINE_bool(use_keep_filter, false, "Whether to use a noop compaction filter");
|
|
|
|
static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) {
|
|
if (value >= 20) {
|
|
fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n", flagname,
|
|
value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEFINE_bool(verify_checksum, true,
|
|
"Verify checksum for every block read from storage");
|
|
|
|
DEFINE_int32(checksum_type,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().checksum,
|
|
"ChecksumType as an int");
|
|
|
|
DEFINE_bool(statistics, false, "Database statistics");
|
|
DEFINE_int32(stats_level, ROCKSDB_NAMESPACE::StatsLevel::kExceptDetailedTimers,
|
|
"stats level for statistics");
|
|
DEFINE_string(statistics_string, "", "Serialized statistics string");
|
|
static class std::shared_ptr<ROCKSDB_NAMESPACE::Statistics> dbstats;
|
|
|
|
DEFINE_int64(writes, -1,
|
|
"Number of write operations to do. If negative, do --num reads.");
|
|
|
|
DEFINE_bool(finish_after_writes, false,
|
|
"Write thread terminates after all writes are finished");
|
|
|
|
DEFINE_bool(sync, false, "Sync all writes to disk");
|
|
|
|
DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync");
|
|
|
|
DEFINE_bool(disable_wal, false, "If true, do not write WAL for write.");
|
|
|
|
DEFINE_bool(manual_wal_flush, false,
|
|
"If true, buffer WAL until buffer is full or a manual FlushWAL().");
|
|
|
|
DEFINE_string(wal_compression, "none",
|
|
"Algorithm to use for WAL compression. none to disable.");
|
|
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_wal_compression_e =
|
|
ROCKSDB_NAMESPACE::kNoCompression;
|
|
|
|
DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL");
|
|
|
|
DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench",
|
|
"Truth key/values used when using verify");
|
|
|
|
DEFINE_int32(num_levels, 7, "The total number of levels");
|
|
|
|
DEFINE_int64(target_file_size_base,
|
|
ROCKSDB_NAMESPACE::Options().target_file_size_base,
|
|
"Target file size at level-1");
|
|
|
|
DEFINE_int32(target_file_size_multiplier,
|
|
ROCKSDB_NAMESPACE::Options().target_file_size_multiplier,
|
|
"A multiplier to compute target level-N file size (N >= 2)");
|
|
|
|
DEFINE_uint64(max_bytes_for_level_base,
|
|
ROCKSDB_NAMESPACE::Options().max_bytes_for_level_base,
|
|
"Max bytes for level-1");
|
|
|
|
DEFINE_bool(level_compaction_dynamic_level_bytes, false,
|
|
"Whether level size base is dynamic");
|
|
|
|
DEFINE_double(max_bytes_for_level_multiplier, 10,
|
|
"A multiplier to compute max bytes for level-N (N >= 2)");
|
|
|
|
static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional_v;
|
|
DEFINE_string(max_bytes_for_level_multiplier_additional, "",
|
|
"A vector that specifies additional fanout per level");
|
|
|
|
DEFINE_int32(level0_stop_writes_trigger,
|
|
ROCKSDB_NAMESPACE::Options().level0_stop_writes_trigger,
|
|
"Number of files in level-0 that will trigger put stop.");
|
|
|
|
DEFINE_int32(level0_slowdown_writes_trigger,
|
|
ROCKSDB_NAMESPACE::Options().level0_slowdown_writes_trigger,
|
|
"Number of files in level-0 that will slow down writes.");
|
|
|
|
DEFINE_int32(level0_file_num_compaction_trigger,
|
|
ROCKSDB_NAMESPACE::Options().level0_file_num_compaction_trigger,
|
|
"Number of files in level-0 when compactions start.");
|
|
|
|
DEFINE_uint64(periodic_compaction_seconds,
|
|
ROCKSDB_NAMESPACE::Options().periodic_compaction_seconds,
|
|
"Files older than this will be picked up for compaction and"
|
|
" rewritten to the same level");
|
|
|
|
DEFINE_uint64(ttl_seconds, ROCKSDB_NAMESPACE::Options().ttl, "Set options.ttl");
|
|
|
|
static bool ValidateInt32Percent(const char* flagname, int32_t value) {
|
|
if (value <= 0 || value >= 100) {
|
|
fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n", flagname,
|
|
value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
DEFINE_int32(readwritepercent, 90,
|
|
"Ratio of reads to reads/writes (expressed as percentage) for "
|
|
"the ReadRandomWriteRandom workload. The default value 90 means "
|
|
"90% operations out of all reads and writes operations are "
|
|
"reads. In other words, 9 gets for every 1 put.");
|
|
|
|
DEFINE_int32(mergereadpercent, 70,
|
|
"Ratio of merges to merges&reads (expressed as percentage) for "
|
|
"the ReadRandomMergeRandom workload. The default value 70 means "
|
|
"70% out of all read and merge operations are merges. In other "
|
|
"words, 7 merges for every 3 gets.");
|
|
|
|
DEFINE_int32(deletepercent, 2,
|
|
"Percentage of deletes out of reads/writes/deletes (used in "
|
|
"RandomWithVerify only). RandomWithVerify "
|
|
"calculates writepercent as (100 - FLAGS_readwritepercent - "
|
|
"deletepercent), so deletepercent must be smaller than (100 - "
|
|
"FLAGS_readwritepercent)");
|
|
|
|
DEFINE_bool(optimize_filters_for_hits,
|
|
ROCKSDB_NAMESPACE::Options().optimize_filters_for_hits,
|
|
"Optimizes bloom filters for workloads for most lookups return "
|
|
"a value. For now this doesn't create bloom filters for the max "
|
|
"level of the LSM to reduce metadata that should fit in RAM. ");
|
|
|
|
DEFINE_bool(paranoid_checks, ROCKSDB_NAMESPACE::Options().paranoid_checks,
|
|
"RocksDB will aggressively check consistency of the data.");
|
|
|
|
DEFINE_bool(force_consistency_checks,
|
|
ROCKSDB_NAMESPACE::Options().force_consistency_checks,
|
|
"Runs consistency checks on the LSM every time a change is "
|
|
"applied.");
|
|
|
|
DEFINE_uint64(delete_obsolete_files_period_micros, 0,
|
|
"Ignored. Left here for backward compatibility");
|
|
|
|
DEFINE_int64(writes_before_delete_range, 0,
|
|
"Number of writes before DeleteRange is called regularly.");
|
|
|
|
DEFINE_int64(writes_per_range_tombstone, 0,
|
|
"Number of writes between range tombstones");
|
|
|
|
DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range");
|
|
|
|
DEFINE_int64(max_num_range_tombstones, 0,
|
|
"Maximum number of range tombstones to insert.");
|
|
|
|
DEFINE_bool(expand_range_tombstones, false,
|
|
"Expand range tombstone into sequential regular tombstones.");
|
|
|
|
// Transactions Options
|
|
DEFINE_bool(optimistic_transaction_db, false,
|
|
"Open a OptimisticTransactionDB instance. "
|
|
"Required for randomtransaction benchmark.");
|
|
|
|
DEFINE_bool(transaction_db, false,
|
|
"Open a TransactionDB instance. "
|
|
"Required for randomtransaction benchmark.");
|
|
|
|
DEFINE_uint64(transaction_sets, 2,
|
|
"Number of keys each transaction will "
|
|
"modify (use in RandomTransaction only). Max: 9999");
|
|
|
|
DEFINE_bool(transaction_set_snapshot, false,
|
|
"Setting to true will have each transaction call SetSnapshot()"
|
|
" upon creation.");
|
|
|
|
DEFINE_int32(transaction_sleep, 0,
|
|
"Max microseconds to sleep in between "
|
|
"reading and writing a value (used in RandomTransaction only). ");
|
|
|
|
DEFINE_uint64(transaction_lock_timeout, 100,
|
|
"If using a transaction_db, specifies the lock wait timeout in"
|
|
" milliseconds before failing a transaction waiting on a lock");
|
|
DEFINE_string(
|
|
options_file, "",
|
|
"The path to a RocksDB options file. If specified, then db_bench will "
|
|
"run with the RocksDB options in the default column family of the "
|
|
"specified options file. "
|
|
"Note that with this setting, db_bench will ONLY accept the following "
|
|
"RocksDB options related command-line arguments, all other arguments "
|
|
"that are related to RocksDB options will be ignored:\n"
|
|
"\t--use_existing_db\n"
|
|
"\t--use_existing_keys\n"
|
|
"\t--statistics\n"
|
|
"\t--row_cache_size\n"
|
|
"\t--row_cache_numshardbits\n"
|
|
"\t--enable_io_prio\n"
|
|
"\t--dump_malloc_stats\n"
|
|
"\t--num_multi_db\n");
|
|
|
|
// FIFO Compaction Options
|
|
DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0,
|
|
"The limit of total table file sizes to trigger FIFO compaction");
|
|
|
|
DEFINE_bool(fifo_compaction_allow_compaction, true,
|
|
"Allow compaction in FIFO compaction.");
|
|
|
|
DEFINE_uint64(fifo_compaction_ttl, 0, "TTL for the SST Files in seconds.");
|
|
|
|
DEFINE_uint64(fifo_age_for_warm, 0, "age_for_warm for FIFO compaction.");
|
|
|
|
// Stacked BlobDB Options
|
|
DEFINE_bool(use_blob_db, false, "[Stacked BlobDB] Open a BlobDB instance.");
|
|
|
|
DEFINE_bool(
|
|
blob_db_enable_gc,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().enable_garbage_collection,
|
|
"[Stacked BlobDB] Enable BlobDB garbage collection.");
|
|
|
|
DEFINE_double(
|
|
blob_db_gc_cutoff,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().garbage_collection_cutoff,
|
|
"[Stacked BlobDB] Cutoff ratio for BlobDB garbage collection.");
|
|
|
|
DEFINE_bool(blob_db_is_fifo,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().is_fifo,
|
|
"[Stacked BlobDB] Enable FIFO eviction strategy in BlobDB.");
|
|
|
|
DEFINE_uint64(blob_db_max_db_size,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().max_db_size,
|
|
"[Stacked BlobDB] Max size limit of the directory where blob "
|
|
"files are stored.");
|
|
|
|
DEFINE_uint64(blob_db_max_ttl_range, 0,
|
|
"[Stacked BlobDB] TTL range to generate BlobDB data (in "
|
|
"seconds). 0 means no TTL.");
|
|
|
|
DEFINE_uint64(
|
|
blob_db_ttl_range_secs,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().ttl_range_secs,
|
|
"[Stacked BlobDB] TTL bucket size to use when creating blob files.");
|
|
|
|
DEFINE_uint64(
|
|
blob_db_min_blob_size,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().min_blob_size,
|
|
"[Stacked BlobDB] Smallest blob to store in a file. Blobs "
|
|
"smaller than this will be inlined with the key in the LSM tree.");
|
|
|
|
DEFINE_uint64(blob_db_bytes_per_sync,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().bytes_per_sync,
|
|
"[Stacked BlobDB] Bytes to sync blob file at.");
|
|
|
|
DEFINE_uint64(blob_db_file_size,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().blob_file_size,
|
|
"[Stacked BlobDB] Target size of each blob file.");
|
|
|
|
DEFINE_string(
|
|
blob_db_compression_type, "snappy",
|
|
"[Stacked BlobDB] Algorithm to use to compress blobs in blob files.");
|
|
static enum ROCKSDB_NAMESPACE::CompressionType
|
|
FLAGS_blob_db_compression_type_e = ROCKSDB_NAMESPACE::kSnappyCompression;
|
|
|
|
|
|
// Integrated BlobDB options
|
|
DEFINE_bool(
|
|
enable_blob_files,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().enable_blob_files,
|
|
"[Integrated BlobDB] Enable writing large values to separate blob files.");
|
|
|
|
DEFINE_uint64(min_blob_size,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().min_blob_size,
|
|
"[Integrated BlobDB] The size of the smallest value to be stored "
|
|
"separately in a blob file.");
|
|
|
|
DEFINE_uint64(blob_file_size,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_size,
|
|
"[Integrated BlobDB] The size limit for blob files.");
|
|
|
|
DEFINE_string(blob_compression_type, "none",
|
|
"[Integrated BlobDB] The compression algorithm to use for large "
|
|
"values stored in blob files.");
|
|
|
|
DEFINE_bool(enable_blob_garbage_collection,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.enable_blob_garbage_collection,
|
|
"[Integrated BlobDB] Enable blob garbage collection.");
|
|
|
|
DEFINE_double(blob_garbage_collection_age_cutoff,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.blob_garbage_collection_age_cutoff,
|
|
"[Integrated BlobDB] The cutoff in terms of blob file age for "
|
|
"garbage collection.");
|
|
|
|
DEFINE_double(blob_garbage_collection_force_threshold,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.blob_garbage_collection_force_threshold,
|
|
"[Integrated BlobDB] The threshold for the ratio of garbage in "
|
|
"the oldest blob files for forcing garbage collection.");
|
|
|
|
DEFINE_uint64(blob_compaction_readahead_size,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.blob_compaction_readahead_size,
|
|
"[Integrated BlobDB] Compaction readahead for blob files.");
|
|
|
|
DEFINE_int32(
|
|
blob_file_starting_level,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_starting_level,
|
|
"[Integrated BlobDB] The starting level for blob files.");
|
|
|
|
DEFINE_bool(use_blob_cache, false, "[Integrated BlobDB] Enable blob cache.");
|
|
|
|
DEFINE_bool(
|
|
use_shared_block_and_blob_cache, true,
|
|
"[Integrated BlobDB] Use a shared backing cache for both block "
|
|
"cache and blob cache. It only takes effect if use_blob_cache is enabled.");
|
|
|
|
DEFINE_uint64(
|
|
blob_cache_size, 8 << 20,
|
|
"[Integrated BlobDB] Number of bytes to use as a cache of blobs. It only "
|
|
"takes effect if the block and blob caches are different "
|
|
"(use_shared_block_and_blob_cache = false).");
|
|
|
|
DEFINE_int32(blob_cache_numshardbits, 6,
|
|
"[Integrated BlobDB] Number of shards for the blob cache is 2 ** "
|
|
"blob_cache_numshardbits. Negative means use default settings. "
|
|
"It only takes effect if blob_cache_size is greater than 0, and "
|
|
"the block and blob caches are different "
|
|
"(use_shared_block_and_blob_cache = false).");
|
|
|
|
DEFINE_int32(prepopulate_blob_cache, 0,
|
|
"[Integrated BlobDB] Pre-populate hot/warm blobs in blob cache. 0 "
|
|
"to disable and 1 to insert during flush.");
|
|
|
|
|
|
// Secondary DB instance Options
|
|
DEFINE_bool(use_secondary_db, false,
|
|
"Open a RocksDB secondary instance. A primary instance can be "
|
|
"running in another db_bench process.");
|
|
|
|
DEFINE_string(secondary_path, "",
|
|
"Path to a directory used by the secondary instance to store "
|
|
"private files, e.g. info log.");
|
|
|
|
DEFINE_int32(secondary_update_interval, 5,
|
|
"Secondary instance attempts to catch up with the primary every "
|
|
"secondary_update_interval seconds.");
|
|
|
|
|
|
DEFINE_bool(report_bg_io_stats, false,
|
|
"Measure times spents on I/Os while in compactions. ");
|
|
|
|
DEFINE_bool(use_stderr_info_logger, false,
|
|
"Write info logs to stderr instead of to LOG file. ");
|
|
|
|
|
|
DEFINE_string(trace_file, "", "Trace workload to a file. ");
|
|
|
|
DEFINE_double(trace_replay_fast_forward, 1.0,
|
|
"Fast forward trace replay, must > 0.0.");
|
|
DEFINE_int32(block_cache_trace_sampling_frequency, 1,
|
|
"Block cache trace sampling frequency, termed s. It uses spatial "
|
|
"downsampling and samples accesses to one out of s blocks.");
|
|
DEFINE_int64(
|
|
block_cache_trace_max_trace_file_size_in_bytes,
|
|
uint64_t{64} * 1024 * 1024 * 1024,
|
|
"The maximum block cache trace file size in bytes. Block cache accesses "
|
|
"will not be logged if the trace file size exceeds this threshold. Default "
|
|
"is 64 GB.");
|
|
DEFINE_string(block_cache_trace_file, "", "Block cache trace file path.");
|
|
DEFINE_int32(trace_replay_threads, 1,
|
|
"The number of threads to replay, must >=1.");
|
|
|
|
DEFINE_bool(io_uring_enabled, true,
|
|
"If true, enable the use of IO uring if the platform supports it");
|
|
extern "C" bool RocksDbIOUringEnable() { return FLAGS_io_uring_enabled; }
|
|
|
|
DEFINE_bool(adaptive_readahead, false,
|
|
"carry forward internal auto readahead size from one file to next "
|
|
"file at each level during iteration");
|
|
|
|
DEFINE_bool(rate_limit_user_ops, false,
|
|
"When true use Env::IO_USER priority level to charge internal rate "
|
|
"limiter for reads associated with user operations.");
|
|
|
|
DEFINE_bool(file_checksum, false,
|
|
"When true use FileChecksumGenCrc32cFactory for "
|
|
"file_checksum_gen_factory.");
|
|
|
|
DEFINE_bool(rate_limit_auto_wal_flush, false,
|
|
"When true use Env::IO_USER priority level to charge internal rate "
|
|
"limiter for automatic WAL flush (`Options::manual_wal_flush` == "
|
|
"false) after the user write operation.");
|
|
|
|
DEFINE_bool(async_io, false,
|
|
"When set true, RocksDB does asynchronous reads for internal auto "
|
|
"readahead prefetching.");
|
|
|
|
DEFINE_bool(optimize_multiget_for_io, true,
|
|
"When set true, RocksDB does asynchronous reads for SST files in "
|
|
"multiple levels for MultiGet.");
|
|
|
|
DEFINE_bool(charge_compression_dictionary_building_buffer, false,
|
|
"Setting for "
|
|
"CacheEntryRoleOptions::charged of "
|
|
"CacheEntryRole::kCompressionDictionaryBuildingBuffer");
|
|
|
|
DEFINE_bool(charge_filter_construction, false,
|
|
"Setting for "
|
|
"CacheEntryRoleOptions::charged of "
|
|
"CacheEntryRole::kFilterConstruction");
|
|
|
|
DEFINE_bool(charge_table_reader, false,
|
|
"Setting for "
|
|
"CacheEntryRoleOptions::charged of "
|
|
"CacheEntryRole::kBlockBasedTableReader");
|
|
|
|
DEFINE_bool(charge_file_metadata, false,
|
|
"Setting for "
|
|
"CacheEntryRoleOptions::charged of "
|
|
"CacheEntryRole::kFileMetadata");
|
|
|
|
DEFINE_bool(charge_blob_cache, false,
|
|
"Setting for "
|
|
"CacheEntryRoleOptions::charged of "
|
|
"CacheEntryRole::kBlobCache");
|
|
|
|
DEFINE_uint64(backup_rate_limit, 0ull,
|
|
"If non-zero, db_bench will rate limit reads and writes for DB "
|
|
"backup. This "
|
|
"is the global rate in ops/second.");
|
|
|
|
DEFINE_uint64(restore_rate_limit, 0ull,
|
|
"If non-zero, db_bench will rate limit reads and writes for DB "
|
|
"restore. This "
|
|
"is the global rate in ops/second.");
|
|
|
|
DEFINE_string(backup_dir, "",
|
|
"If not empty string, use the given dir for backup.");
|
|
|
|
DEFINE_string(restore_dir, "",
|
|
"If not empty string, use the given dir for restore.");
|
|
|
|
DEFINE_uint64(
|
|
initial_auto_readahead_size,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().initial_auto_readahead_size,
|
|
"RocksDB does auto-readahead for iterators on noticing more than two reads "
|
|
"for a table file if user doesn't provide readahead_size. The readahead "
|
|
"size starts at initial_auto_readahead_size");
|
|
|
|
DEFINE_uint64(
|
|
max_auto_readahead_size,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().max_auto_readahead_size,
|
|
"Rocksdb implicit readahead starts at "
|
|
"BlockBasedTableOptions.initial_auto_readahead_size and doubles on every "
|
|
"additional read upto max_auto_readahead_size");
|
|
|
|
DEFINE_uint64(
|
|
num_file_reads_for_auto_readahead,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions()
|
|
.num_file_reads_for_auto_readahead,
|
|
"Rocksdb implicit readahead is enabled if reads are sequential and "
|
|
"num_file_reads_for_auto_readahead indicates after how many sequential "
|
|
"reads into that file internal auto prefetching should be start.");
|
|
|
|
DEFINE_bool(
|
|
auto_readahead_size, false,
|
|
"When set true, RocksDB does auto tuning of readahead size during Scans");
|
|
|
|
static enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
|
|
const char* ctype) {
|
|
assert(ctype);
|
|
|
|
if (!strcasecmp(ctype, "none")) {
|
|
return ROCKSDB_NAMESPACE::kNoCompression;
|
|
} else if (!strcasecmp(ctype, "snappy")) {
|
|
return ROCKSDB_NAMESPACE::kSnappyCompression;
|
|
} else if (!strcasecmp(ctype, "zlib")) {
|
|
return ROCKSDB_NAMESPACE::kZlibCompression;
|
|
} else if (!strcasecmp(ctype, "bzip2")) {
|
|
return ROCKSDB_NAMESPACE::kBZip2Compression;
|
|
} else if (!strcasecmp(ctype, "lz4")) {
|
|
return ROCKSDB_NAMESPACE::kLZ4Compression;
|
|
} else if (!strcasecmp(ctype, "lz4hc")) {
|
|
return ROCKSDB_NAMESPACE::kLZ4HCCompression;
|
|
} else if (!strcasecmp(ctype, "xpress")) {
|
|
return ROCKSDB_NAMESPACE::kXpressCompression;
|
|
} else if (!strcasecmp(ctype, "zstd")) {
|
|
return ROCKSDB_NAMESPACE::kZSTD;
|
|
} else {
|
|
fprintf(stderr, "Cannot parse compression type '%s'\n", ctype);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static enum ROCKSDB_NAMESPACE::TieredAdmissionPolicy StringToAdmissionPolicy(
|
|
const char* policy) {
|
|
assert(policy);
|
|
|
|
if (!strcasecmp(policy, "auto")) {
|
|
return ROCKSDB_NAMESPACE::kAdmPolicyAuto;
|
|
} else if (!strcasecmp(policy, "placeholder")) {
|
|
return ROCKSDB_NAMESPACE::kAdmPolicyPlaceholder;
|
|
} else if (!strcasecmp(policy, "allow_cache_hits")) {
|
|
return ROCKSDB_NAMESPACE::kAdmPolicyAllowCacheHits;
|
|
} else if (!strcasecmp(policy, "three_queue")) {
|
|
return ROCKSDB_NAMESPACE::kAdmPolicyThreeQueue;
|
|
} else {
|
|
fprintf(stderr, "Cannot parse admission policy %s\n", policy);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static std::string ColumnFamilyName(size_t i) {
|
|
if (i == 0) {
|
|
return ROCKSDB_NAMESPACE::kDefaultColumnFamilyName;
|
|
} else {
|
|
char name[100];
|
|
snprintf(name, sizeof(name), "column_family_name_%06zu", i);
|
|
return std::string(name);
|
|
}
|
|
}
|
|
|
|
DEFINE_string(compression_type, "snappy",
|
|
"Algorithm to use to compress the database");
|
|
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_compression_type_e =
|
|
ROCKSDB_NAMESPACE::kSnappyCompression;
|
|
|
|
DEFINE_int64(sample_for_compression, 0, "Sample every N block for compression");
|
|
|
|
DEFINE_int32(compression_level, ROCKSDB_NAMESPACE::CompressionOptions().level,
|
|
"Compression level. The meaning of this value is library-"
|
|
"dependent. If unset, we try to use the default for the library "
|
|
"specified in `--compression_type`");
|
|
|
|
DEFINE_int32(compression_max_dict_bytes,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().max_dict_bytes,
|
|
"Maximum size of dictionary used to prime the compression "
|
|
"library.");
|
|
|
|
DEFINE_int32(compression_zstd_max_train_bytes,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().zstd_max_train_bytes,
|
|
"Maximum size of training data passed to zstd's dictionary "
|
|
"trainer.");
|
|
|
|
DEFINE_int32(min_level_to_compress, -1,
|
|
"If non-negative, compression starts"
|
|
" from this level. Levels with number < min_level_to_compress are"
|
|
" not compressed. Otherwise, apply compression_type to "
|
|
"all levels.");
|
|
|
|
DEFINE_int32(compression_parallel_threads, 1,
|
|
"Number of threads for parallel compression.");
|
|
|
|
DEFINE_uint64(compression_max_dict_buffer_bytes,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().max_dict_buffer_bytes,
|
|
"Maximum bytes to buffer to collect samples for dictionary.");
|
|
|
|
DEFINE_bool(compression_use_zstd_dict_trainer,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().use_zstd_dict_trainer,
|
|
"If true, use ZSTD_TrainDictionary() to create dictionary, else"
|
|
"use ZSTD_FinalizeDictionary() to create dictionary");
|
|
|
|
static bool ValidateTableCacheNumshardbits(const char* flagname,
|
|
int32_t value) {
|
|
if (0 >= value || value >= 20) {
|
|
fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val < 20\n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
DEFINE_int32(table_cache_numshardbits, 4, "");
|
|
|
|
DEFINE_string(env_uri, "",
|
|
"URI for registry Env lookup. Mutually exclusive with --fs_uri");
|
|
DEFINE_string(fs_uri, "",
|
|
"URI for registry Filesystem lookup. Mutually exclusive"
|
|
" with --env_uri."
|
|
" Creates a default environment with the specified filesystem.");
|
|
DEFINE_string(simulate_hybrid_fs_file, "",
|
|
"File for Store Metadata for Simulate hybrid FS. Empty means "
|
|
"disable the feature. Now, if it is set, last_level_temperature "
|
|
"is set to kWarm.");
|
|
DEFINE_int32(simulate_hybrid_hdd_multipliers, 1,
|
|
"In simulate_hybrid_fs_file or simulate_hdd mode, how many HDDs "
|
|
"are simulated.");
|
|
DEFINE_bool(simulate_hdd, false, "Simulate read/write latency on HDD.");
|
|
|
|
DEFINE_int64(
|
|
preclude_last_level_data_seconds, 0,
|
|
"Preclude the latest data from the last level. (Used for tiered storage)");
|
|
|
|
DEFINE_int64(preserve_internal_time_seconds, 0,
|
|
"Preserve the internal time information which stores with SST.");
|
|
|
|
static std::shared_ptr<ROCKSDB_NAMESPACE::Env> env_guard;
|
|
|
|
static ROCKSDB_NAMESPACE::Env* FLAGS_env = ROCKSDB_NAMESPACE::Env::Default();
|
|
|
|
DEFINE_int64(stats_interval, 0,
|
|
"Stats are reported every N operations when this is greater than "
|
|
"zero. When 0 the interval grows over time.");
|
|
|
|
DEFINE_int64(stats_interval_seconds, 0,
|
|
"Report stats every N seconds. This overrides stats_interval when"
|
|
" both are > 0.");
|
|
|
|
DEFINE_int32(stats_per_interval, 0,
|
|
"Reports additional stats per interval when this is greater than "
|
|
"0.");
|
|
|
|
DEFINE_uint64(slow_usecs, 1000000,
|
|
"A message is printed for operations that take at least this "
|
|
"many microseconds.");
|
|
|
|
DEFINE_int64(report_interval_seconds, 0,
|
|
"If greater than zero, it will write simple stats in CSV format "
|
|
"to --report_file every N seconds");
|
|
|
|
DEFINE_string(report_file, "report.csv",
|
|
"Filename where some simple stats are reported to (if "
|
|
"--report_interval_seconds is bigger than 0)");
|
|
|
|
DEFINE_int32(thread_status_per_interval, 0,
|
|
"Takes and report a snapshot of the current status of each thread"
|
|
" when this is greater than 0.");
|
|
|
|
DEFINE_int32(perf_level, ROCKSDB_NAMESPACE::PerfLevel::kDisable,
|
|
"Level of perf collection");
|
|
|
|
DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024,
|
|
"Slowdown writes if pending compaction bytes exceed this number");
|
|
|
|
DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024,
|
|
"Stop writes if pending compaction bytes exceed this number");
|
|
|
|
DEFINE_uint64(delayed_write_rate, 8388608u,
|
|
"Limited bytes allowed to DB when soft_rate_limit or "
|
|
"level0_slowdown_writes_trigger triggers");
|
|
|
|
DEFINE_bool(enable_pipelined_write, true,
|
|
"Allow WAL and memtable writes to be pipelined");
|
|
|
|
DEFINE_bool(
|
|
unordered_write, false,
|
|
"Enable the unordered write feature, which provides higher throughput but "
|
|
"relaxes the guarantees around atomic reads and immutable snapshots");
|
|
|
|
DEFINE_bool(allow_concurrent_memtable_write, true,
|
|
"Allow multi-writers to update mem tables in parallel.");
|
|
|
|
DEFINE_double(experimental_mempurge_threshold, 0.0,
|
|
"Maximum useful payload ratio estimate that triggers a mempurge "
|
|
"(memtable garbage collection).");
|
|
|
|
DEFINE_bool(inplace_update_support,
|
|
ROCKSDB_NAMESPACE::Options().inplace_update_support,
|
|
"Support in-place memtable update for smaller or same-size values");
|
|
|
|
DEFINE_uint64(inplace_update_num_locks,
|
|
ROCKSDB_NAMESPACE::Options().inplace_update_num_locks,
|
|
"Number of RW locks to protect in-place memtable updates");
|
|
|
|
DEFINE_bool(enable_write_thread_adaptive_yield, true,
|
|
"Use a yielding spin loop for brief writer thread waits.");
|
|
|
|
DEFINE_uint64(
|
|
write_thread_max_yield_usec, 100,
|
|
"Maximum microseconds for enable_write_thread_adaptive_yield operation.");
|
|
|
|
DEFINE_uint64(write_thread_slow_yield_usec, 3,
|
|
"The threshold at which a slow yield is considered a signal that "
|
|
"other processes or threads want the core.");
|
|
|
|
DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value.");
|
|
|
|
DEFINE_int64(rate_limiter_refill_period_us, 100 * 1000,
|
|
"Set refill period on rate limiter.");
|
|
|
|
DEFINE_bool(rate_limiter_auto_tuned, false,
|
|
"Enable dynamic adjustment of rate limit according to demand for "
|
|
"background I/O");
|
|
|
|
DEFINE_int64(rate_limiter_single_burst_bytes, 0,
|
|
"Set single burst bytes on background I/O rate limiter.");
|
|
|
|
DEFINE_bool(sine_write_rate, false, "Use a sine wave write_rate_limit");
|
|
|
|
DEFINE_uint64(
|
|
sine_write_rate_interval_milliseconds, 10000,
|
|
"Interval of which the sine wave write_rate_limit is recalculated");
|
|
|
|
DEFINE_double(sine_a, 1, "A in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_double(sine_b, 1, "B in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_double(sine_c, 0, "C in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_double(sine_d, 1, "D in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_bool(rate_limit_bg_reads, false,
|
|
"Use options.rate_limiter on compaction reads");
|
|
|
|
DEFINE_uint64(
|
|
benchmark_write_rate_limit, 0,
|
|
"If non-zero, db_bench will rate-limit the writes going into RocksDB. This "
|
|
"is the global rate in bytes/second.");
|
|
|
|
// the parameters of mix_graph
|
|
DEFINE_double(keyrange_dist_a, 0.0,
|
|
"The parameter 'a' of prefix average access distribution "
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_double(keyrange_dist_b, 0.0,
|
|
"The parameter 'b' of prefix average access distribution "
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_double(keyrange_dist_c, 0.0,
|
|
"The parameter 'c' of prefix average access distribution"
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_double(keyrange_dist_d, 0.0,
|
|
"The parameter 'd' of prefix average access distribution"
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_int64(keyrange_num, 1,
|
|
"The number of key ranges that are in the same prefix "
|
|
"group, each prefix range will have its key access distribution");
|
|
DEFINE_double(key_dist_a, 0.0,
|
|
"The parameter 'a' of key access distribution model f(x)=a*x^b");
|
|
DEFINE_double(key_dist_b, 0.0,
|
|
"The parameter 'b' of key access distribution model f(x)=a*x^b");
|
|
DEFINE_double(value_theta, 0.0,
|
|
"The parameter 'theta' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
// Use reasonable defaults based on the mixgraph paper
|
|
DEFINE_double(value_k, 0.2615,
|
|
"The parameter 'k' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
// Use reasonable defaults based on the mixgraph paper
|
|
DEFINE_double(value_sigma, 25.45,
|
|
"The parameter 'theta' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(iter_theta, 0.0,
|
|
"The parameter 'theta' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
// Use reasonable defaults based on the mixgraph paper
|
|
DEFINE_double(iter_k, 2.517,
|
|
"The parameter 'k' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
// Use reasonable defaults based on the mixgraph paper
|
|
DEFINE_double(iter_sigma, 14.236,
|
|
"The parameter 'sigma' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(mix_get_ratio, 1.0,
|
|
"The ratio of Get queries of mix_graph workload");
|
|
DEFINE_double(mix_put_ratio, 0.0,
|
|
"The ratio of Put queries of mix_graph workload");
|
|
DEFINE_double(mix_seek_ratio, 0.0,
|
|
"The ratio of Seek queries of mix_graph workload");
|
|
DEFINE_int64(mix_max_scan_len, 10000, "The max scan length of Iterator");
|
|
DEFINE_int64(mix_max_value_size, 1024, "The max value size of this workload");
|
|
DEFINE_double(
|
|
sine_mix_rate_noise, 0.0,
|
|
"Add the noise ratio to the sine rate, it is between 0.0 and 1.0");
|
|
DEFINE_bool(sine_mix_rate, false,
|
|
"Enable the sine QPS control on the mix workload");
|
|
DEFINE_uint64(
|
|
sine_mix_rate_interval_milliseconds, 10000,
|
|
"Interval of which the sine wave read_rate_limit is recalculated");
|
|
DEFINE_int64(mix_accesses, -1,
|
|
"The total query accesses of mix_graph workload");
|
|
|
|
DEFINE_uint64(
|
|
benchmark_read_rate_limit, 0,
|
|
"If non-zero, db_bench will rate-limit the reads from RocksDB. This "
|
|
"is the global rate in ops/second.");
|
|
|
|
DEFINE_uint64(max_compaction_bytes,
|
|
ROCKSDB_NAMESPACE::Options().max_compaction_bytes,
|
|
"Max bytes allowed in one compaction");
|
|
|
|
DEFINE_bool(readonly, false, "Run read only benchmarks.");
|
|
|
|
DEFINE_bool(print_malloc_stats, false,
|
|
"Print malloc stats to stdout after benchmarks finish.");
|
|
|
|
DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions");
|
|
|
|
DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds.");
|
|
DEFINE_uint64(wal_size_limit_MB, 0,
|
|
"Set the size limit for the WAL Files in MB.");
|
|
DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size");
|
|
|
|
DEFINE_bool(mmap_read, ROCKSDB_NAMESPACE::Options().allow_mmap_reads,
|
|
"Allow reads to occur via mmap-ing files");
|
|
|
|
DEFINE_bool(mmap_write, ROCKSDB_NAMESPACE::Options().allow_mmap_writes,
|
|
"Allow writes to occur via mmap-ing files");
|
|
|
|
DEFINE_bool(use_direct_reads, ROCKSDB_NAMESPACE::Options().use_direct_reads,
|
|
"Use O_DIRECT for reading data");
|
|
|
|
DEFINE_bool(use_direct_io_for_flush_and_compaction,
|
|
ROCKSDB_NAMESPACE::Options().use_direct_io_for_flush_and_compaction,
|
|
"Use O_DIRECT for background flush and compaction writes");
|
|
|
|
DEFINE_bool(advise_random_on_open,
|
|
ROCKSDB_NAMESPACE::Options().advise_random_on_open,
|
|
"Advise random access on table file open");
|
|
|
|
DEFINE_bool(use_tailing_iterator, false,
|
|
"Use tailing iterator to access a series of keys instead of get");
|
|
|
|
DEFINE_bool(use_adaptive_mutex, ROCKSDB_NAMESPACE::Options().use_adaptive_mutex,
|
|
"Use adaptive mutex");
|
|
|
|
DEFINE_uint64(bytes_per_sync, ROCKSDB_NAMESPACE::Options().bytes_per_sync,
|
|
"Allows OS to incrementally sync SST files to disk while they are"
|
|
" being written, in the background. Issue one request for every"
|
|
" bytes_per_sync written. 0 turns it off.");
|
|
|
|
DEFINE_uint64(wal_bytes_per_sync,
|
|
ROCKSDB_NAMESPACE::Options().wal_bytes_per_sync,
|
|
"Allows OS to incrementally sync WAL files to disk while they are"
|
|
" being written, in the background. Issue one request for every"
|
|
" wal_bytes_per_sync written. 0 turns it off.");
|
|
|
|
DEFINE_bool(use_single_deletes, true,
|
|
"Use single deletes (used in RandomReplaceKeys only).");
|
|
|
|
DEFINE_double(stddev, 2000.0,
|
|
"Standard deviation of normal distribution used for picking keys"
|
|
" (used in RandomReplaceKeys only).");
|
|
|
|
DEFINE_int32(key_id_range, 100000,
|
|
"Range of possible value of key id (used in TimeSeries only).");
|
|
|
|
DEFINE_string(expire_style, "none",
|
|
"Style to remove expired time entries. Can be one of the options "
|
|
"below: none (do not expired data), compaction_filter (use a "
|
|
"compaction filter to remove expired data), delete (seek IDs and "
|
|
"remove expired data) (used in TimeSeries only).");
|
|
|
|
DEFINE_uint64(
|
|
time_range, 100000,
|
|
"Range of timestamp that store in the database (used in TimeSeries"
|
|
" only).");
|
|
|
|
DEFINE_int32(num_deletion_threads, 1,
|
|
"Number of threads to do deletion (used in TimeSeries and delete "
|
|
"expire_style only).");
|
|
|
|
DEFINE_int32(max_successive_merges, 0,
|
|
"Maximum number of successive merge operations on a key in the "
|
|
"memtable");
|
|
|
|
DEFINE_bool(strict_max_successive_merges, false,
|
|
"Whether to issue filesystem reads to keep within "
|
|
"`max_successive_merges` limit");
|
|
|
|
static bool ValidatePrefixSize(const char* flagname, int32_t value) {
|
|
if (value < 0 || value >= 2000000000) {
|
|
fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEFINE_int32(prefix_size, 0,
|
|
"control the prefix size for HashSkipList and plain table");
|
|
DEFINE_int64(keys_per_prefix, 0,
|
|
"control average number of keys generated per prefix, 0 means no "
|
|
"special handling of the prefix, i.e. use the prefix comes with "
|
|
"the generated random number.");
|
|
DEFINE_bool(total_order_seek, false,
|
|
"Enable total order seek regardless of index format.");
|
|
DEFINE_bool(prefix_same_as_start, false,
|
|
"Enforce iterator to return keys with prefix same as seek key.");
|
|
DEFINE_bool(
|
|
seek_missing_prefix, false,
|
|
"Iterator seek to keys with non-exist prefixes. Require prefix_size > 8");
|
|
|
|
DEFINE_int32(memtable_insert_with_hint_prefix_size, 0,
|
|
"If non-zero, enable "
|
|
"memtable insert with hint with the given prefix size.");
|
|
DEFINE_bool(enable_io_prio, false,
|
|
"Lower the background flush/compaction threads' IO priority");
|
|
DEFINE_bool(enable_cpu_prio, false,
|
|
"Lower the background flush/compaction threads' CPU priority");
|
|
DEFINE_bool(identity_as_first_hash, false,
|
|
"the first hash function of cuckoo table becomes an identity "
|
|
"function. This is only valid when key is 8 bytes");
|
|
DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG ");
|
|
DEFINE_uint64(stats_dump_period_sec,
|
|
ROCKSDB_NAMESPACE::Options().stats_dump_period_sec,
|
|
"Gap between printing stats to log in seconds");
|
|
DEFINE_uint64(stats_persist_period_sec,
|
|
ROCKSDB_NAMESPACE::Options().stats_persist_period_sec,
|
|
"Gap between persisting stats in seconds");
|
|
DEFINE_bool(persist_stats_to_disk,
|
|
ROCKSDB_NAMESPACE::Options().persist_stats_to_disk,
|
|
"whether to persist stats to disk");
|
|
DEFINE_uint64(stats_history_buffer_size,
|
|
ROCKSDB_NAMESPACE::Options().stats_history_buffer_size,
|
|
"Max number of stats snapshots to keep in memory");
|
|
DEFINE_bool(avoid_flush_during_recovery,
|
|
ROCKSDB_NAMESPACE::Options().avoid_flush_during_recovery,
|
|
"If true, avoids flushing the recovered WAL data where possible.");
|
|
DEFINE_int64(multiread_stride, 0,
|
|
"Stride length for the keys in a MultiGet batch");
|
|
DEFINE_bool(multiread_batched, false, "Use the new MultiGet API");
|
|
|
|
DEFINE_string(memtablerep, "skip_list", "");
|
|
DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count");
|
|
DEFINE_bool(use_plain_table, false,
|
|
"if use plain table instead of block-based table format");
|
|
DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format");
|
|
DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table.");
|
|
DEFINE_bool(use_hash_search, false,
|
|
"if use kHashSearch instead of kBinarySearch. "
|
|
"This is valid if only we use BlockTable");
|
|
DEFINE_string(merge_operator, "",
|
|
"The merge operator to use with the database."
|
|
"If a new merge operator is specified, be sure to use fresh"
|
|
" database The possible merge operators are defined in"
|
|
" utilities/merge_operators.h");
|
|
DEFINE_int32(skip_list_lookahead, 0,
|
|
"Used with skip_list memtablerep; try linear search first for "
|
|
"this many steps from the previous position");
|
|
DEFINE_bool(report_file_operations, false,
|
|
"if report number of file operations");
|
|
DEFINE_bool(report_open_timing, false, "if report open timing");
|
|
DEFINE_int32(readahead_size, 0, "Iterator readahead size");
|
|
|
|
DEFINE_bool(read_with_latest_user_timestamp, true,
|
|
"If true, always use the current latest timestamp for read. If "
|
|
"false, choose a random timestamp from the past.");
|
|
|
|
DEFINE_string(secondary_cache_uri, "",
|
|
"Full URI for creating a custom secondary cache object");
|
|
static class std::shared_ptr<ROCKSDB_NAMESPACE::SecondaryCache> secondary_cache;
|
|
|
|
static const bool FLAGS_prefix_size_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize);
|
|
|
|
static const bool FLAGS_key_size_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize);
|
|
|
|
static const bool FLAGS_cache_numshardbits_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_cache_numshardbits,
|
|
&ValidateCacheNumshardbits);
|
|
|
|
static const bool FLAGS_readwritepercent_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent);
|
|
|
|
DEFINE_int32(disable_seek_compaction, false,
|
|
"Not used, left here for backwards compatibility");
|
|
|
|
DEFINE_bool(allow_data_in_errors,
|
|
ROCKSDB_NAMESPACE::Options().allow_data_in_errors,
|
|
"If true, allow logging data, e.g. key, value in LOG files.");
|
|
|
|
static const bool FLAGS_deletepercent_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent);
|
|
static const bool FLAGS_table_cache_numshardbits_dummy
|
|
__attribute__((__unused__)) = RegisterFlagValidator(
|
|
&FLAGS_table_cache_numshardbits, &ValidateTableCacheNumshardbits);
|
|
|
|
DEFINE_uint32(write_batch_protection_bytes_per_key, 0,
|
|
"Size of per-key-value checksum in each write batch. Currently "
|
|
"only value 0 and 8 are supported.");
|
|
|
|
DEFINE_uint32(
|
|
memtable_protection_bytes_per_key, 0,
|
|
"Enable memtable per key-value checksum protection. "
|
|
"Each entry in memtable will be suffixed by a per key-value checksum. "
|
|
"This options determines the size of such checksums. "
|
|
"Supported values: 0, 1, 2, 4, 8.");
|
|
|
|
DEFINE_uint32(block_protection_bytes_per_key, 0,
|
|
"Enable block per key-value checksum protection. "
|
|
"Supported values: 0, 1, 2, 4, 8.");
|
|
|
|
DEFINE_bool(build_info, false,
|
|
"Print the build info via GetRocksBuildInfoAsString");
|
|
|
|
DEFINE_bool(track_and_verify_wals_in_manifest, false,
|
|
"If true, enable WAL tracking in the MANIFEST");
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
namespace {
|
|
static Status CreateMemTableRepFactory(
|
|
const ConfigOptions& config_options,
|
|
std::shared_ptr<MemTableRepFactory>* factory) {
|
|
Status s;
|
|
if (!strcasecmp(FLAGS_memtablerep.c_str(), SkipListFactory::kNickName())) {
|
|
factory->reset(new SkipListFactory(FLAGS_skip_list_lookahead));
|
|
} else if (!strcasecmp(FLAGS_memtablerep.c_str(), "prefix_hash")) {
|
|
factory->reset(NewHashSkipListRepFactory(FLAGS_hash_bucket_count));
|
|
} else if (!strcasecmp(FLAGS_memtablerep.c_str(),
|
|
VectorRepFactory::kNickName())) {
|
|
factory->reset(new VectorRepFactory());
|
|
} else if (!strcasecmp(FLAGS_memtablerep.c_str(), "hash_linkedlist")) {
|
|
factory->reset(NewHashLinkListRepFactory(FLAGS_hash_bucket_count));
|
|
} else {
|
|
std::unique_ptr<MemTableRepFactory> unique;
|
|
s = MemTableRepFactory::CreateFromString(config_options, FLAGS_memtablerep,
|
|
&unique);
|
|
if (s.ok()) {
|
|
factory->reset(unique.release());
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
enum DistributionType : unsigned char { kFixed = 0, kUniform, kNormal };
|
|
|
|
static enum DistributionType FLAGS_value_size_distribution_type_e = kFixed;
|
|
|
|
static enum DistributionType StringToDistributionType(const char* ctype) {
|
|
assert(ctype);
|
|
|
|
if (!strcasecmp(ctype, "fixed")) {
|
|
return kFixed;
|
|
} else if (!strcasecmp(ctype, "uniform")) {
|
|
return kUniform;
|
|
} else if (!strcasecmp(ctype, "normal")) {
|
|
return kNormal;
|
|
}
|
|
|
|
fprintf(stdout, "Cannot parse distribution type '%s'\n", ctype);
|
|
exit(1);
|
|
}
|
|
|
|
class BaseDistribution {
|
|
public:
|
|
BaseDistribution(unsigned int _min, unsigned int _max)
|
|
: min_value_size_(_min), max_value_size_(_max) {}
|
|
virtual ~BaseDistribution() = default;
|
|
|
|
unsigned int Generate() {
|
|
auto val = Get();
|
|
if (NeedTruncate()) {
|
|
val = std::max(min_value_size_, val);
|
|
val = std::min(max_value_size_, val);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
private:
|
|
virtual unsigned int Get() = 0;
|
|
virtual bool NeedTruncate() { return true; }
|
|
unsigned int min_value_size_;
|
|
unsigned int max_value_size_;
|
|
};
|
|
|
|
class FixedDistribution : public BaseDistribution {
|
|
public:
|
|
FixedDistribution(unsigned int size)
|
|
: BaseDistribution(size, size), size_(size) {}
|
|
|
|
private:
|
|
unsigned int Get() override { return size_; }
|
|
bool NeedTruncate() override { return false; }
|
|
unsigned int size_;
|
|
};
|
|
|
|
class NormalDistribution : public BaseDistribution,
|
|
public std::normal_distribution<double> {
|
|
public:
|
|
NormalDistribution(unsigned int _min, unsigned int _max)
|
|
: BaseDistribution(_min, _max),
|
|
// 99.7% values within the range [min, max].
|
|
std::normal_distribution<double>(
|
|
(double)(_min + _max) / 2.0 /*mean*/,
|
|
(double)(_max - _min) / 6.0 /*stddev*/),
|
|
gen_(rd_()) {}
|
|
|
|
private:
|
|
unsigned int Get() override {
|
|
return static_cast<unsigned int>((*this)(gen_));
|
|
}
|
|
std::random_device rd_;
|
|
std::mt19937 gen_;
|
|
};
|
|
|
|
class UniformDistribution : public BaseDistribution,
|
|
public std::uniform_int_distribution<unsigned int> {
|
|
public:
|
|
UniformDistribution(unsigned int _min, unsigned int _max)
|
|
: BaseDistribution(_min, _max),
|
|
std::uniform_int_distribution<unsigned int>(_min, _max),
|
|
gen_(rd_()) {}
|
|
|
|
private:
|
|
unsigned int Get() override { return (*this)(gen_); }
|
|
bool NeedTruncate() override { return false; }
|
|
std::random_device rd_;
|
|
std::mt19937 gen_;
|
|
};
|
|
|
|
// Helper for quickly generating random data.
|
|
class RandomGenerator {
|
|
private:
|
|
std::string data_;
|
|
unsigned int pos_;
|
|
std::unique_ptr<BaseDistribution> dist_;
|
|
|
|
public:
|
|
RandomGenerator() {
|
|
auto max_value_size = FLAGS_value_size_max;
|
|
switch (FLAGS_value_size_distribution_type_e) {
|
|
case kUniform:
|
|
dist_.reset(new UniformDistribution(FLAGS_value_size_min,
|
|
FLAGS_value_size_max));
|
|
break;
|
|
case kNormal:
|
|
dist_.reset(
|
|
new NormalDistribution(FLAGS_value_size_min, FLAGS_value_size_max));
|
|
break;
|
|
case kFixed:
|
|
default:
|
|
dist_.reset(new FixedDistribution(value_size));
|
|
max_value_size = value_size;
|
|
}
|
|
// We use a limited amount of data over and over again and ensure
|
|
// that it is larger than the compression window (32KB), and also
|
|
// large enough to serve all typical value sizes we want to write.
|
|
Random rnd(301);
|
|
std::string piece;
|
|
while (data_.size() < (unsigned)std::max(1048576, max_value_size)) {
|
|
// Add a short fragment that is as compressible as specified
|
|
// by FLAGS_compression_ratio.
|
|
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
|
|
data_.append(piece);
|
|
}
|
|
pos_ = 0;
|
|
}
|
|
|
|
Slice Generate(unsigned int len) {
|
|
assert(len <= data_.size());
|
|
if (pos_ + len > data_.size()) {
|
|
pos_ = 0;
|
|
}
|
|
pos_ += len;
|
|
return Slice(data_.data() + pos_ - len, len);
|
|
}
|
|
|
|
Slice Generate() {
|
|
auto len = dist_->Generate();
|
|
return Generate(len);
|
|
}
|
|
};
|
|
|
|
static void AppendWithSpace(std::string* str, Slice msg) {
|
|
if (msg.empty()) {
|
|
return;
|
|
}
|
|
if (!str->empty()) {
|
|
str->push_back(' ');
|
|
}
|
|
str->append(msg.data(), msg.size());
|
|
}
|
|
|
|
struct DBWithColumnFamilies {
|
|
std::vector<ColumnFamilyHandle*> cfh;
|
|
DB* db;
|
|
OptimisticTransactionDB* opt_txn_db;
|
|
std::atomic<size_t> num_created; // Need to be updated after all the
|
|
// new entries in cfh are set.
|
|
size_t num_hot; // Number of column families to be queried at each moment.
|
|
// After each CreateNewCf(), another num_hot number of new
|
|
// Column families will be created and used to be queried.
|
|
port::Mutex create_cf_mutex; // Only one thread can execute CreateNewCf()
|
|
std::vector<int> cfh_idx_to_prob; // ith index holds probability of operating
|
|
// on cfh[i].
|
|
|
|
DBWithColumnFamilies()
|
|
: db(nullptr)
|
|
,
|
|
opt_txn_db(nullptr)
|
|
{
|
|
cfh.clear();
|
|
num_created = 0;
|
|
num_hot = 0;
|
|
}
|
|
|
|
DBWithColumnFamilies(const DBWithColumnFamilies& other)
|
|
: cfh(other.cfh),
|
|
db(other.db),
|
|
opt_txn_db(other.opt_txn_db),
|
|
num_created(other.num_created.load()),
|
|
num_hot(other.num_hot),
|
|
cfh_idx_to_prob(other.cfh_idx_to_prob) {
|
|
}
|
|
|
|
void DeleteDBs() {
|
|
std::for_each(cfh.begin(), cfh.end(),
|
|
[](ColumnFamilyHandle* cfhi) { delete cfhi; });
|
|
cfh.clear();
|
|
if (opt_txn_db) {
|
|
delete opt_txn_db;
|
|
opt_txn_db = nullptr;
|
|
} else {
|
|
delete db;
|
|
db = nullptr;
|
|
}
|
|
}
|
|
|
|
ColumnFamilyHandle* GetCfh(int64_t rand_num) {
|
|
assert(num_hot > 0);
|
|
size_t rand_offset = 0;
|
|
if (!cfh_idx_to_prob.empty()) {
|
|
assert(cfh_idx_to_prob.size() == num_hot);
|
|
int sum = 0;
|
|
while (sum + cfh_idx_to_prob[rand_offset] < rand_num % 100) {
|
|
sum += cfh_idx_to_prob[rand_offset];
|
|
++rand_offset;
|
|
}
|
|
assert(rand_offset < cfh_idx_to_prob.size());
|
|
} else {
|
|
rand_offset = rand_num % num_hot;
|
|
}
|
|
return cfh[num_created.load(std::memory_order_acquire) - num_hot +
|
|
rand_offset];
|
|
}
|
|
|
|
// stage: assume CF from 0 to stage * num_hot has be created. Need to create
|
|
// stage * num_hot + 1 to stage * (num_hot + 1).
|
|
void CreateNewCf(ColumnFamilyOptions options, int64_t stage) {
|
|
MutexLock l(&create_cf_mutex);
|
|
if ((stage + 1) * num_hot <= num_created) {
|
|
// Already created.
|
|
return;
|
|
}
|
|
auto new_num_created = num_created + num_hot;
|
|
assert(new_num_created <= cfh.size());
|
|
for (size_t i = num_created; i < new_num_created; i++) {
|
|
Status s =
|
|
db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i]));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "create column family error: %s\n",
|
|
s.ToString().c_str());
|
|
abort();
|
|
}
|
|
}
|
|
num_created.store(new_num_created, std::memory_order_release);
|
|
}
|
|
};
|
|
|
|
// A class that reports stats to CSV file.
|
|
class ReporterAgent {
|
|
public:
|
|
ReporterAgent(Env* env, const std::string& fname,
|
|
uint64_t report_interval_secs)
|
|
: env_(env),
|
|
total_ops_done_(0),
|
|
last_report_(0),
|
|
report_interval_secs_(report_interval_secs),
|
|
stop_(false) {
|
|
auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions());
|
|
if (s.ok()) {
|
|
s = report_file_->Append(Header() + "\n");
|
|
}
|
|
if (s.ok()) {
|
|
s = report_file_->Flush();
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Can't open %s: %s\n", fname.c_str(),
|
|
s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
reporting_thread_ = port::Thread([&]() { SleepAndReport(); });
|
|
}
|
|
|
|
~ReporterAgent() {
|
|
{
|
|
std::unique_lock<std::mutex> lk(mutex_);
|
|
stop_ = true;
|
|
stop_cv_.notify_all();
|
|
}
|
|
reporting_thread_.join();
|
|
}
|
|
|
|
// thread safe
|
|
void ReportFinishedOps(int64_t num_ops) {
|
|
total_ops_done_.fetch_add(num_ops);
|
|
}
|
|
|
|
private:
|
|
std::string Header() const { return "secs_elapsed,interval_qps"; }
|
|
void SleepAndReport() {
|
|
auto* clock = env_->GetSystemClock().get();
|
|
auto time_started = clock->NowMicros();
|
|
while (true) {
|
|
{
|
|
std::unique_lock<std::mutex> lk(mutex_);
|
|
if (stop_ ||
|
|
stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_),
|
|
[&]() { return stop_; })) {
|
|
// stopping
|
|
break;
|
|
}
|
|
// else -> timeout, which means time for a report!
|
|
}
|
|
auto total_ops_done_snapshot = total_ops_done_.load();
|
|
// round the seconds elapsed
|
|
auto secs_elapsed =
|
|
(clock->NowMicros() - time_started + kMicrosInSecond / 2) /
|
|
kMicrosInSecond;
|
|
std::string report =
|
|
std::to_string(secs_elapsed) + "," +
|
|
std::to_string(total_ops_done_snapshot - last_report_) + "\n";
|
|
auto s = report_file_->Append(report);
|
|
if (s.ok()) {
|
|
s = report_file_->Flush();
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Can't write to report file (%s), stopping the reporting\n",
|
|
s.ToString().c_str());
|
|
break;
|
|
}
|
|
last_report_ = total_ops_done_snapshot;
|
|
}
|
|
}
|
|
|
|
Env* env_;
|
|
std::unique_ptr<WritableFile> report_file_;
|
|
std::atomic<int64_t> total_ops_done_;
|
|
int64_t last_report_;
|
|
const uint64_t report_interval_secs_;
|
|
ROCKSDB_NAMESPACE::port::Thread reporting_thread_;
|
|
std::mutex mutex_;
|
|
// will notify on stop
|
|
std::condition_variable stop_cv_;
|
|
bool stop_;
|
|
};
|
|
|
|
enum OperationType : unsigned char {
|
|
kRead = 0,
|
|
kWrite,
|
|
kDelete,
|
|
kSeek,
|
|
kMerge,
|
|
kUpdate,
|
|
kCompress,
|
|
kUncompress,
|
|
kCrc,
|
|
kHash,
|
|
kOthers
|
|
};
|
|
|
|
static std::unordered_map<OperationType, std::string, std::hash<unsigned char>>
|
|
OperationTypeString = {{kRead, "read"}, {kWrite, "write"},
|
|
{kDelete, "delete"}, {kSeek, "seek"},
|
|
{kMerge, "merge"}, {kUpdate, "update"},
|
|
{kCompress, "compress"}, {kCompress, "uncompress"},
|
|
{kCrc, "crc"}, {kHash, "hash"},
|
|
{kOthers, "op"}};
|
|
|
|
class CombinedStats;
|
|
class Stats {
|
|
private:
|
|
SystemClock* clock_;
|
|
int id_;
|
|
uint64_t start_ = 0;
|
|
uint64_t sine_interval_;
|
|
uint64_t finish_;
|
|
double seconds_;
|
|
uint64_t done_;
|
|
uint64_t last_report_done_;
|
|
uint64_t next_report_;
|
|
uint64_t bytes_;
|
|
uint64_t last_op_finish_;
|
|
uint64_t last_report_finish_;
|
|
std::unordered_map<OperationType, std::shared_ptr<HistogramImpl>,
|
|
std::hash<unsigned char>>
|
|
hist_;
|
|
std::string message_;
|
|
bool exclude_from_merge_;
|
|
ReporterAgent* reporter_agent_; // does not own
|
|
friend class CombinedStats;
|
|
|
|
public:
|
|
Stats() : clock_(FLAGS_env->GetSystemClock().get()) { Start(-1); }
|
|
|
|
void SetReporterAgent(ReporterAgent* reporter_agent) {
|
|
reporter_agent_ = reporter_agent;
|
|
}
|
|
|
|
void Start(int id) {
|
|
id_ = id;
|
|
next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
|
|
last_op_finish_ = start_;
|
|
hist_.clear();
|
|
done_ = 0;
|
|
last_report_done_ = 0;
|
|
bytes_ = 0;
|
|
seconds_ = 0;
|
|
start_ = clock_->NowMicros();
|
|
sine_interval_ = clock_->NowMicros();
|
|
finish_ = start_;
|
|
last_report_finish_ = start_;
|
|
message_.clear();
|
|
// When set, stats from this thread won't be merged with others.
|
|
exclude_from_merge_ = false;
|
|
}
|
|
|
|
void Merge(const Stats& other) {
|
|
if (other.exclude_from_merge_) {
|
|
return;
|
|
}
|
|
|
|
for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) {
|
|
auto this_it = hist_.find(it->first);
|
|
if (this_it != hist_.end()) {
|
|
this_it->second->Merge(*(other.hist_.at(it->first)));
|
|
} else {
|
|
hist_.insert({it->first, it->second});
|
|
}
|
|
}
|
|
|
|
done_ += other.done_;
|
|
bytes_ += other.bytes_;
|
|
seconds_ += other.seconds_;
|
|
if (other.start_ < start_) {
|
|
start_ = other.start_;
|
|
}
|
|
if (other.finish_ > finish_) {
|
|
finish_ = other.finish_;
|
|
}
|
|
|
|
// Just keep the messages from one thread.
|
|
if (message_.empty()) {
|
|
message_ = other.message_;
|
|
}
|
|
}
|
|
|
|
void Stop() {
|
|
finish_ = clock_->NowMicros();
|
|
seconds_ = (finish_ - start_) * 1e-6;
|
|
}
|
|
|
|
void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); }
|
|
|
|
void SetId(int id) { id_ = id; }
|
|
void SetExcludeFromMerge() { exclude_from_merge_ = true; }
|
|
|
|
void PrintThreadStatus() {
|
|
std::vector<ThreadStatus> thread_list;
|
|
FLAGS_env->GetThreadList(&thread_list);
|
|
|
|
fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n", "ThreadID",
|
|
"ThreadType", "cfName", "Operation", "ElapsedTime", "Stage",
|
|
"State", "OperationProperties");
|
|
|
|
int64_t current_time = 0;
|
|
clock_->GetCurrentTime(¤t_time).PermitUncheckedError();
|
|
for (auto ts : thread_list) {
|
|
fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s",
|
|
ts.thread_id,
|
|
ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(),
|
|
ts.cf_name.c_str(),
|
|
ThreadStatus::GetOperationName(ts.operation_type).c_str(),
|
|
ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(),
|
|
ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(),
|
|
ThreadStatus::GetStateName(ts.state_type).c_str());
|
|
|
|
auto op_properties = ThreadStatus::InterpretOperationProperties(
|
|
ts.operation_type, ts.op_properties);
|
|
for (const auto& op_prop : op_properties) {
|
|
fprintf(stderr, " %s %" PRIu64 " |", op_prop.first.c_str(),
|
|
op_prop.second);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
void ResetSineInterval() { sine_interval_ = clock_->NowMicros(); }
|
|
|
|
uint64_t GetSineInterval() { return sine_interval_; }
|
|
|
|
uint64_t GetStart() { return start_; }
|
|
|
|
void ResetLastOpTime() {
|
|
// Set to now to avoid latency from calls to SleepForMicroseconds.
|
|
last_op_finish_ = clock_->NowMicros();
|
|
}
|
|
|
|
void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops,
|
|
enum OperationType op_type = kOthers) {
|
|
if (reporter_agent_) {
|
|
reporter_agent_->ReportFinishedOps(num_ops);
|
|
}
|
|
if (FLAGS_histogram) {
|
|
uint64_t now = clock_->NowMicros();
|
|
uint64_t micros = now - last_op_finish_;
|
|
|
|
if (hist_.find(op_type) == hist_.end()) {
|
|
auto hist_temp = std::make_shared<HistogramImpl>();
|
|
hist_.insert({op_type, std::move(hist_temp)});
|
|
}
|
|
hist_[op_type]->Add(micros);
|
|
|
|
if (micros >= FLAGS_slow_usecs && !FLAGS_stats_interval) {
|
|
fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, "");
|
|
fflush(stderr);
|
|
}
|
|
last_op_finish_ = now;
|
|
}
|
|
|
|
done_ += num_ops;
|
|
if (done_ >= next_report_ && FLAGS_progress_reports) {
|
|
if (!FLAGS_stats_interval) {
|
|
if (next_report_ < 1000) {
|
|
next_report_ += 100;
|
|
} else if (next_report_ < 5000) {
|
|
next_report_ += 500;
|
|
} else if (next_report_ < 10000) {
|
|
next_report_ += 1000;
|
|
} else if (next_report_ < 50000) {
|
|
next_report_ += 5000;
|
|
} else if (next_report_ < 100000) {
|
|
next_report_ += 10000;
|
|
} else if (next_report_ < 500000) {
|
|
next_report_ += 50000;
|
|
} else {
|
|
next_report_ += 100000;
|
|
}
|
|
fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, "");
|
|
} else {
|
|
uint64_t now = clock_->NowMicros();
|
|
int64_t usecs_since_last = now - last_report_finish_;
|
|
|
|
// Determine whether to print status where interval is either
|
|
// each N operations or each N seconds.
|
|
|
|
if (FLAGS_stats_interval_seconds &&
|
|
usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) {
|
|
// Don't check again for this many operations.
|
|
next_report_ += FLAGS_stats_interval;
|
|
|
|
} else {
|
|
fprintf(stderr,
|
|
"%s ... thread %d: (%" PRIu64 ",%" PRIu64
|
|
") ops and "
|
|
"(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
|
|
clock_->TimeToString(now / 1000000).c_str(), id_,
|
|
done_ - last_report_done_, done_,
|
|
(done_ - last_report_done_) / (usecs_since_last / 1000000.0),
|
|
done_ / ((now - start_) / 1000000.0),
|
|
(now - last_report_finish_) / 1000000.0,
|
|
(now - start_) / 1000000.0);
|
|
|
|
if (id_ == 0 && FLAGS_stats_per_interval) {
|
|
std::string stats;
|
|
|
|
if (db_with_cfh && db_with_cfh->num_created.load()) {
|
|
for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) {
|
|
if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats",
|
|
&stats)) {
|
|
fprintf(stderr, "%s\n", stats.c_str());
|
|
}
|
|
if (FLAGS_show_table_properties) {
|
|
for (int level = 0; level < FLAGS_num_levels; ++level) {
|
|
if (db->GetProperty(
|
|
db_with_cfh->cfh[i],
|
|
"rocksdb.aggregated-table-properties-at-level" +
|
|
std::to_string(level),
|
|
&stats)) {
|
|
if (stats.find("# entries=0") == std::string::npos) {
|
|
fprintf(stderr, "Level[%d]: %s\n", level,
|
|
stats.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (db) {
|
|
if (db->GetProperty("rocksdb.stats", &stats)) {
|
|
fprintf(stderr, "%s", stats.c_str());
|
|
}
|
|
if (db->GetProperty("rocksdb.num-running-compactions", &stats)) {
|
|
fprintf(stderr, "num-running-compactions: %s\n", stats.c_str());
|
|
}
|
|
if (db->GetProperty("rocksdb.num-running-flushes", &stats)) {
|
|
fprintf(stderr, "num-running-flushes: %s\n\n", stats.c_str());
|
|
}
|
|
if (FLAGS_show_table_properties) {
|
|
for (int level = 0; level < FLAGS_num_levels; ++level) {
|
|
if (db->GetProperty(
|
|
"rocksdb.aggregated-table-properties-at-level" +
|
|
std::to_string(level),
|
|
&stats)) {
|
|
if (stats.find("# entries=0") == std::string::npos) {
|
|
fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
next_report_ += FLAGS_stats_interval;
|
|
last_report_finish_ = now;
|
|
last_report_done_ = done_;
|
|
}
|
|
}
|
|
if (id_ == 0 && FLAGS_thread_status_per_interval) {
|
|
PrintThreadStatus();
|
|
}
|
|
fflush(stderr);
|
|
}
|
|
}
|
|
|
|
void AddBytes(int64_t n) { bytes_ += n; }
|
|
|
|
void Report(const Slice& name) {
|
|
// Pretend at least one op was done in case we are running a benchmark
|
|
// that does not call FinishedOps().
|
|
if (done_ < 1) {
|
|
done_ = 1;
|
|
}
|
|
|
|
std::string extra;
|
|
double elapsed = (finish_ - start_) * 1e-6;
|
|
if (bytes_ > 0) {
|
|
// Rate is computed on actual elapsed time, not the sum of per-thread
|
|
// elapsed times.
|
|
char rate[100];
|
|
snprintf(rate, sizeof(rate), "%6.1f MB/s",
|
|
(bytes_ / 1048576.0) / elapsed);
|
|
extra = rate;
|
|
}
|
|
AppendWithSpace(&extra, message_);
|
|
double throughput = (double)done_ / elapsed;
|
|
|
|
fprintf(stdout,
|
|
"%-12s : %11.3f micros/op %ld ops/sec %.3f seconds %" PRIu64
|
|
" operations;%s%s\n",
|
|
name.ToString().c_str(), seconds_ * 1e6 / done_, (long)throughput,
|
|
elapsed, done_, (extra.empty() ? "" : " "), extra.c_str());
|
|
if (FLAGS_histogram) {
|
|
for (auto it = hist_.begin(); it != hist_.end(); ++it) {
|
|
fprintf(stdout, "Microseconds per %s:\n%s\n",
|
|
OperationTypeString[it->first].c_str(),
|
|
it->second->ToString().c_str());
|
|
}
|
|
}
|
|
if (FLAGS_report_file_operations) {
|
|
auto* counted_fs =
|
|
FLAGS_env->GetFileSystem()->CheckedCast<CountedFileSystem>();
|
|
assert(counted_fs);
|
|
fprintf(stdout, "%s", counted_fs->PrintCounters().c_str());
|
|
counted_fs->ResetCounters();
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
};
|
|
|
|
class CombinedStats {
|
|
public:
|
|
void AddStats(const Stats& stat) {
|
|
uint64_t total_ops = stat.done_;
|
|
uint64_t total_bytes_ = stat.bytes_;
|
|
double elapsed;
|
|
|
|
if (total_ops < 1) {
|
|
total_ops = 1;
|
|
}
|
|
|
|
elapsed = (stat.finish_ - stat.start_) * 1e-6;
|
|
throughput_ops_.emplace_back(total_ops / elapsed);
|
|
|
|
if (total_bytes_ > 0) {
|
|
double mbs = (total_bytes_ / 1048576.0);
|
|
throughput_mbs_.emplace_back(mbs / elapsed);
|
|
}
|
|
}
|
|
|
|
void Report(const std::string& bench_name) {
|
|
if (throughput_ops_.size() < 2) {
|
|
// skip if there are not enough samples
|
|
return;
|
|
}
|
|
|
|
const char* name = bench_name.c_str();
|
|
int num_runs = static_cast<int>(throughput_ops_.size());
|
|
|
|
if (throughput_mbs_.size() == throughput_ops_.size()) {
|
|
fprintf(stdout,
|
|
"%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 "
|
|
"%.1f) MB/sec\n",
|
|
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
|
|
static_cast<int>(CalcConfidence95(throughput_ops_)),
|
|
CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_));
|
|
} else {
|
|
fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n", name,
|
|
num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
|
|
static_cast<int>(CalcConfidence95(throughput_ops_)));
|
|
}
|
|
}
|
|
|
|
void ReportWithConfidenceIntervals(const std::string& bench_name) {
|
|
if (throughput_ops_.size() < 2) {
|
|
// skip if there are not enough samples
|
|
return;
|
|
}
|
|
|
|
const char* name = bench_name.c_str();
|
|
int num_runs = static_cast<int>(throughput_ops_.size());
|
|
|
|
int ops_avg = static_cast<int>(CalcAvg(throughput_ops_));
|
|
int ops_confidence_95 = static_cast<int>(CalcConfidence95(throughput_ops_));
|
|
|
|
if (throughput_mbs_.size() == throughput_ops_.size()) {
|
|
double mbs_avg = CalcAvg(throughput_mbs_);
|
|
double mbs_confidence_95 = CalcConfidence95(throughput_mbs_);
|
|
fprintf(stdout,
|
|
"%s [CI95 %d runs] : (%d, %d) ops/sec; (%.1f, %.1f) MB/sec\n",
|
|
name, num_runs, ops_avg - ops_confidence_95,
|
|
ops_avg + ops_confidence_95, mbs_avg - mbs_confidence_95,
|
|
mbs_avg + mbs_confidence_95);
|
|
} else {
|
|
fprintf(stdout, "%s [CI95 %d runs] : (%d, %d) ops/sec\n", name, num_runs,
|
|
ops_avg - ops_confidence_95, ops_avg + ops_confidence_95);
|
|
}
|
|
}
|
|
|
|
void ReportFinal(const std::string& bench_name) {
|
|
if (throughput_ops_.size() < 2) {
|
|
// skip if there are not enough samples
|
|
return;
|
|
}
|
|
|
|
const char* name = bench_name.c_str();
|
|
int num_runs = static_cast<int>(throughput_ops_.size());
|
|
|
|
if (throughput_mbs_.size() == throughput_ops_.size()) {
|
|
// \xC2\xB1 is +/- character in UTF-8
|
|
fprintf(stdout,
|
|
"%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 "
|
|
"%.1f) MB/sec\n"
|
|
"%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n",
|
|
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
|
|
static_cast<int>(CalcConfidence95(throughput_ops_)),
|
|
CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_), name,
|
|
num_runs, static_cast<int>(CalcMedian(throughput_ops_)),
|
|
CalcMedian(throughput_mbs_));
|
|
} else {
|
|
fprintf(stdout,
|
|
"%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n"
|
|
"%s [MEDIAN %d runs] : %d ops/sec\n",
|
|
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
|
|
static_cast<int>(CalcConfidence95(throughput_ops_)), name,
|
|
num_runs, static_cast<int>(CalcMedian(throughput_ops_)));
|
|
}
|
|
}
|
|
|
|
private:
|
|
double CalcAvg(std::vector<double>& data) {
|
|
double avg = 0;
|
|
for (double x : data) {
|
|
avg += x;
|
|
}
|
|
avg = avg / data.size();
|
|
return avg;
|
|
}
|
|
|
|
// Calculates 95% CI assuming a normal distribution of samples.
|
|
// Samples are not from a normal distribution, but it still
|
|
// provides useful approximation.
|
|
double CalcConfidence95(std::vector<double>& data) {
|
|
assert(data.size() > 1);
|
|
double avg = CalcAvg(data);
|
|
double std_error = CalcStdDev(data, avg) / std::sqrt(data.size());
|
|
|
|
// Z score for the 97.5 percentile
|
|
// see https://en.wikipedia.org/wiki/1.96
|
|
return 1.959964 * std_error;
|
|
}
|
|
|
|
double CalcMedian(std::vector<double>& data) {
|
|
assert(data.size() > 0);
|
|
std::sort(data.begin(), data.end());
|
|
|
|
size_t mid = data.size() / 2;
|
|
if (data.size() % 2 == 1) {
|
|
// Odd number of entries
|
|
return data[mid];
|
|
} else {
|
|
// Even number of entries
|
|
return (data[mid] + data[mid - 1]) / 2;
|
|
}
|
|
}
|
|
|
|
double CalcStdDev(std::vector<double>& data, double average) {
|
|
assert(data.size() > 1);
|
|
double squared_sum = 0.0;
|
|
for (double x : data) {
|
|
squared_sum += std::pow(x - average, 2);
|
|
}
|
|
|
|
// using samples count - 1 following Bessel's correction
|
|
// see https://en.wikipedia.org/wiki/Bessel%27s_correction
|
|
return std::sqrt(squared_sum / (data.size() - 1));
|
|
}
|
|
|
|
std::vector<double> throughput_ops_;
|
|
std::vector<double> throughput_mbs_;
|
|
};
|
|
|
|
class TimestampEmulator {
|
|
private:
|
|
std::atomic<uint64_t> timestamp_;
|
|
|
|
public:
|
|
TimestampEmulator() : timestamp_(0) {}
|
|
uint64_t Get() const { return timestamp_.load(); }
|
|
void Inc() { timestamp_++; }
|
|
Slice Allocate(char* scratch) {
|
|
// TODO: support larger timestamp sizes
|
|
assert(FLAGS_user_timestamp_size == 8);
|
|
assert(scratch);
|
|
uint64_t ts = timestamp_.fetch_add(1);
|
|
EncodeFixed64(scratch, ts);
|
|
return Slice(scratch, FLAGS_user_timestamp_size);
|
|
}
|
|
Slice GetTimestampForRead(Random64& rand, char* scratch) {
|
|
assert(FLAGS_user_timestamp_size == 8);
|
|
assert(scratch);
|
|
if (FLAGS_read_with_latest_user_timestamp) {
|
|
return Allocate(scratch);
|
|
}
|
|
// Choose a random timestamp from the past.
|
|
uint64_t ts = rand.Next() % Get();
|
|
EncodeFixed64(scratch, ts);
|
|
return Slice(scratch, FLAGS_user_timestamp_size);
|
|
}
|
|
};
|
|
|
|
// State shared by all concurrent executions of the same benchmark.
|
|
struct SharedState {
|
|
port::Mutex mu;
|
|
port::CondVar cv;
|
|
int total;
|
|
int perf_level;
|
|
std::shared_ptr<RateLimiter> write_rate_limiter;
|
|
std::shared_ptr<RateLimiter> read_rate_limiter;
|
|
|
|
// Each thread goes through the following states:
|
|
// (1) initializing
|
|
// (2) waiting for others to be initialized
|
|
// (3) running
|
|
// (4) done
|
|
|
|
long num_initialized;
|
|
long num_done;
|
|
bool start;
|
|
|
|
SharedState() : cv(&mu), perf_level(FLAGS_perf_level) {}
|
|
};
|
|
|
|
// Per-thread state for concurrent executions of the same benchmark.
|
|
struct ThreadState {
|
|
int tid; // 0..n-1 when running in n threads
|
|
Random64 rand; // Has different seeds for different threads
|
|
Stats stats;
|
|
SharedState* shared;
|
|
|
|
explicit ThreadState(int index, int my_seed)
|
|
: tid(index), rand(*seed_base + my_seed) {}
|
|
};
|
|
|
|
class Duration {
|
|
public:
|
|
Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) {
|
|
max_seconds_ = max_seconds;
|
|
max_ops_ = max_ops;
|
|
ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops;
|
|
ops_ = 0;
|
|
start_at_ = FLAGS_env->NowMicros();
|
|
}
|
|
|
|
int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; }
|
|
|
|
bool Done(int64_t increment) {
|
|
if (increment <= 0) {
|
|
increment = 1; // avoid Done(0) and infinite loops
|
|
}
|
|
ops_ += increment;
|
|
|
|
if (max_seconds_) {
|
|
// Recheck every appx 1000 ops (exact iff increment is factor of 1000)
|
|
auto granularity = FLAGS_ops_between_duration_checks;
|
|
if ((ops_ / granularity) != ((ops_ - increment) / granularity)) {
|
|
uint64_t now = FLAGS_env->NowMicros();
|
|
return ((now - start_at_) / 1000000) >= max_seconds_;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return ops_ > max_ops_;
|
|
}
|
|
}
|
|
|
|
private:
|
|
uint64_t max_seconds_;
|
|
int64_t max_ops_;
|
|
int64_t ops_per_stage_;
|
|
int64_t ops_;
|
|
uint64_t start_at_;
|
|
};
|
|
|
|
class Benchmark {
|
|
private:
|
|
std::shared_ptr<Cache> cache_;
|
|
std::shared_ptr<Cache> compressed_cache_;
|
|
std::shared_ptr<const SliceTransform> prefix_extractor_;
|
|
DBWithColumnFamilies db_;
|
|
std::vector<DBWithColumnFamilies> multi_dbs_;
|
|
int64_t num_;
|
|
int key_size_;
|
|
int user_timestamp_size_;
|
|
int prefix_size_;
|
|
int total_thread_count_;
|
|
int64_t keys_per_prefix_;
|
|
int64_t entries_per_batch_;
|
|
int64_t writes_before_delete_range_;
|
|
int64_t writes_per_range_tombstone_;
|
|
int64_t range_tombstone_width_;
|
|
int64_t max_num_range_tombstones_;
|
|
ReadOptions read_options_;
|
|
WriteOptions write_options_;
|
|
Options open_options_; // keep options around to properly destroy db later
|
|
TraceOptions trace_options_;
|
|
TraceOptions block_cache_trace_options_;
|
|
int64_t reads_;
|
|
int64_t deletes_;
|
|
double read_random_exp_range_;
|
|
int64_t writes_;
|
|
int64_t readwrites_;
|
|
int64_t merge_keys_;
|
|
bool report_file_operations_;
|
|
bool use_blob_db_; // Stacked BlobDB
|
|
bool read_operands_; // read via GetMergeOperands()
|
|
std::vector<std::string> keys_;
|
|
|
|
class ErrorHandlerListener : public EventListener {
|
|
public:
|
|
ErrorHandlerListener()
|
|
: mutex_(),
|
|
cv_(&mutex_),
|
|
no_auto_recovery_(false),
|
|
recovery_complete_(false) {}
|
|
|
|
~ErrorHandlerListener() override = default;
|
|
|
|
const char* Name() const override { return kClassName(); }
|
|
static const char* kClassName() { return "ErrorHandlerListener"; }
|
|
|
|
void OnErrorRecoveryBegin(BackgroundErrorReason /*reason*/,
|
|
Status /*bg_error*/,
|
|
bool* auto_recovery) override {
|
|
if (*auto_recovery && no_auto_recovery_) {
|
|
*auto_recovery = false;
|
|
}
|
|
}
|
|
|
|
void OnErrorRecoveryCompleted(Status /*old_bg_error*/) override {
|
|
InstrumentedMutexLock l(&mutex_);
|
|
recovery_complete_ = true;
|
|
cv_.SignalAll();
|
|
}
|
|
|
|
bool WaitForRecovery(uint64_t abs_time_us) {
|
|
InstrumentedMutexLock l(&mutex_);
|
|
if (!recovery_complete_) {
|
|
cv_.TimedWait(abs_time_us);
|
|
}
|
|
if (recovery_complete_) {
|
|
recovery_complete_ = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void EnableAutoRecovery(bool enable = true) { no_auto_recovery_ = !enable; }
|
|
|
|
private:
|
|
InstrumentedMutex mutex_;
|
|
InstrumentedCondVar cv_;
|
|
bool no_auto_recovery_;
|
|
bool recovery_complete_;
|
|
};
|
|
|
|
std::shared_ptr<ErrorHandlerListener> listener_;
|
|
|
|
std::unique_ptr<TimestampEmulator> mock_app_clock_;
|
|
|
|
bool SanityCheck() {
|
|
if (FLAGS_compression_ratio > 1) {
|
|
fprintf(stderr, "compression_ratio should be between 0 and 1\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool CompressSlice(const CompressionInfo& compression_info,
|
|
const Slice& input, std::string* compressed) {
|
|
constexpr uint32_t compress_format_version = 2;
|
|
|
|
return CompressData(input, compression_info, compress_format_version,
|
|
compressed);
|
|
}
|
|
|
|
void PrintHeader(const Options& options) {
|
|
PrintEnvironment();
|
|
fprintf(stdout,
|
|
"Keys: %d bytes each (+ %d bytes user-defined timestamp)\n",
|
|
FLAGS_key_size, FLAGS_user_timestamp_size);
|
|
auto avg_value_size = FLAGS_value_size;
|
|
if (FLAGS_value_size_distribution_type_e == kFixed) {
|
|
fprintf(stdout,
|
|
"Values: %d bytes each (%d bytes after compression)\n",
|
|
avg_value_size,
|
|
static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
|
|
} else {
|
|
avg_value_size = (FLAGS_value_size_min + FLAGS_value_size_max) / 2;
|
|
fprintf(stdout,
|
|
"Values: %d avg bytes each (%d bytes after compression)\n",
|
|
avg_value_size,
|
|
static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
|
|
fprintf(stdout, "Values Distribution: %s (min: %d, max: %d)\n",
|
|
FLAGS_value_size_distribution_type.c_str(), FLAGS_value_size_min,
|
|
FLAGS_value_size_max);
|
|
}
|
|
fprintf(stdout, "Entries: %" PRIu64 "\n", num_);
|
|
fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size);
|
|
fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_);
|
|
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
|
|
((static_cast<int64_t>(FLAGS_key_size + avg_value_size) * num_) /
|
|
1048576.0));
|
|
fprintf(
|
|
stdout, "FileSize: %.1f MB (estimated)\n",
|
|
(((FLAGS_key_size + avg_value_size * FLAGS_compression_ratio) * num_) /
|
|
1048576.0));
|
|
fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n",
|
|
FLAGS_benchmark_write_rate_limit);
|
|
fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n",
|
|
FLAGS_benchmark_read_rate_limit);
|
|
if (FLAGS_enable_numa) {
|
|
fprintf(stderr, "Running in NUMA enabled mode.\n");
|
|
#ifndef NUMA
|
|
fprintf(stderr, "NUMA is not defined in the system.\n");
|
|
exit(1);
|
|
#else
|
|
if (numa_available() == -1) {
|
|
fprintf(stderr, "NUMA is not supported by the system.\n");
|
|
exit(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
auto compression = CompressionTypeToString(FLAGS_compression_type_e);
|
|
fprintf(stdout, "Compression: %s\n", compression.c_str());
|
|
fprintf(stdout, "Compression sampling rate: %" PRId64 "\n",
|
|
FLAGS_sample_for_compression);
|
|
if (options.memtable_factory != nullptr) {
|
|
fprintf(stdout, "Memtablerep: %s\n",
|
|
options.memtable_factory->GetId().c_str());
|
|
}
|
|
fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);
|
|
|
|
PrintWarnings(compression.c_str());
|
|
fprintf(stdout, "------------------------------------------------\n");
|
|
}
|
|
|
|
void PrintWarnings(const char* compression) {
|
|
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
|
|
fprintf(
|
|
stdout,
|
|
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
|
|
#endif
|
|
#ifndef NDEBUG
|
|
fprintf(stdout,
|
|
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
|
|
#endif
|
|
if (FLAGS_compression_type_e != ROCKSDB_NAMESPACE::kNoCompression) {
|
|
// The test string should not be too small.
|
|
const int len = FLAGS_block_size;
|
|
std::string input_str(len, 'y');
|
|
std::string compressed;
|
|
CompressionOptions opts;
|
|
CompressionContext context(FLAGS_compression_type_e, opts);
|
|
CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e,
|
|
FLAGS_sample_for_compression);
|
|
bool result = CompressSlice(info, Slice(input_str), &compressed);
|
|
|
|
if (!result) {
|
|
fprintf(stdout, "WARNING: %s compression is not enabled\n",
|
|
compression);
|
|
} else if (compressed.size() >= input_str.size()) {
|
|
fprintf(stdout, "WARNING: %s compression is not effective\n",
|
|
compression);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Current the following isn't equivalent to OS_LINUX.
|
|
#if defined(__linux)
|
|
static Slice TrimSpace(Slice s) {
|
|
unsigned int start = 0;
|
|
while (start < s.size() && isspace(s[start])) {
|
|
start++;
|
|
}
|
|
unsigned int limit = static_cast<unsigned int>(s.size());
|
|
while (limit > start && isspace(s[limit - 1])) {
|
|
limit--;
|
|
}
|
|
return Slice(s.data() + start, limit - start);
|
|
}
|
|
#endif
|
|
|
|
void PrintEnvironment() {
|
|
fprintf(stderr, "RocksDB: version %s\n",
|
|
GetRocksVersionAsString(true).c_str());
|
|
|
|
#if defined(__linux) || defined(__APPLE__) || defined(__FreeBSD__)
|
|
time_t now = time(nullptr);
|
|
char buf[52];
|
|
// Lint complains about ctime() usage, so replace it with ctime_r(). The
|
|
// requirement is to provide a buffer which is at least 26 bytes.
|
|
fprintf(stderr, "Date: %s",
|
|
ctime_r(&now, buf)); // ctime_r() adds newline
|
|
|
|
#if defined(__linux)
|
|
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
|
|
if (cpuinfo != nullptr) {
|
|
char line[1000];
|
|
int num_cpus = 0;
|
|
std::string cpu_type;
|
|
std::string cache_size;
|
|
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
|
|
const char* sep = strchr(line, ':');
|
|
if (sep == nullptr) {
|
|
continue;
|
|
}
|
|
Slice key = TrimSpace(Slice(line, sep - 1 - line));
|
|
Slice val = TrimSpace(Slice(sep + 1));
|
|
if (key == "model name") {
|
|
++num_cpus;
|
|
cpu_type = val.ToString();
|
|
} else if (key == "cache size") {
|
|
cache_size = val.ToString();
|
|
}
|
|
}
|
|
fclose(cpuinfo);
|
|
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
|
|
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
|
|
}
|
|
#elif defined(__APPLE__)
|
|
struct host_basic_info h;
|
|
size_t hlen = HOST_BASIC_INFO_COUNT;
|
|
if (host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&h,
|
|
(uint32_t*)&hlen) == KERN_SUCCESS) {
|
|
std::string cpu_type;
|
|
std::string cache_size;
|
|
size_t hcache_size;
|
|
hlen = sizeof(hcache_size);
|
|
if (sysctlbyname("hw.cachelinesize", &hcache_size, &hlen, NULL, 0) == 0) {
|
|
cache_size = std::to_string(hcache_size);
|
|
}
|
|
switch (h.cpu_type) {
|
|
case CPU_TYPE_X86_64:
|
|
cpu_type = "x86_64";
|
|
break;
|
|
case CPU_TYPE_ARM64:
|
|
cpu_type = "arm64";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
fprintf(stderr, "CPU: %d * %s\n", h.max_cpus, cpu_type.c_str());
|
|
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
|
|
}
|
|
#elif defined(__FreeBSD__)
|
|
int ncpus;
|
|
size_t len = sizeof(ncpus);
|
|
int mib[2] = {CTL_HW, HW_NCPU};
|
|
if (sysctl(mib, 2, &ncpus, &len, nullptr, 0) == 0) {
|
|
char cpu_type[16];
|
|
len = sizeof(cpu_type) - 1;
|
|
mib[1] = HW_MACHINE;
|
|
if (sysctl(mib, 2, cpu_type, &len, nullptr, 0) == 0) cpu_type[len] = 0;
|
|
|
|
fprintf(stderr, "CPU: %d * %s\n", ncpus, cpu_type);
|
|
// no programmatic way to get the cache line size except on PPC
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static bool KeyExpired(const TimestampEmulator* timestamp_emulator,
|
|
const Slice& key) {
|
|
const char* pos = key.data();
|
|
pos += 8;
|
|
uint64_t timestamp = 0;
|
|
if (port::kLittleEndian) {
|
|
int bytes_to_fill = 8;
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
timestamp |= (static_cast<uint64_t>(static_cast<unsigned char>(pos[i]))
|
|
<< ((bytes_to_fill - i - 1) << 3));
|
|
}
|
|
} else {
|
|
memcpy(×tamp, pos, sizeof(timestamp));
|
|
}
|
|
return timestamp_emulator->Get() - timestamp > FLAGS_time_range;
|
|
}
|
|
|
|
class ExpiredTimeFilter : public CompactionFilter {
|
|
public:
|
|
explicit ExpiredTimeFilter(
|
|
const std::shared_ptr<TimestampEmulator>& timestamp_emulator)
|
|
: timestamp_emulator_(timestamp_emulator) {}
|
|
bool Filter(int /*level*/, const Slice& key,
|
|
const Slice& /*existing_value*/, std::string* /*new_value*/,
|
|
bool* /*value_changed*/) const override {
|
|
return KeyExpired(timestamp_emulator_.get(), key);
|
|
}
|
|
const char* Name() const override { return "ExpiredTimeFilter"; }
|
|
|
|
private:
|
|
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
|
|
};
|
|
|
|
class KeepFilter : public CompactionFilter {
|
|
public:
|
|
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
|
|
std::string* /*new_value*/,
|
|
bool* /*value_changed*/) const override {
|
|
return false;
|
|
}
|
|
|
|
const char* Name() const override { return "KeepFilter"; }
|
|
};
|
|
|
|
static std::shared_ptr<MemoryAllocator> GetCacheAllocator() {
|
|
std::shared_ptr<MemoryAllocator> allocator;
|
|
|
|
if (FLAGS_use_cache_jemalloc_no_dump_allocator) {
|
|
JemallocAllocatorOptions jemalloc_options;
|
|
if (!NewJemallocNodumpAllocator(jemalloc_options, &allocator).ok()) {
|
|
fprintf(stderr, "JemallocNodumpAllocator not supported.\n");
|
|
exit(1);
|
|
}
|
|
} else if (FLAGS_use_cache_memkind_kmem_allocator) {
|
|
#ifdef MEMKIND
|
|
allocator = std::make_shared<MemkindKmemAllocator>();
|
|
#else
|
|
fprintf(stderr, "Memkind library is not linked with the binary.\n");
|
|
exit(1);
|
|
#endif
|
|
}
|
|
|
|
return allocator;
|
|
}
|
|
|
|
static int32_t GetCacheHashSeed() {
|
|
// For a fixed Cache seed, need a non-negative int32
|
|
return static_cast<int32_t>(*seed_base) & 0x7fffffff;
|
|
}
|
|
|
|
static std::shared_ptr<Cache> NewCache(int64_t capacity) {
|
|
CompressedSecondaryCacheOptions secondary_cache_opts;
|
|
TieredAdmissionPolicy adm_policy = TieredAdmissionPolicy::kAdmPolicyAuto;
|
|
bool use_tiered_cache = false;
|
|
if (capacity <= 0) {
|
|
return nullptr;
|
|
}
|
|
if (FLAGS_use_compressed_secondary_cache) {
|
|
secondary_cache_opts.capacity = FLAGS_compressed_secondary_cache_size;
|
|
secondary_cache_opts.num_shard_bits =
|
|
FLAGS_compressed_secondary_cache_numshardbits;
|
|
secondary_cache_opts.high_pri_pool_ratio =
|
|
FLAGS_compressed_secondary_cache_high_pri_pool_ratio;
|
|
secondary_cache_opts.low_pri_pool_ratio =
|
|
FLAGS_compressed_secondary_cache_low_pri_pool_ratio;
|
|
secondary_cache_opts.compression_type =
|
|
FLAGS_compressed_secondary_cache_compression_type_e;
|
|
secondary_cache_opts.compression_opts.level =
|
|
FLAGS_compressed_secondary_cache_compression_level;
|
|
secondary_cache_opts.compress_format_version =
|
|
FLAGS_compressed_secondary_cache_compress_format_version;
|
|
if (FLAGS_use_tiered_cache) {
|
|
use_tiered_cache = true;
|
|
adm_policy = StringToAdmissionPolicy(FLAGS_tiered_adm_policy.c_str());
|
|
}
|
|
}
|
|
if (!FLAGS_secondary_cache_uri.empty()) {
|
|
if (!use_tiered_cache && FLAGS_use_compressed_secondary_cache) {
|
|
fprintf(
|
|
stderr,
|
|
"Cannot specify both --secondary_cache_uri and "
|
|
"--use_compressed_secondary_cache when using a non-tiered cache\n");
|
|
exit(1);
|
|
}
|
|
Status s = SecondaryCache::CreateFromString(
|
|
ConfigOptions(), FLAGS_secondary_cache_uri, &secondary_cache);
|
|
if (secondary_cache == nullptr) {
|
|
fprintf(stderr,
|
|
"No secondary cache registered matching string: %s status=%s\n",
|
|
FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Cache> block_cache;
|
|
if (FLAGS_cache_type == "clock_cache") {
|
|
fprintf(stderr, "Old clock cache implementation has been removed.\n");
|
|
exit(1);
|
|
} else if (EndsWith(FLAGS_cache_type, "hyper_clock_cache")) {
|
|
size_t estimated_entry_charge;
|
|
if (FLAGS_cache_type == "fixed_hyper_clock_cache" ||
|
|
FLAGS_cache_type == "hyper_clock_cache") {
|
|
estimated_entry_charge = FLAGS_block_size;
|
|
} else if (FLAGS_cache_type == "auto_hyper_clock_cache") {
|
|
estimated_entry_charge = 0;
|
|
} else {
|
|
fprintf(stderr, "Cache type not supported.");
|
|
exit(1);
|
|
}
|
|
HyperClockCacheOptions opts(FLAGS_cache_size, estimated_entry_charge,
|
|
FLAGS_cache_numshardbits);
|
|
opts.hash_seed = GetCacheHashSeed();
|
|
if (use_tiered_cache) {
|
|
TieredCacheOptions tiered_opts;
|
|
tiered_opts.cache_type = PrimaryCacheType::kCacheTypeHCC;
|
|
tiered_opts.cache_opts = &opts;
|
|
tiered_opts.total_capacity =
|
|
opts.capacity + secondary_cache_opts.capacity;
|
|
tiered_opts.compressed_secondary_ratio =
|
|
secondary_cache_opts.capacity * 1.0 / tiered_opts.total_capacity;
|
|
tiered_opts.comp_cache_opts = secondary_cache_opts;
|
|
tiered_opts.nvm_sec_cache = secondary_cache;
|
|
tiered_opts.adm_policy = adm_policy;
|
|
block_cache = NewTieredCache(tiered_opts);
|
|
} else {
|
|
if (!FLAGS_secondary_cache_uri.empty()) {
|
|
opts.secondary_cache = secondary_cache;
|
|
} else if (FLAGS_use_compressed_secondary_cache) {
|
|
opts.secondary_cache =
|
|
NewCompressedSecondaryCache(secondary_cache_opts);
|
|
}
|
|
block_cache = opts.MakeSharedCache();
|
|
}
|
|
} else if (FLAGS_cache_type == "lru_cache") {
|
|
LRUCacheOptions opts(
|
|
static_cast<size_t>(capacity), FLAGS_cache_numshardbits,
|
|
false /*strict_capacity_limit*/, FLAGS_cache_high_pri_pool_ratio,
|
|
GetCacheAllocator(), kDefaultToAdaptiveMutex,
|
|
kDefaultCacheMetadataChargePolicy, FLAGS_cache_low_pri_pool_ratio);
|
|
opts.hash_seed = GetCacheHashSeed();
|
|
if (use_tiered_cache) {
|
|
TieredCacheOptions tiered_opts;
|
|
tiered_opts.cache_type = PrimaryCacheType::kCacheTypeLRU;
|
|
tiered_opts.cache_opts = &opts;
|
|
tiered_opts.total_capacity =
|
|
opts.capacity + secondary_cache_opts.capacity;
|
|
tiered_opts.compressed_secondary_ratio =
|
|
secondary_cache_opts.capacity * 1.0 / tiered_opts.total_capacity;
|
|
tiered_opts.comp_cache_opts = secondary_cache_opts;
|
|
tiered_opts.nvm_sec_cache = secondary_cache;
|
|
tiered_opts.adm_policy = adm_policy;
|
|
block_cache = NewTieredCache(tiered_opts);
|
|
} else {
|
|
if (!FLAGS_secondary_cache_uri.empty()) {
|
|
opts.secondary_cache = secondary_cache;
|
|
} else if (FLAGS_use_compressed_secondary_cache) {
|
|
opts.secondary_cache =
|
|
NewCompressedSecondaryCache(secondary_cache_opts);
|
|
}
|
|
block_cache = opts.MakeSharedCache();
|
|
}
|
|
} else {
|
|
fprintf(stderr, "Cache type not supported.");
|
|
exit(1);
|
|
}
|
|
|
|
if (!block_cache) {
|
|
fprintf(stderr, "Unable to allocate block cache\n");
|
|
exit(1);
|
|
}
|
|
return block_cache;
|
|
}
|
|
|
|
public:
|
|
Benchmark()
|
|
: cache_(NewCache(FLAGS_cache_size)),
|
|
compressed_cache_(NewCache(FLAGS_compressed_cache_size)),
|
|
prefix_extractor_(FLAGS_prefix_size != 0
|
|
? NewFixedPrefixTransform(FLAGS_prefix_size)
|
|
: nullptr),
|
|
num_(FLAGS_num),
|
|
key_size_(FLAGS_key_size),
|
|
user_timestamp_size_(FLAGS_user_timestamp_size),
|
|
prefix_size_(FLAGS_prefix_size),
|
|
total_thread_count_(0),
|
|
keys_per_prefix_(FLAGS_keys_per_prefix),
|
|
entries_per_batch_(1),
|
|
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
|
|
read_random_exp_range_(0.0),
|
|
writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
|
|
readwrites_(
|
|
(FLAGS_writes < 0 && FLAGS_reads < 0)
|
|
? FLAGS_num
|
|
: ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)),
|
|
merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys),
|
|
report_file_operations_(FLAGS_report_file_operations),
|
|
use_blob_db_(FLAGS_use_blob_db), // Stacked BlobDB
|
|
read_operands_(false) {
|
|
// use simcache instead of cache
|
|
if (FLAGS_simcache_size >= 0) {
|
|
if (FLAGS_cache_numshardbits >= 1) {
|
|
cache_ =
|
|
NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits);
|
|
} else {
|
|
cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0);
|
|
}
|
|
}
|
|
|
|
if (report_file_operations_) {
|
|
FLAGS_env = new CompositeEnvWrapper(
|
|
FLAGS_env,
|
|
std::make_shared<CountedFileSystem>(FLAGS_env->GetFileSystem()));
|
|
}
|
|
|
|
if (FLAGS_prefix_size > FLAGS_key_size) {
|
|
fprintf(stderr, "prefix size is larger than key size");
|
|
exit(1);
|
|
}
|
|
|
|
std::vector<std::string> files;
|
|
FLAGS_env->GetChildren(FLAGS_db, &files);
|
|
for (size_t i = 0; i < files.size(); i++) {
|
|
if (Slice(files[i]).starts_with("heap-")) {
|
|
FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]);
|
|
}
|
|
}
|
|
if (!FLAGS_use_existing_db) {
|
|
Options options;
|
|
options.env = FLAGS_env;
|
|
if (!FLAGS_wal_dir.empty()) {
|
|
options.wal_dir = FLAGS_wal_dir;
|
|
}
|
|
if (use_blob_db_) {
|
|
// Stacked BlobDB
|
|
blob_db::DestroyBlobDB(FLAGS_db, options, blob_db::BlobDBOptions());
|
|
}
|
|
DestroyDB(FLAGS_db, options);
|
|
if (!FLAGS_wal_dir.empty()) {
|
|
FLAGS_env->DeleteDir(FLAGS_wal_dir);
|
|
}
|
|
|
|
if (FLAGS_num_multi_db > 1) {
|
|
FLAGS_env->CreateDir(FLAGS_db);
|
|
if (!FLAGS_wal_dir.empty()) {
|
|
FLAGS_env->CreateDir(FLAGS_wal_dir);
|
|
}
|
|
}
|
|
}
|
|
|
|
listener_.reset(new ErrorHandlerListener());
|
|
if (user_timestamp_size_ > 0) {
|
|
mock_app_clock_.reset(new TimestampEmulator());
|
|
}
|
|
}
|
|
|
|
void DeleteDBs() {
|
|
db_.DeleteDBs();
|
|
for (const DBWithColumnFamilies& dbwcf : multi_dbs_) {
|
|
delete dbwcf.db;
|
|
}
|
|
}
|
|
|
|
~Benchmark() {
|
|
DeleteDBs();
|
|
if (cache_.get() != nullptr) {
|
|
// Clear cache reference first
|
|
open_options_.write_buffer_manager.reset();
|
|
// this will leak, but we're shutting down so nobody cares
|
|
cache_->DisownData();
|
|
}
|
|
}
|
|
|
|
Slice AllocateKey(std::unique_ptr<const char[]>* key_guard) {
|
|
char* data = new char[key_size_];
|
|
const char* const_data = data;
|
|
key_guard->reset(const_data);
|
|
return Slice(key_guard->get(), key_size_);
|
|
}
|
|
|
|
// Generate key according to the given specification and random number.
|
|
// The resulting key will have the following format:
|
|
// - If keys_per_prefix_ is positive, extra trailing bytes are either cut
|
|
// off or padded with '0'.
|
|
// The prefix value is derived from key value.
|
|
// ----------------------------
|
|
// | prefix 00000 | key 00000 |
|
|
// ----------------------------
|
|
//
|
|
// - If keys_per_prefix_ is 0, the key is simply a binary representation of
|
|
// random number followed by trailing '0's
|
|
// ----------------------------
|
|
// | key 00000 |
|
|
// ----------------------------
|
|
void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) {
|
|
if (!keys_.empty()) {
|
|
assert(FLAGS_use_existing_keys);
|
|
assert(keys_.size() == static_cast<size_t>(num_keys));
|
|
assert(v < static_cast<uint64_t>(num_keys));
|
|
*key = keys_[v];
|
|
return;
|
|
}
|
|
char* start = const_cast<char*>(key->data());
|
|
char* pos = start;
|
|
if (keys_per_prefix_ > 0) {
|
|
int64_t num_prefix = num_keys / keys_per_prefix_;
|
|
int64_t prefix = v % num_prefix;
|
|
int bytes_to_fill = std::min(prefix_size_, 8);
|
|
if (port::kLittleEndian) {
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
|
|
}
|
|
} else {
|
|
memcpy(pos, static_cast<void*>(&prefix), bytes_to_fill);
|
|
}
|
|
if (prefix_size_ > 8) {
|
|
// fill the rest with 0s
|
|
memset(pos + 8, '0', prefix_size_ - 8);
|
|
}
|
|
pos += prefix_size_;
|
|
}
|
|
|
|
int bytes_to_fill = std::min(key_size_ - static_cast<int>(pos - start), 8);
|
|
if (port::kLittleEndian) {
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
|
|
}
|
|
} else {
|
|
memcpy(pos, static_cast<void*>(&v), bytes_to_fill);
|
|
}
|
|
pos += bytes_to_fill;
|
|
if (key_size_ > pos - start) {
|
|
memset(pos, '0', key_size_ - (pos - start));
|
|
}
|
|
}
|
|
|
|
void GenerateKeyFromIntForSeek(uint64_t v, int64_t num_keys, Slice* key) {
|
|
GenerateKeyFromInt(v, num_keys, key);
|
|
if (FLAGS_seek_missing_prefix) {
|
|
assert(prefix_size_ > 8);
|
|
char* key_ptr = const_cast<char*>(key->data());
|
|
// This rely on GenerateKeyFromInt filling paddings with '0's.
|
|
// Putting a '1' will create a non-existing prefix.
|
|
key_ptr[8] = '1';
|
|
}
|
|
}
|
|
|
|
std::string GetPathForMultiple(std::string base_name, size_t id) {
|
|
if (!base_name.empty()) {
|
|
#ifndef OS_WIN
|
|
if (base_name.back() != '/') {
|
|
base_name += '/';
|
|
}
|
|
#else
|
|
if (base_name.back() != '\\') {
|
|
base_name += '\\';
|
|
}
|
|
#endif
|
|
}
|
|
return base_name + std::to_string(id);
|
|
}
|
|
|
|
void VerifyDBFromDB(std::string& truth_db_name) {
|
|
DBWithColumnFamilies truth_db;
|
|
auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
ReadOptions ro;
|
|
ro.total_order_seek = true;
|
|
std::unique_ptr<Iterator> truth_iter(truth_db.db->NewIterator(ro));
|
|
std::unique_ptr<Iterator> db_iter(db_.db->NewIterator(ro));
|
|
// Verify that all the key/values in truth_db are retrivable in db with
|
|
// ::Get
|
|
fprintf(stderr, "Verifying db >= truth_db with ::Get...\n");
|
|
for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) {
|
|
std::string value;
|
|
s = db_.db->Get(ro, truth_iter->key(), &value);
|
|
assert(s.ok());
|
|
// TODO(myabandeh): provide debugging hints
|
|
assert(Slice(value) == truth_iter->value());
|
|
}
|
|
// Verify that the db iterator does not give any extra key/value
|
|
fprintf(stderr, "Verifying db == truth_db...\n");
|
|
for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid();
|
|
db_iter->Next(), truth_iter->Next()) {
|
|
assert(truth_iter->Valid());
|
|
assert(truth_iter->value() == db_iter->value());
|
|
}
|
|
// No more key should be left unchecked in truth_db
|
|
assert(!truth_iter->Valid());
|
|
fprintf(stderr, "...Verified\n");
|
|
}
|
|
|
|
void ErrorExit() {
|
|
DeleteDBs();
|
|
exit(1);
|
|
}
|
|
|
|
void Run() {
|
|
if (!SanityCheck()) {
|
|
ErrorExit();
|
|
}
|
|
Open(&open_options_);
|
|
PrintHeader(open_options_);
|
|
std::stringstream benchmark_stream(FLAGS_benchmarks);
|
|
std::string name;
|
|
std::unique_ptr<ExpiredTimeFilter> filter;
|
|
while (std::getline(benchmark_stream, name, ',')) {
|
|
// Sanitize parameters
|
|
num_ = FLAGS_num;
|
|
reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
|
|
writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
|
|
deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes);
|
|
value_size = FLAGS_value_size;
|
|
key_size_ = FLAGS_key_size;
|
|
entries_per_batch_ = FLAGS_batch_size;
|
|
writes_before_delete_range_ = FLAGS_writes_before_delete_range;
|
|
writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone;
|
|
range_tombstone_width_ = FLAGS_range_tombstone_width;
|
|
max_num_range_tombstones_ = FLAGS_max_num_range_tombstones;
|
|
write_options_ = WriteOptions();
|
|
read_random_exp_range_ = FLAGS_read_random_exp_range;
|
|
if (FLAGS_sync) {
|
|
write_options_.sync = true;
|
|
}
|
|
write_options_.disableWAL = FLAGS_disable_wal;
|
|
write_options_.rate_limiter_priority =
|
|
FLAGS_rate_limit_auto_wal_flush ? Env::IO_USER : Env::IO_TOTAL;
|
|
read_options_ = ReadOptions(FLAGS_verify_checksum, true);
|
|
read_options_.total_order_seek = FLAGS_total_order_seek;
|
|
read_options_.prefix_same_as_start = FLAGS_prefix_same_as_start;
|
|
read_options_.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
read_options_.tailing = FLAGS_use_tailing_iterator;
|
|
read_options_.readahead_size = FLAGS_readahead_size;
|
|
read_options_.adaptive_readahead = FLAGS_adaptive_readahead;
|
|
read_options_.async_io = FLAGS_async_io;
|
|
read_options_.optimize_multiget_for_io = FLAGS_optimize_multiget_for_io;
|
|
read_options_.auto_readahead_size = FLAGS_auto_readahead_size;
|
|
|
|
void (Benchmark::*method)(ThreadState*) = nullptr;
|
|
void (Benchmark::*post_process_method)() = nullptr;
|
|
|
|
bool fresh_db = false;
|
|
int num_threads = FLAGS_threads;
|
|
|
|
int num_repeat = 1;
|
|
int num_warmup = 0;
|
|
if (!name.empty() && *name.rbegin() == ']') {
|
|
auto it = name.find('[');
|
|
if (it == std::string::npos) {
|
|
fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str());
|
|
ErrorExit();
|
|
}
|
|
std::string args = name.substr(it + 1);
|
|
args.resize(args.size() - 1);
|
|
name.resize(it);
|
|
|
|
std::string bench_arg;
|
|
std::stringstream args_stream(args);
|
|
while (std::getline(args_stream, bench_arg, '-')) {
|
|
if (bench_arg.empty()) {
|
|
continue;
|
|
}
|
|
if (bench_arg[0] == 'X') {
|
|
// Repeat the benchmark n times
|
|
std::string num_str = bench_arg.substr(1);
|
|
num_repeat = std::stoi(num_str);
|
|
} else if (bench_arg[0] == 'W') {
|
|
// Warm up the benchmark for n times
|
|
std::string num_str = bench_arg.substr(1);
|
|
num_warmup = std::stoi(num_str);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Both fillseqdeterministic and filluniquerandomdeterministic
|
|
// fill the levels except the max level with UNIQUE_RANDOM
|
|
// and fill the max level with fillseq and filluniquerandom, respectively
|
|
if (name == "fillseqdeterministic" ||
|
|
name == "filluniquerandomdeterministic") {
|
|
if (!FLAGS_disable_auto_compactions) {
|
|
fprintf(stderr,
|
|
"Please disable_auto_compactions in FillDeterministic "
|
|
"benchmark\n");
|
|
ErrorExit();
|
|
}
|
|
if (num_threads > 1) {
|
|
fprintf(stderr,
|
|
"filldeterministic multithreaded not supported"
|
|
", use 1 thread\n");
|
|
num_threads = 1;
|
|
}
|
|
fresh_db = true;
|
|
if (name == "fillseqdeterministic") {
|
|
method = &Benchmark::WriteSeqDeterministic;
|
|
} else {
|
|
method = &Benchmark::WriteUniqueRandomDeterministic;
|
|
}
|
|
} else if (name == "fillseq") {
|
|
fresh_db = true;
|
|
method = &Benchmark::WriteSeq;
|
|
} else if (name == "fillbatch") {
|
|
fresh_db = true;
|
|
entries_per_batch_ = 1000;
|
|
method = &Benchmark::WriteSeq;
|
|
} else if (name == "fillrandom") {
|
|
fresh_db = true;
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "filluniquerandom" ||
|
|
name == "fillanddeleteuniquerandom") {
|
|
fresh_db = true;
|
|
if (num_threads > 1) {
|
|
fprintf(stderr,
|
|
"filluniquerandom and fillanddeleteuniquerandom "
|
|
"multithreaded not supported, use 1 thread");
|
|
num_threads = 1;
|
|
}
|
|
method = &Benchmark::WriteUniqueRandom;
|
|
} else if (name == "overwrite") {
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "fillsync") {
|
|
fresh_db = true;
|
|
num_ /= 1000;
|
|
write_options_.sync = true;
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "fill100K") {
|
|
fresh_db = true;
|
|
num_ /= 1000;
|
|
value_size = 100 * 1000;
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "readseq") {
|
|
method = &Benchmark::ReadSequential;
|
|
} else if (name == "readtorowcache") {
|
|
if (!FLAGS_use_existing_keys || !FLAGS_row_cache_size) {
|
|
fprintf(stderr,
|
|
"Please set use_existing_keys to true and specify a "
|
|
"row cache size in readtorowcache benchmark\n");
|
|
ErrorExit();
|
|
}
|
|
method = &Benchmark::ReadToRowCache;
|
|
} else if (name == "readtocache") {
|
|
method = &Benchmark::ReadSequential;
|
|
num_threads = 1;
|
|
reads_ = num_;
|
|
} else if (name == "readreverse") {
|
|
method = &Benchmark::ReadReverse;
|
|
} else if (name == "readrandom") {
|
|
if (FLAGS_multiread_stride) {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
}
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "readrandomfast") {
|
|
method = &Benchmark::ReadRandomFast;
|
|
} else if (name == "multireadrandom") {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
method = &Benchmark::MultiReadRandom;
|
|
} else if (name == "multireadwhilewriting") {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
num_threads++;
|
|
method = &Benchmark::MultiReadWhileWriting;
|
|
} else if (name == "approximatesizerandom") {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
method = &Benchmark::ApproximateSizeRandom;
|
|
} else if (name == "mixgraph") {
|
|
method = &Benchmark::MixGraph;
|
|
} else if (name == "readmissing") {
|
|
++key_size_;
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "newiterator") {
|
|
method = &Benchmark::IteratorCreation;
|
|
} else if (name == "newiteratorwhilewriting") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::IteratorCreationWhileWriting;
|
|
} else if (name == "seekrandom") {
|
|
method = &Benchmark::SeekRandom;
|
|
} else if (name == "seekrandomwhilewriting") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::SeekRandomWhileWriting;
|
|
} else if (name == "seekrandomwhilemerging") {
|
|
num_threads++; // Add extra thread for merging
|
|
method = &Benchmark::SeekRandomWhileMerging;
|
|
} else if (name == "readrandomsmall") {
|
|
reads_ /= 1000;
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "deleteseq") {
|
|
method = &Benchmark::DeleteSeq;
|
|
} else if (name == "deleterandom") {
|
|
method = &Benchmark::DeleteRandom;
|
|
} else if (name == "readwhilewriting") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::ReadWhileWriting;
|
|
} else if (name == "readwhilemerging") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::ReadWhileMerging;
|
|
} else if (name == "readwhilescanning") {
|
|
num_threads++; // Add extra thread for scaning
|
|
method = &Benchmark::ReadWhileScanning;
|
|
} else if (name == "readrandomwriterandom") {
|
|
method = &Benchmark::ReadRandomWriteRandom;
|
|
} else if (name == "readrandommergerandom") {
|
|
if (FLAGS_merge_operator.empty()) {
|
|
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
|
|
name.c_str());
|
|
ErrorExit();
|
|
}
|
|
method = &Benchmark::ReadRandomMergeRandom;
|
|
} else if (name == "updaterandom") {
|
|
method = &Benchmark::UpdateRandom;
|
|
} else if (name == "xorupdaterandom") {
|
|
method = &Benchmark::XORUpdateRandom;
|
|
} else if (name == "appendrandom") {
|
|
method = &Benchmark::AppendRandom;
|
|
} else if (name == "mergerandom") {
|
|
if (FLAGS_merge_operator.empty()) {
|
|
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
|
|
name.c_str());
|
|
exit(1);
|
|
}
|
|
method = &Benchmark::MergeRandom;
|
|
} else if (name == "randomwithverify") {
|
|
method = &Benchmark::RandomWithVerify;
|
|
} else if (name == "fillseekseq") {
|
|
method = &Benchmark::WriteSeqSeekSeq;
|
|
} else if (name == "compact") {
|
|
method = &Benchmark::Compact;
|
|
} else if (name == "compactall") {
|
|
CompactAll();
|
|
} else if (name == "compact0") {
|
|
CompactLevel(0);
|
|
} else if (name == "compact1") {
|
|
CompactLevel(1);
|
|
} else if (name == "waitforcompaction") {
|
|
WaitForCompaction();
|
|
} else if (name == "flush") {
|
|
Flush();
|
|
} else if (name == "crc32c") {
|
|
method = &Benchmark::Crc32c;
|
|
} else if (name == "xxhash") {
|
|
method = &Benchmark::xxHash;
|
|
} else if (name == "xxhash64") {
|
|
method = &Benchmark::xxHash64;
|
|
} else if (name == "xxh3") {
|
|
method = &Benchmark::xxh3;
|
|
} else if (name == "acquireload") {
|
|
method = &Benchmark::AcquireLoad;
|
|
} else if (name == "compress") {
|
|
method = &Benchmark::Compress;
|
|
} else if (name == "uncompress") {
|
|
method = &Benchmark::Uncompress;
|
|
} else if (name == "randomtransaction") {
|
|
method = &Benchmark::RandomTransaction;
|
|
post_process_method = &Benchmark::RandomTransactionVerify;
|
|
} else if (name == "randomreplacekeys") {
|
|
fresh_db = true;
|
|
method = &Benchmark::RandomReplaceKeys;
|
|
} else if (name == "timeseries") {
|
|
timestamp_emulator_.reset(new TimestampEmulator());
|
|
if (FLAGS_expire_style == "compaction_filter") {
|
|
filter.reset(new ExpiredTimeFilter(timestamp_emulator_));
|
|
fprintf(stdout, "Compaction filter is used to remove expired data");
|
|
open_options_.compaction_filter = filter.get();
|
|
}
|
|
fresh_db = true;
|
|
method = &Benchmark::TimeSeries;
|
|
} else if (name == "block_cache_entry_stats") {
|
|
// DB::Properties::kBlockCacheEntryStats
|
|
PrintStats("rocksdb.block-cache-entry-stats");
|
|
} else if (name == "cache_report_problems") {
|
|
CacheReportProblems();
|
|
} else if (name == "stats") {
|
|
PrintStats("rocksdb.stats");
|
|
} else if (name == "resetstats") {
|
|
ResetStats();
|
|
} else if (name == "verify") {
|
|
VerifyDBFromDB(FLAGS_truth_db);
|
|
} else if (name == "levelstats") {
|
|
PrintStats("rocksdb.levelstats");
|
|
} else if (name == "memstats") {
|
|
std::vector<std::string> keys{"rocksdb.num-immutable-mem-table",
|
|
"rocksdb.cur-size-active-mem-table",
|
|
"rocksdb.cur-size-all-mem-tables",
|
|
"rocksdb.size-all-mem-tables",
|
|
"rocksdb.num-entries-active-mem-table",
|
|
"rocksdb.num-entries-imm-mem-tables"};
|
|
PrintStats(keys);
|
|
} else if (name == "sstables") {
|
|
PrintStats("rocksdb.sstables");
|
|
} else if (name == "stats_history") {
|
|
PrintStatsHistory();
|
|
} else if (name == "replay") {
|
|
if (num_threads > 1) {
|
|
fprintf(stderr, "Multi-threaded replay is not yet supported\n");
|
|
ErrorExit();
|
|
}
|
|
if (FLAGS_trace_file == "") {
|
|
fprintf(stderr, "Please set --trace_file to be replayed from\n");
|
|
ErrorExit();
|
|
}
|
|
method = &Benchmark::Replay;
|
|
} else if (name == "getmergeoperands") {
|
|
method = &Benchmark::GetMergeOperands;
|
|
} else if (name == "verifychecksum") {
|
|
method = &Benchmark::VerifyChecksum;
|
|
} else if (name == "verifyfilechecksums") {
|
|
method = &Benchmark::VerifyFileChecksums;
|
|
} else if (name == "readrandomoperands") {
|
|
read_operands_ = true;
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "backup") {
|
|
method = &Benchmark::Backup;
|
|
} else if (name == "restore") {
|
|
method = &Benchmark::Restore;
|
|
} else if (!name.empty()) { // No error message for empty name
|
|
fprintf(stderr, "unknown benchmark '%s'\n", name.c_str());
|
|
ErrorExit();
|
|
}
|
|
|
|
if (fresh_db) {
|
|
if (FLAGS_use_existing_db) {
|
|
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
|
|
name.c_str());
|
|
method = nullptr;
|
|
} else {
|
|
if (db_.db != nullptr) {
|
|
db_.DeleteDBs();
|
|
DestroyDB(FLAGS_db, open_options_);
|
|
}
|
|
Options options = open_options_;
|
|
for (size_t i = 0; i < multi_dbs_.size(); i++) {
|
|
delete multi_dbs_[i].db;
|
|
if (!open_options_.wal_dir.empty()) {
|
|
options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i);
|
|
}
|
|
DestroyDB(GetPathForMultiple(FLAGS_db, i), options);
|
|
}
|
|
multi_dbs_.clear();
|
|
}
|
|
Open(&open_options_); // use open_options for the last accessed
|
|
}
|
|
|
|
if (method != nullptr) {
|
|
fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());
|
|
|
|
if (name == "backup") {
|
|
std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl;
|
|
} else if (name == "restore") {
|
|
std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl;
|
|
std::cout << "Restore path: [" << FLAGS_restore_dir << "]"
|
|
<< std::endl;
|
|
}
|
|
// A trace_file option can be provided both for trace and replay
|
|
// operations. But db_bench does not support tracing and replaying at
|
|
// the same time, for now. So, start tracing only when it is not a
|
|
// replay.
|
|
if (FLAGS_trace_file != "" && name != "replay") {
|
|
std::unique_ptr<TraceWriter> trace_writer;
|
|
Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
|
|
FLAGS_trace_file, &trace_writer);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Encountered an error starting a trace, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
s = db_.db->StartTrace(trace_options_, std::move(trace_writer));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Encountered an error starting a trace, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
fprintf(stdout, "Tracing the workload to: [%s]\n",
|
|
FLAGS_trace_file.c_str());
|
|
}
|
|
// Start block cache tracing.
|
|
if (!FLAGS_block_cache_trace_file.empty()) {
|
|
// Sanity checks.
|
|
if (FLAGS_block_cache_trace_sampling_frequency <= 0) {
|
|
fprintf(stderr,
|
|
"Block cache trace sampling frequency must be higher than "
|
|
"0.\n");
|
|
ErrorExit();
|
|
}
|
|
if (FLAGS_block_cache_trace_max_trace_file_size_in_bytes <= 0) {
|
|
fprintf(stderr,
|
|
"The maximum file size for block cache tracing must be "
|
|
"higher than 0.\n");
|
|
ErrorExit();
|
|
}
|
|
block_cache_trace_options_.max_trace_file_size =
|
|
FLAGS_block_cache_trace_max_trace_file_size_in_bytes;
|
|
block_cache_trace_options_.sampling_frequency =
|
|
FLAGS_block_cache_trace_sampling_frequency;
|
|
std::unique_ptr<TraceWriter> block_cache_trace_writer;
|
|
Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
|
|
FLAGS_block_cache_trace_file,
|
|
&block_cache_trace_writer);
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Encountered an error when creating trace writer, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
s = db_.db->StartBlockCacheTrace(block_cache_trace_options_,
|
|
std::move(block_cache_trace_writer));
|
|
if (!s.ok()) {
|
|
fprintf(
|
|
stderr,
|
|
"Encountered an error when starting block cache tracing, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
fprintf(stdout, "Tracing block cache accesses to: [%s]\n",
|
|
FLAGS_block_cache_trace_file.c_str());
|
|
}
|
|
|
|
if (num_warmup > 0) {
|
|
printf("Warming up benchmark by running %d times\n", num_warmup);
|
|
}
|
|
|
|
for (int i = 0; i < num_warmup; i++) {
|
|
RunBenchmark(num_threads, name, method);
|
|
}
|
|
|
|
if (num_repeat > 1) {
|
|
printf("Running benchmark for %d times\n", num_repeat);
|
|
}
|
|
|
|
CombinedStats combined_stats;
|
|
for (int i = 0; i < num_repeat; i++) {
|
|
Stats stats = RunBenchmark(num_threads, name, method);
|
|
combined_stats.AddStats(stats);
|
|
if (FLAGS_confidence_interval_only) {
|
|
combined_stats.ReportWithConfidenceIntervals(name);
|
|
} else {
|
|
combined_stats.Report(name);
|
|
}
|
|
}
|
|
if (num_repeat > 1) {
|
|
combined_stats.ReportFinal(name);
|
|
}
|
|
}
|
|
if (post_process_method != nullptr) {
|
|
(this->*post_process_method)();
|
|
}
|
|
}
|
|
|
|
if (secondary_update_thread_) {
|
|
secondary_update_stopped_.store(1, std::memory_order_relaxed);
|
|
secondary_update_thread_->join();
|
|
secondary_update_thread_.reset();
|
|
}
|
|
|
|
if (name != "replay" && FLAGS_trace_file != "") {
|
|
Status s = db_.db->EndTrace();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Encountered an error ending the trace, %s\n",
|
|
s.ToString().c_str());
|
|
}
|
|
}
|
|
if (!FLAGS_block_cache_trace_file.empty()) {
|
|
Status s = db_.db->EndBlockCacheTrace();
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Encountered an error ending the block cache tracing, %s\n",
|
|
s.ToString().c_str());
|
|
}
|
|
}
|
|
|
|
if (FLAGS_statistics) {
|
|
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
|
|
}
|
|
if (FLAGS_simcache_size >= 0) {
|
|
fprintf(
|
|
stdout, "SIMULATOR CACHE STATISTICS:\n%s\n",
|
|
static_cast_with_check<SimCache>(cache_.get())->ToString().c_str());
|
|
}
|
|
|
|
if (FLAGS_use_secondary_db) {
|
|
fprintf(stdout, "Secondary instance updated %" PRIu64 " times.\n",
|
|
secondary_db_updates_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
|
|
std::unique_ptr<port::Thread> secondary_update_thread_;
|
|
std::atomic<int> secondary_update_stopped_{0};
|
|
uint64_t secondary_db_updates_ = 0;
|
|
struct ThreadArg {
|
|
Benchmark* bm;
|
|
SharedState* shared;
|
|
ThreadState* thread;
|
|
void (Benchmark::*method)(ThreadState*);
|
|
};
|
|
|
|
static void ThreadBody(void* v) {
|
|
ThreadArg* arg = static_cast<ThreadArg*>(v);
|
|
SharedState* shared = arg->shared;
|
|
ThreadState* thread = arg->thread;
|
|
{
|
|
MutexLock l(&shared->mu);
|
|
shared->num_initialized++;
|
|
if (shared->num_initialized >= shared->total) {
|
|
shared->cv.SignalAll();
|
|
}
|
|
while (!shared->start) {
|
|
shared->cv.Wait();
|
|
}
|
|
}
|
|
|
|
SetPerfLevel(static_cast<PerfLevel>(shared->perf_level));
|
|
perf_context.EnablePerLevelPerfContext();
|
|
thread->stats.Start(thread->tid);
|
|
(arg->bm->*(arg->method))(thread);
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
thread->stats.Stop();
|
|
|
|
{
|
|
MutexLock l(&shared->mu);
|
|
shared->num_done++;
|
|
if (shared->num_done >= shared->total) {
|
|
shared->cv.SignalAll();
|
|
}
|
|
}
|
|
}
|
|
|
|
Stats RunBenchmark(int n, Slice name,
|
|
void (Benchmark::*method)(ThreadState*)) {
|
|
SharedState shared;
|
|
shared.total = n;
|
|
shared.num_initialized = 0;
|
|
shared.num_done = 0;
|
|
shared.start = false;
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
shared.write_rate_limiter.reset(
|
|
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
|
|
}
|
|
if (FLAGS_benchmark_read_rate_limit > 0) {
|
|
shared.read_rate_limiter.reset(NewGenericRateLimiter(
|
|
FLAGS_benchmark_read_rate_limit, 100000 /* refill_period_us */,
|
|
10 /* fairness */, RateLimiter::Mode::kReadsOnly));
|
|
}
|
|
|
|
std::unique_ptr<ReporterAgent> reporter_agent;
|
|
if (FLAGS_report_interval_seconds > 0) {
|
|
reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file,
|
|
FLAGS_report_interval_seconds));
|
|
}
|
|
|
|
ThreadArg* arg = new ThreadArg[n];
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
#ifdef NUMA
|
|
if (FLAGS_enable_numa) {
|
|
// Performs a local allocation of memory to threads in numa node.
|
|
int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA.
|
|
numa_exit_on_error = 1;
|
|
int numa_node = i % n_nodes;
|
|
bitmask* nodes = numa_allocate_nodemask();
|
|
numa_bitmask_clearall(nodes);
|
|
numa_bitmask_setbit(nodes, numa_node);
|
|
// numa_bind() call binds the process to the node and these
|
|
// properties are passed on to the thread that is created in
|
|
// StartThread method called later in the loop.
|
|
numa_bind(nodes);
|
|
numa_set_strict(1);
|
|
numa_free_nodemask(nodes);
|
|
}
|
|
#endif
|
|
arg[i].bm = this;
|
|
arg[i].method = method;
|
|
arg[i].shared = &shared;
|
|
total_thread_count_++;
|
|
arg[i].thread = new ThreadState(i, total_thread_count_);
|
|
arg[i].thread->stats.SetReporterAgent(reporter_agent.get());
|
|
arg[i].thread->shared = &shared;
|
|
FLAGS_env->StartThread(ThreadBody, &arg[i]);
|
|
}
|
|
|
|
shared.mu.Lock();
|
|
while (shared.num_initialized < n) {
|
|
shared.cv.Wait();
|
|
}
|
|
|
|
shared.start = true;
|
|
shared.cv.SignalAll();
|
|
while (shared.num_done < n) {
|
|
shared.cv.Wait();
|
|
}
|
|
shared.mu.Unlock();
|
|
|
|
// Stats for some threads can be excluded.
|
|
Stats merge_stats;
|
|
for (int i = 0; i < n; i++) {
|
|
merge_stats.Merge(arg[i].thread->stats);
|
|
}
|
|
merge_stats.Report(name);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
delete arg[i].thread;
|
|
}
|
|
delete[] arg;
|
|
|
|
return merge_stats;
|
|
}
|
|
|
|
template <OperationType kOpType, typename FnType, typename... Args>
|
|
static inline void ChecksumBenchmark(FnType fn, ThreadState* thread,
|
|
Args... args) {
|
|
const int size = FLAGS_block_size; // use --block_size option for db_bench
|
|
std::string labels = "(" + std::to_string(FLAGS_block_size) + " per op)";
|
|
const char* label = labels.c_str();
|
|
|
|
std::string data(size, 'x');
|
|
uint64_t bytes = 0;
|
|
uint32_t val = 0;
|
|
while (bytes < 5000U * uint64_t{1048576}) { // ~5GB
|
|
val += static_cast<uint32_t>(fn(data.data(), size, args...));
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kOpType);
|
|
bytes += size;
|
|
}
|
|
// Print so result is not dead
|
|
fprintf(stderr, "... val=0x%x\r", static_cast<unsigned int>(val));
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(label);
|
|
}
|
|
|
|
void Crc32c(ThreadState* thread) {
|
|
ChecksumBenchmark<kCrc>(crc32c::Value, thread);
|
|
}
|
|
|
|
void xxHash(ThreadState* thread) {
|
|
ChecksumBenchmark<kHash>(XXH32, thread, /*seed*/ 0);
|
|
}
|
|
|
|
void xxHash64(ThreadState* thread) {
|
|
ChecksumBenchmark<kHash>(XXH64, thread, /*seed*/ 0);
|
|
}
|
|
|
|
void xxh3(ThreadState* thread) {
|
|
ChecksumBenchmark<kHash>(XXH3_64bits, thread);
|
|
}
|
|
|
|
void AcquireLoad(ThreadState* thread) {
|
|
int dummy;
|
|
std::atomic<void*> ap(&dummy);
|
|
int count = 0;
|
|
void* ptr = nullptr;
|
|
thread->stats.AddMessage("(each op is 1000 loads)");
|
|
while (count < 100000) {
|
|
for (int i = 0; i < 1000; i++) {
|
|
ptr = ap.load(std::memory_order_acquire);
|
|
}
|
|
count++;
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers);
|
|
}
|
|
if (ptr == nullptr) {
|
|
exit(1); // Disable unused variable warning.
|
|
}
|
|
}
|
|
|
|
void Compress(ThreadState* thread) {
|
|
RandomGenerator gen;
|
|
Slice input = gen.Generate(FLAGS_block_size);
|
|
int64_t bytes = 0;
|
|
int64_t produced = 0;
|
|
bool ok = true;
|
|
std::string compressed;
|
|
CompressionOptions opts;
|
|
opts.level = FLAGS_compression_level;
|
|
CompressionContext context(FLAGS_compression_type_e, opts);
|
|
CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e,
|
|
FLAGS_sample_for_compression);
|
|
// Compress 1G
|
|
while (ok && bytes < int64_t(1) << 30) {
|
|
compressed.clear();
|
|
ok = CompressSlice(info, input, &compressed);
|
|
produced += compressed.size();
|
|
bytes += input.size();
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress);
|
|
}
|
|
|
|
if (!ok) {
|
|
thread->stats.AddMessage("(compression failure)");
|
|
} else {
|
|
char buf[340];
|
|
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
|
|
(produced * 100.0) / bytes);
|
|
thread->stats.AddMessage(buf);
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
}
|
|
|
|
void Uncompress(ThreadState* thread) {
|
|
RandomGenerator gen;
|
|
Slice input = gen.Generate(FLAGS_block_size);
|
|
std::string compressed;
|
|
|
|
CompressionOptions compression_opts;
|
|
compression_opts.level = FLAGS_compression_level;
|
|
CompressionContext compression_ctx(FLAGS_compression_type_e,
|
|
compression_opts);
|
|
CompressionInfo compression_info(
|
|
compression_opts, compression_ctx, CompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e, FLAGS_sample_for_compression);
|
|
UncompressionContext uncompression_ctx(FLAGS_compression_type_e);
|
|
UncompressionInfo uncompression_info(uncompression_ctx,
|
|
UncompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e);
|
|
|
|
bool ok = CompressSlice(compression_info, input, &compressed);
|
|
int64_t bytes = 0;
|
|
size_t uncompressed_size = 0;
|
|
while (ok && bytes < 1024 * 1048576) {
|
|
constexpr uint32_t compress_format_version = 2;
|
|
|
|
CacheAllocationPtr uncompressed = UncompressData(
|
|
uncompression_info, compressed.data(), compressed.size(),
|
|
&uncompressed_size, compress_format_version);
|
|
|
|
ok = uncompressed.get() != nullptr;
|
|
bytes += input.size();
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress);
|
|
}
|
|
|
|
if (!ok) {
|
|
thread->stats.AddMessage("(compression failure)");
|
|
} else {
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
}
|
|
|
|
// Returns true if the options is initialized from the specified
|
|
// options file.
|
|
bool InitializeOptionsFromFile(Options* opts) {
|
|
printf("Initializing RocksDB Options from the specified file\n");
|
|
DBOptions db_opts;
|
|
std::vector<ColumnFamilyDescriptor> cf_descs;
|
|
if (FLAGS_options_file != "") {
|
|
ConfigOptions config_opts;
|
|
config_opts.ignore_unknown_options = false;
|
|
config_opts.input_strings_escaped = true;
|
|
config_opts.env = FLAGS_env;
|
|
auto s = LoadOptionsFromFile(config_opts, FLAGS_options_file, &db_opts,
|
|
&cf_descs);
|
|
db_opts.env = FLAGS_env;
|
|
if (s.ok()) {
|
|
*opts = Options(db_opts, cf_descs[0].options);
|
|
return true;
|
|
}
|
|
fprintf(stderr, "Unable to load options file %s --- %s\n",
|
|
FLAGS_options_file.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void InitializeOptionsFromFlags(Options* opts) {
|
|
printf("Initializing RocksDB Options from command-line flags\n");
|
|
Options& options = *opts;
|
|
ConfigOptions config_options(options);
|
|
config_options.ignore_unsupported_options = false;
|
|
|
|
assert(db_.db == nullptr);
|
|
|
|
options.env = FLAGS_env;
|
|
options.wal_dir = FLAGS_wal_dir;
|
|
options.dump_malloc_stats = FLAGS_dump_malloc_stats;
|
|
options.stats_dump_period_sec =
|
|
static_cast<unsigned int>(FLAGS_stats_dump_period_sec);
|
|
options.stats_persist_period_sec =
|
|
static_cast<unsigned int>(FLAGS_stats_persist_period_sec);
|
|
options.persist_stats_to_disk = FLAGS_persist_stats_to_disk;
|
|
options.stats_history_buffer_size =
|
|
static_cast<size_t>(FLAGS_stats_history_buffer_size);
|
|
options.avoid_flush_during_recovery = FLAGS_avoid_flush_during_recovery;
|
|
|
|
options.compression_opts.level = FLAGS_compression_level;
|
|
options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes;
|
|
options.compression_opts.zstd_max_train_bytes =
|
|
FLAGS_compression_zstd_max_train_bytes;
|
|
options.compression_opts.parallel_threads =
|
|
FLAGS_compression_parallel_threads;
|
|
options.compression_opts.max_dict_buffer_bytes =
|
|
FLAGS_compression_max_dict_buffer_bytes;
|
|
options.compression_opts.use_zstd_dict_trainer =
|
|
FLAGS_compression_use_zstd_dict_trainer;
|
|
|
|
options.max_open_files = FLAGS_open_files;
|
|
if (FLAGS_cost_write_buffer_to_cache || FLAGS_db_write_buffer_size != 0) {
|
|
options.write_buffer_manager.reset(
|
|
new WriteBufferManager(FLAGS_db_write_buffer_size, cache_));
|
|
}
|
|
options.arena_block_size = FLAGS_arena_block_size;
|
|
options.write_buffer_size = FLAGS_write_buffer_size;
|
|
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
|
|
options.min_write_buffer_number_to_merge =
|
|
FLAGS_min_write_buffer_number_to_merge;
|
|
options.max_write_buffer_number_to_maintain =
|
|
FLAGS_max_write_buffer_number_to_maintain;
|
|
options.max_write_buffer_size_to_maintain =
|
|
FLAGS_max_write_buffer_size_to_maintain;
|
|
options.max_background_jobs = FLAGS_max_background_jobs;
|
|
options.max_background_compactions = FLAGS_max_background_compactions;
|
|
options.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
|
|
options.max_background_flushes = FLAGS_max_background_flushes;
|
|
options.compaction_style = FLAGS_compaction_style_e;
|
|
options.compaction_pri = FLAGS_compaction_pri_e;
|
|
options.allow_mmap_reads = FLAGS_mmap_read;
|
|
options.allow_mmap_writes = FLAGS_mmap_write;
|
|
options.use_direct_reads = FLAGS_use_direct_reads;
|
|
options.use_direct_io_for_flush_and_compaction =
|
|
FLAGS_use_direct_io_for_flush_and_compaction;
|
|
options.manual_wal_flush = FLAGS_manual_wal_flush;
|
|
options.wal_compression = FLAGS_wal_compression_e;
|
|
options.ttl = FLAGS_fifo_compaction_ttl;
|
|
options.compaction_options_fifo = CompactionOptionsFIFO(
|
|
FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024,
|
|
FLAGS_fifo_compaction_allow_compaction);
|
|
options.compaction_options_fifo.age_for_warm = FLAGS_fifo_age_for_warm;
|
|
options.prefix_extractor = prefix_extractor_;
|
|
if (FLAGS_use_uint64_comparator) {
|
|
options.comparator = test::Uint64Comparator();
|
|
if (FLAGS_key_size != 8) {
|
|
fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
if (FLAGS_use_stderr_info_logger) {
|
|
options.info_log = std::make_shared<StderrLogger>();
|
|
}
|
|
options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0;
|
|
options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio;
|
|
options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering;
|
|
if (FLAGS_memtable_insert_with_hint_prefix_size > 0) {
|
|
options.memtable_insert_with_hint_prefix_extractor.reset(
|
|
NewCappedPrefixTransform(
|
|
FLAGS_memtable_insert_with_hint_prefix_size));
|
|
}
|
|
options.bloom_locality = FLAGS_bloom_locality;
|
|
options.max_file_opening_threads = FLAGS_file_opening_threads;
|
|
options.compaction_readahead_size = FLAGS_compaction_readahead_size;
|
|
options.log_readahead_size = FLAGS_log_readahead_size;
|
|
options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size;
|
|
options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size;
|
|
options.use_fsync = FLAGS_use_fsync;
|
|
options.num_levels = FLAGS_num_levels;
|
|
options.target_file_size_base = FLAGS_target_file_size_base;
|
|
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
|
|
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
|
|
options.level_compaction_dynamic_level_bytes =
|
|
FLAGS_level_compaction_dynamic_level_bytes;
|
|
options.max_bytes_for_level_multiplier =
|
|
FLAGS_max_bytes_for_level_multiplier;
|
|
Status s =
|
|
CreateMemTableRepFactory(config_options, &options.memtable_factory);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Could not create memtable factory: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
} else if ((FLAGS_prefix_size == 0) &&
|
|
(options.memtable_factory->IsInstanceOf("prefix_hash") ||
|
|
options.memtable_factory->IsInstanceOf("hash_linkedlist"))) {
|
|
fprintf(stderr,
|
|
"prefix_size should be non-zero if PrefixHash or "
|
|
"HashLinkedList memtablerep is used\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_use_plain_table) {
|
|
if (!options.memtable_factory->IsInstanceOf("prefix_hash") &&
|
|
!options.memtable_factory->IsInstanceOf("hash_linkedlist")) {
|
|
fprintf(stderr, "Warning: plain table is used with %s\n",
|
|
options.memtable_factory->Name());
|
|
}
|
|
|
|
int bloom_bits_per_key = FLAGS_bloom_bits;
|
|
if (bloom_bits_per_key < 0) {
|
|
bloom_bits_per_key = PlainTableOptions().bloom_bits_per_key;
|
|
}
|
|
|
|
PlainTableOptions plain_table_options;
|
|
plain_table_options.user_key_len = FLAGS_key_size;
|
|
plain_table_options.bloom_bits_per_key = bloom_bits_per_key;
|
|
plain_table_options.hash_table_ratio = 0.75;
|
|
options.table_factory = std::shared_ptr<TableFactory>(
|
|
NewPlainTableFactory(plain_table_options));
|
|
} else if (FLAGS_use_cuckoo_table) {
|
|
if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) {
|
|
fprintf(stderr, "Invalid cuckoo_hash_ratio\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (!FLAGS_mmap_read) {
|
|
fprintf(stderr, "cuckoo table format requires mmap read to operate\n");
|
|
exit(1);
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::CuckooTableOptions table_options;
|
|
table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio;
|
|
table_options.identity_as_first_hash = FLAGS_identity_as_first_hash;
|
|
options.table_factory =
|
|
std::shared_ptr<TableFactory>(NewCuckooTableFactory(table_options));
|
|
} else {
|
|
BlockBasedTableOptions block_based_options;
|
|
block_based_options.checksum =
|
|
static_cast<ChecksumType>(FLAGS_checksum_type);
|
|
if (FLAGS_use_hash_search) {
|
|
if (FLAGS_prefix_size == 0) {
|
|
fprintf(stderr,
|
|
"prefix_size not assigned when enable use_hash_search \n");
|
|
exit(1);
|
|
}
|
|
block_based_options.index_type = BlockBasedTableOptions::kHashSearch;
|
|
} else {
|
|
block_based_options.index_type = BlockBasedTableOptions::kBinarySearch;
|
|
}
|
|
if (FLAGS_partition_index_and_filters || FLAGS_partition_index) {
|
|
if (FLAGS_index_with_first_key) {
|
|
fprintf(stderr,
|
|
"--index_with_first_key is not compatible with"
|
|
" partition index.");
|
|
}
|
|
if (FLAGS_use_hash_search) {
|
|
fprintf(stderr,
|
|
"use_hash_search is incompatible with "
|
|
"partition index and is ignored");
|
|
}
|
|
block_based_options.index_type =
|
|
BlockBasedTableOptions::kTwoLevelIndexSearch;
|
|
block_based_options.metadata_block_size = FLAGS_metadata_block_size;
|
|
if (FLAGS_partition_index_and_filters) {
|
|
block_based_options.partition_filters = true;
|
|
}
|
|
} else if (FLAGS_index_with_first_key) {
|
|
block_based_options.index_type =
|
|
BlockBasedTableOptions::kBinarySearchWithFirstKey;
|
|
}
|
|
BlockBasedTableOptions::IndexShorteningMode index_shortening =
|
|
block_based_options.index_shortening;
|
|
switch (FLAGS_index_shortening_mode) {
|
|
case 0:
|
|
index_shortening =
|
|
BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
|
|
break;
|
|
case 1:
|
|
index_shortening =
|
|
BlockBasedTableOptions::IndexShorteningMode::kShortenSeparators;
|
|
break;
|
|
case 2:
|
|
index_shortening = BlockBasedTableOptions::IndexShorteningMode::
|
|
kShortenSeparatorsAndSuccessor;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown key shortening mode\n");
|
|
}
|
|
block_based_options.optimize_filters_for_memory =
|
|
FLAGS_optimize_filters_for_memory;
|
|
block_based_options.index_shortening = index_shortening;
|
|
if (cache_ == nullptr) {
|
|
block_based_options.no_block_cache = true;
|
|
}
|
|
block_based_options.cache_index_and_filter_blocks =
|
|
FLAGS_cache_index_and_filter_blocks;
|
|
block_based_options.pin_l0_filter_and_index_blocks_in_cache =
|
|
FLAGS_pin_l0_filter_and_index_blocks_in_cache;
|
|
block_based_options.pin_top_level_index_and_filter =
|
|
FLAGS_pin_top_level_index_and_filter;
|
|
if (FLAGS_cache_high_pri_pool_ratio > 1e-6) { // > 0.0 + eps
|
|
block_based_options.cache_index_and_filter_blocks_with_high_priority =
|
|
true;
|
|
}
|
|
if (FLAGS_cache_high_pri_pool_ratio + FLAGS_cache_low_pri_pool_ratio >
|
|
1.0) {
|
|
fprintf(stderr,
|
|
"Sum of high_pri_pool_ratio and low_pri_pool_ratio "
|
|
"cannot exceed 1.0.\n");
|
|
}
|
|
block_based_options.block_cache = cache_;
|
|
block_based_options.cache_usage_options.options_overrides.insert(
|
|
{CacheEntryRole::kCompressionDictionaryBuildingBuffer,
|
|
{/*.charged = */ FLAGS_charge_compression_dictionary_building_buffer
|
|
? CacheEntryRoleOptions::Decision::kEnabled
|
|
: CacheEntryRoleOptions::Decision::kDisabled}});
|
|
block_based_options.cache_usage_options.options_overrides.insert(
|
|
{CacheEntryRole::kFilterConstruction,
|
|
{/*.charged = */ FLAGS_charge_filter_construction
|
|
? CacheEntryRoleOptions::Decision::kEnabled
|
|
: CacheEntryRoleOptions::Decision::kDisabled}});
|
|
block_based_options.cache_usage_options.options_overrides.insert(
|
|
{CacheEntryRole::kBlockBasedTableReader,
|
|
{/*.charged = */ FLAGS_charge_table_reader
|
|
? CacheEntryRoleOptions::Decision::kEnabled
|
|
: CacheEntryRoleOptions::Decision::kDisabled}});
|
|
block_based_options.cache_usage_options.options_overrides.insert(
|
|
{CacheEntryRole::kFileMetadata,
|
|
{/*.charged = */ FLAGS_charge_file_metadata
|
|
? CacheEntryRoleOptions::Decision::kEnabled
|
|
: CacheEntryRoleOptions::Decision::kDisabled}});
|
|
block_based_options.cache_usage_options.options_overrides.insert(
|
|
{CacheEntryRole::kBlobCache,
|
|
{/*.charged = */ FLAGS_charge_blob_cache
|
|
? CacheEntryRoleOptions::Decision::kEnabled
|
|
: CacheEntryRoleOptions::Decision::kDisabled}});
|
|
block_based_options.block_size = FLAGS_block_size;
|
|
block_based_options.block_restart_interval = FLAGS_block_restart_interval;
|
|
block_based_options.index_block_restart_interval =
|
|
FLAGS_index_block_restart_interval;
|
|
block_based_options.format_version =
|
|
static_cast<uint32_t>(FLAGS_format_version);
|
|
block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit;
|
|
block_based_options.enable_index_compression =
|
|
FLAGS_enable_index_compression;
|
|
block_based_options.block_align = FLAGS_block_align;
|
|
block_based_options.whole_key_filtering = FLAGS_whole_key_filtering;
|
|
block_based_options.max_auto_readahead_size =
|
|
FLAGS_max_auto_readahead_size;
|
|
block_based_options.initial_auto_readahead_size =
|
|
FLAGS_initial_auto_readahead_size;
|
|
block_based_options.num_file_reads_for_auto_readahead =
|
|
FLAGS_num_file_reads_for_auto_readahead;
|
|
BlockBasedTableOptions::PrepopulateBlockCache prepopulate_block_cache =
|
|
block_based_options.prepopulate_block_cache;
|
|
switch (FLAGS_prepopulate_block_cache) {
|
|
case 0:
|
|
prepopulate_block_cache =
|
|
BlockBasedTableOptions::PrepopulateBlockCache::kDisable;
|
|
break;
|
|
case 1:
|
|
prepopulate_block_cache =
|
|
BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown prepopulate block cache mode\n");
|
|
}
|
|
block_based_options.prepopulate_block_cache = prepopulate_block_cache;
|
|
if (FLAGS_use_data_block_hash_index) {
|
|
block_based_options.data_block_index_type =
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinaryAndHash;
|
|
} else {
|
|
block_based_options.data_block_index_type =
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinarySearch;
|
|
}
|
|
block_based_options.data_block_hash_table_util_ratio =
|
|
FLAGS_data_block_hash_table_util_ratio;
|
|
if (FLAGS_read_cache_path != "") {
|
|
Status rc_status;
|
|
|
|
// Read cache need to be provided with a the Logger, we will put all
|
|
// reac cache logs in the read cache path in a file named rc_LOG
|
|
rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path);
|
|
std::shared_ptr<Logger> read_cache_logger;
|
|
if (rc_status.ok()) {
|
|
rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG",
|
|
&read_cache_logger);
|
|
}
|
|
|
|
if (rc_status.ok()) {
|
|
PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path,
|
|
FLAGS_read_cache_size,
|
|
read_cache_logger);
|
|
|
|
rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read;
|
|
rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write;
|
|
rc_cfg.writer_qdepth = 4;
|
|
rc_cfg.writer_dispatch_size = 4 * 1024;
|
|
|
|
auto pcache = std::make_shared<BlockCacheTier>(rc_cfg);
|
|
block_based_options.persistent_cache = pcache;
|
|
rc_status = pcache->Open();
|
|
}
|
|
|
|
if (!rc_status.ok()) {
|
|
fprintf(stderr, "Error initializing read cache, %s\n",
|
|
rc_status.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (FLAGS_use_blob_cache) {
|
|
if (FLAGS_use_shared_block_and_blob_cache) {
|
|
options.blob_cache = cache_;
|
|
} else {
|
|
if (FLAGS_blob_cache_size > 0) {
|
|
LRUCacheOptions co;
|
|
co.capacity = FLAGS_blob_cache_size;
|
|
co.num_shard_bits = FLAGS_blob_cache_numshardbits;
|
|
co.memory_allocator = GetCacheAllocator();
|
|
|
|
options.blob_cache = NewLRUCache(co);
|
|
} else {
|
|
fprintf(
|
|
stderr,
|
|
"Unable to create a standalone blob cache if blob_cache_size "
|
|
"<= 0.\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
switch (FLAGS_prepopulate_blob_cache) {
|
|
case 0:
|
|
options.prepopulate_blob_cache = PrepopulateBlobCache::kDisable;
|
|
break;
|
|
case 1:
|
|
options.prepopulate_blob_cache = PrepopulateBlobCache::kFlushOnly;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown prepopulate blob cache mode\n");
|
|
exit(1);
|
|
}
|
|
|
|
fprintf(stdout,
|
|
"Integrated BlobDB: blob cache enabled"
|
|
", block and blob caches shared: %d",
|
|
FLAGS_use_shared_block_and_blob_cache);
|
|
if (!FLAGS_use_shared_block_and_blob_cache) {
|
|
fprintf(stdout,
|
|
", blob cache size %" PRIu64
|
|
", blob cache num shard bits: %d",
|
|
FLAGS_blob_cache_size, FLAGS_blob_cache_numshardbits);
|
|
}
|
|
fprintf(stdout, ", blob cache prepopulated: %d\n",
|
|
FLAGS_prepopulate_blob_cache);
|
|
} else {
|
|
fprintf(stdout, "Integrated BlobDB: blob cache disabled\n");
|
|
}
|
|
|
|
options.table_factory.reset(
|
|
NewBlockBasedTableFactory(block_based_options));
|
|
}
|
|
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) {
|
|
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() !=
|
|
static_cast<unsigned int>(FLAGS_num_levels)) {
|
|
fprintf(stderr, "Insufficient number of fanouts specified %d\n",
|
|
static_cast<int>(
|
|
FLAGS_max_bytes_for_level_multiplier_additional_v.size()));
|
|
exit(1);
|
|
}
|
|
options.max_bytes_for_level_multiplier_additional =
|
|
FLAGS_max_bytes_for_level_multiplier_additional_v;
|
|
}
|
|
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
|
|
options.level0_file_num_compaction_trigger =
|
|
FLAGS_level0_file_num_compaction_trigger;
|
|
options.level0_slowdown_writes_trigger =
|
|
FLAGS_level0_slowdown_writes_trigger;
|
|
options.compression = FLAGS_compression_type_e;
|
|
if (FLAGS_simulate_hybrid_fs_file != "") {
|
|
options.last_level_temperature = Temperature::kWarm;
|
|
}
|
|
options.preclude_last_level_data_seconds =
|
|
FLAGS_preclude_last_level_data_seconds;
|
|
options.preserve_internal_time_seconds =
|
|
FLAGS_preserve_internal_time_seconds;
|
|
options.sample_for_compression = FLAGS_sample_for_compression;
|
|
options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds;
|
|
options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB;
|
|
options.max_total_wal_size = FLAGS_max_total_wal_size;
|
|
|
|
if (FLAGS_min_level_to_compress >= 0) {
|
|
assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
|
|
options.compression_per_level.resize(FLAGS_num_levels);
|
|
for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
|
|
options.compression_per_level[i] = kNoCompression;
|
|
}
|
|
for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) {
|
|
options.compression_per_level[i] = FLAGS_compression_type_e;
|
|
}
|
|
}
|
|
options.soft_pending_compaction_bytes_limit =
|
|
FLAGS_soft_pending_compaction_bytes_limit;
|
|
options.hard_pending_compaction_bytes_limit =
|
|
FLAGS_hard_pending_compaction_bytes_limit;
|
|
options.delayed_write_rate = FLAGS_delayed_write_rate;
|
|
options.allow_concurrent_memtable_write =
|
|
FLAGS_allow_concurrent_memtable_write;
|
|
options.experimental_mempurge_threshold =
|
|
FLAGS_experimental_mempurge_threshold;
|
|
options.inplace_update_support = FLAGS_inplace_update_support;
|
|
options.inplace_update_num_locks = FLAGS_inplace_update_num_locks;
|
|
options.enable_write_thread_adaptive_yield =
|
|
FLAGS_enable_write_thread_adaptive_yield;
|
|
options.enable_pipelined_write = FLAGS_enable_pipelined_write;
|
|
options.unordered_write = FLAGS_unordered_write;
|
|
options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec;
|
|
options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec;
|
|
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
|
|
options.max_compaction_bytes = FLAGS_max_compaction_bytes;
|
|
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
|
|
options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits;
|
|
options.paranoid_checks = FLAGS_paranoid_checks;
|
|
options.force_consistency_checks = FLAGS_force_consistency_checks;
|
|
options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds;
|
|
options.ttl = FLAGS_ttl_seconds;
|
|
// fill storage options
|
|
options.advise_random_on_open = FLAGS_advise_random_on_open;
|
|
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
|
|
options.bytes_per_sync = FLAGS_bytes_per_sync;
|
|
options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync;
|
|
|
|
// merge operator options
|
|
if (!FLAGS_merge_operator.empty()) {
|
|
s = MergeOperator::CreateFromString(config_options, FLAGS_merge_operator,
|
|
&options.merge_operator);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "invalid merge operator[%s]: %s\n",
|
|
FLAGS_merge_operator.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
options.max_successive_merges = FLAGS_max_successive_merges;
|
|
options.strict_max_successive_merges = FLAGS_strict_max_successive_merges;
|
|
options.report_bg_io_stats = FLAGS_report_bg_io_stats;
|
|
|
|
// set universal style compaction configurations, if applicable
|
|
if (FLAGS_universal_size_ratio != 0) {
|
|
options.compaction_options_universal.size_ratio =
|
|
FLAGS_universal_size_ratio;
|
|
}
|
|
if (FLAGS_universal_min_merge_width != 0) {
|
|
options.compaction_options_universal.min_merge_width =
|
|
FLAGS_universal_min_merge_width;
|
|
}
|
|
if (FLAGS_universal_max_merge_width != 0) {
|
|
options.compaction_options_universal.max_merge_width =
|
|
FLAGS_universal_max_merge_width;
|
|
}
|
|
if (FLAGS_universal_max_size_amplification_percent != 0) {
|
|
options.compaction_options_universal.max_size_amplification_percent =
|
|
FLAGS_universal_max_size_amplification_percent;
|
|
}
|
|
if (FLAGS_universal_compression_size_percent != -1) {
|
|
options.compaction_options_universal.compression_size_percent =
|
|
FLAGS_universal_compression_size_percent;
|
|
}
|
|
options.compaction_options_universal.allow_trivial_move =
|
|
FLAGS_universal_allow_trivial_move;
|
|
options.compaction_options_universal.incremental =
|
|
FLAGS_universal_incremental;
|
|
if (FLAGS_thread_status_per_interval > 0) {
|
|
options.enable_thread_tracking = true;
|
|
}
|
|
|
|
if (FLAGS_user_timestamp_size > 0) {
|
|
if (FLAGS_user_timestamp_size != 8) {
|
|
fprintf(stderr, "Only 64 bits timestamps are supported.\n");
|
|
exit(1);
|
|
}
|
|
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
|
|
}
|
|
|
|
options.allow_data_in_errors = FLAGS_allow_data_in_errors;
|
|
options.track_and_verify_wals_in_manifest =
|
|
FLAGS_track_and_verify_wals_in_manifest;
|
|
|
|
// Integrated BlobDB
|
|
options.enable_blob_files = FLAGS_enable_blob_files;
|
|
options.min_blob_size = FLAGS_min_blob_size;
|
|
options.blob_file_size = FLAGS_blob_file_size;
|
|
options.blob_compression_type =
|
|
StringToCompressionType(FLAGS_blob_compression_type.c_str());
|
|
options.enable_blob_garbage_collection =
|
|
FLAGS_enable_blob_garbage_collection;
|
|
options.blob_garbage_collection_age_cutoff =
|
|
FLAGS_blob_garbage_collection_age_cutoff;
|
|
options.blob_garbage_collection_force_threshold =
|
|
FLAGS_blob_garbage_collection_force_threshold;
|
|
options.blob_compaction_readahead_size =
|
|
FLAGS_blob_compaction_readahead_size;
|
|
options.blob_file_starting_level = FLAGS_blob_file_starting_level;
|
|
|
|
if (FLAGS_readonly && FLAGS_transaction_db) {
|
|
fprintf(stderr, "Cannot use readonly flag with transaction_db\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_use_secondary_db &&
|
|
(FLAGS_transaction_db || FLAGS_optimistic_transaction_db)) {
|
|
fprintf(stderr, "Cannot use use_secondary_db flag with transaction_db\n");
|
|
exit(1);
|
|
}
|
|
options.memtable_protection_bytes_per_key =
|
|
FLAGS_memtable_protection_bytes_per_key;
|
|
options.block_protection_bytes_per_key =
|
|
FLAGS_block_protection_bytes_per_key;
|
|
}
|
|
|
|
void InitializeOptionsGeneral(Options* opts) {
|
|
// Be careful about what is set here to avoid accidentally overwriting
|
|
// settings already configured by OPTIONS file. Only configure settings that
|
|
// are needed for the benchmark to run, settings for shared objects that
|
|
// were not configured already, settings that require dynamically invoking
|
|
// APIs, and settings for the benchmark itself.
|
|
Options& options = *opts;
|
|
|
|
// Always set these since they are harmless when not needed and prevent
|
|
// a guaranteed failure when they are needed.
|
|
options.create_missing_column_families = true;
|
|
options.create_if_missing = true;
|
|
|
|
if (options.statistics == nullptr) {
|
|
options.statistics = dbstats;
|
|
}
|
|
|
|
auto table_options =
|
|
options.table_factory->GetOptions<BlockBasedTableOptions>();
|
|
if (table_options != nullptr) {
|
|
if (FLAGS_cache_size > 0) {
|
|
// This violates this function's rules on when to set options. But we
|
|
// have to do it because the case of unconfigured block cache in OPTIONS
|
|
// file is indistinguishable (it is sanitized to 32MB by this point, not
|
|
// nullptr), and our regression tests assume this will be the shared
|
|
// block cache, even with OPTIONS file provided.
|
|
table_options->block_cache = cache_;
|
|
}
|
|
if (table_options->filter_policy == nullptr) {
|
|
if (FLAGS_bloom_bits < 0) {
|
|
table_options->filter_policy = BlockBasedTableOptions().filter_policy;
|
|
} else if (FLAGS_bloom_bits == 0) {
|
|
table_options->filter_policy.reset();
|
|
} else {
|
|
table_options->filter_policy.reset(
|
|
FLAGS_use_ribbon_filter ? NewRibbonFilterPolicy(FLAGS_bloom_bits)
|
|
: NewBloomFilterPolicy(FLAGS_bloom_bits));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (options.row_cache == nullptr) {
|
|
if (FLAGS_row_cache_size) {
|
|
if (FLAGS_cache_numshardbits >= 1) {
|
|
options.row_cache =
|
|
NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits);
|
|
} else {
|
|
options.row_cache = NewLRUCache(FLAGS_row_cache_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (options.env == Env::Default()) {
|
|
options.env = FLAGS_env;
|
|
}
|
|
if (FLAGS_enable_io_prio) {
|
|
options.env->LowerThreadPoolIOPriority(Env::LOW);
|
|
options.env->LowerThreadPoolIOPriority(Env::HIGH);
|
|
}
|
|
if (FLAGS_enable_cpu_prio) {
|
|
options.env->LowerThreadPoolCPUPriority(Env::LOW);
|
|
options.env->LowerThreadPoolCPUPriority(Env::HIGH);
|
|
}
|
|
|
|
if (FLAGS_sine_write_rate) {
|
|
FLAGS_benchmark_write_rate_limit = static_cast<uint64_t>(SineRate(0));
|
|
}
|
|
|
|
if (options.rate_limiter == nullptr) {
|
|
if (FLAGS_rate_limiter_bytes_per_sec > 0) {
|
|
options.rate_limiter.reset(NewGenericRateLimiter(
|
|
FLAGS_rate_limiter_bytes_per_sec,
|
|
FLAGS_rate_limiter_refill_period_us, 10 /* fairness */,
|
|
// TODO: replace this with a more general FLAG for deciding
|
|
// RateLimiter::Mode as now we also rate-limit foreground reads e.g,
|
|
// Get()/MultiGet()
|
|
FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly
|
|
: RateLimiter::Mode::kWritesOnly,
|
|
FLAGS_rate_limiter_auto_tuned,
|
|
FLAGS_rate_limiter_single_burst_bytes));
|
|
}
|
|
}
|
|
|
|
options.listeners.emplace_back(listener_);
|
|
|
|
if (options.file_checksum_gen_factory == nullptr) {
|
|
if (FLAGS_file_checksum) {
|
|
options.file_checksum_gen_factory.reset(
|
|
new FileChecksumGenCrc32cFactory());
|
|
}
|
|
}
|
|
|
|
if (FLAGS_num_multi_db <= 1) {
|
|
OpenDb(options, FLAGS_db, &db_);
|
|
} else {
|
|
multi_dbs_.clear();
|
|
multi_dbs_.resize(FLAGS_num_multi_db);
|
|
auto wal_dir = options.wal_dir;
|
|
for (int i = 0; i < FLAGS_num_multi_db; i++) {
|
|
if (!wal_dir.empty()) {
|
|
options.wal_dir = GetPathForMultiple(wal_dir, i);
|
|
}
|
|
OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]);
|
|
}
|
|
options.wal_dir = wal_dir;
|
|
}
|
|
|
|
// KeepFilter is a noop filter, this can be used to test compaction filter
|
|
if (options.compaction_filter == nullptr) {
|
|
if (FLAGS_use_keep_filter) {
|
|
options.compaction_filter = new KeepFilter();
|
|
fprintf(stdout, "A noop compaction filter is used\n");
|
|
}
|
|
}
|
|
|
|
if (FLAGS_use_existing_keys) {
|
|
// Only work on single database
|
|
assert(db_.db != nullptr);
|
|
ReadOptions read_opts; // before read_options_ initialized
|
|
read_opts.total_order_seek = true;
|
|
Iterator* iter = db_.db->NewIterator(read_opts);
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
keys_.emplace_back(iter->key().ToString());
|
|
}
|
|
delete iter;
|
|
FLAGS_num = keys_.size();
|
|
}
|
|
}
|
|
|
|
void Open(Options* opts) {
|
|
if (!InitializeOptionsFromFile(opts)) {
|
|
InitializeOptionsFromFlags(opts);
|
|
}
|
|
|
|
InitializeOptionsGeneral(opts);
|
|
}
|
|
|
|
void OpenDb(Options options, const std::string& db_name,
|
|
DBWithColumnFamilies* db) {
|
|
uint64_t open_start = FLAGS_report_open_timing ? FLAGS_env->NowNanos() : 0;
|
|
Status s;
|
|
// Open with column families if necessary.
|
|
if (FLAGS_num_column_families > 1) {
|
|
size_t num_hot = FLAGS_num_column_families;
|
|
if (FLAGS_num_hot_column_families > 0 &&
|
|
FLAGS_num_hot_column_families < FLAGS_num_column_families) {
|
|
num_hot = FLAGS_num_hot_column_families;
|
|
} else {
|
|
FLAGS_num_hot_column_families = FLAGS_num_column_families;
|
|
}
|
|
std::vector<ColumnFamilyDescriptor> column_families;
|
|
for (size_t i = 0; i < num_hot; i++) {
|
|
column_families.emplace_back(ColumnFamilyName(i),
|
|
ColumnFamilyOptions(options));
|
|
}
|
|
std::vector<int> cfh_idx_to_prob;
|
|
if (!FLAGS_column_family_distribution.empty()) {
|
|
std::stringstream cf_prob_stream(FLAGS_column_family_distribution);
|
|
std::string cf_prob;
|
|
int sum = 0;
|
|
while (std::getline(cf_prob_stream, cf_prob, ',')) {
|
|
cfh_idx_to_prob.push_back(std::stoi(cf_prob));
|
|
sum += cfh_idx_to_prob.back();
|
|
}
|
|
if (sum != 100) {
|
|
fprintf(stderr, "column_family_distribution items must sum to 100\n");
|
|
exit(1);
|
|
}
|
|
if (cfh_idx_to_prob.size() != num_hot) {
|
|
fprintf(stderr,
|
|
"got %" ROCKSDB_PRIszt
|
|
" column_family_distribution items; expected "
|
|
"%" ROCKSDB_PRIszt "\n",
|
|
cfh_idx_to_prob.size(), num_hot);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (FLAGS_readonly) {
|
|
s = DB::OpenForReadOnly(options, db_name, column_families, &db->cfh,
|
|
&db->db);
|
|
} else if (FLAGS_optimistic_transaction_db) {
|
|
s = OptimisticTransactionDB::Open(options, db_name, column_families,
|
|
&db->cfh, &db->opt_txn_db);
|
|
if (s.ok()) {
|
|
db->db = db->opt_txn_db->GetBaseDB();
|
|
}
|
|
} else if (FLAGS_transaction_db) {
|
|
TransactionDB* ptr;
|
|
TransactionDBOptions txn_db_options;
|
|
if (options.unordered_write) {
|
|
options.two_write_queues = true;
|
|
txn_db_options.skip_concurrency_control = true;
|
|
txn_db_options.write_policy = WRITE_PREPARED;
|
|
}
|
|
s = TransactionDB::Open(options, txn_db_options, db_name,
|
|
column_families, &db->cfh, &ptr);
|
|
if (s.ok()) {
|
|
db->db = ptr;
|
|
}
|
|
} else {
|
|
s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
|
|
}
|
|
db->cfh.resize(FLAGS_num_column_families);
|
|
db->num_created = num_hot;
|
|
db->num_hot = num_hot;
|
|
db->cfh_idx_to_prob = std::move(cfh_idx_to_prob);
|
|
} else if (FLAGS_readonly) {
|
|
s = DB::OpenForReadOnly(options, db_name, &db->db);
|
|
} else if (FLAGS_optimistic_transaction_db) {
|
|
s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db);
|
|
if (s.ok()) {
|
|
db->db = db->opt_txn_db->GetBaseDB();
|
|
}
|
|
} else if (FLAGS_transaction_db) {
|
|
TransactionDB* ptr = nullptr;
|
|
TransactionDBOptions txn_db_options;
|
|
if (options.unordered_write) {
|
|
options.two_write_queues = true;
|
|
txn_db_options.skip_concurrency_control = true;
|
|
txn_db_options.write_policy = WRITE_PREPARED;
|
|
}
|
|
s = CreateLoggerFromOptions(db_name, options, &options.info_log);
|
|
if (s.ok()) {
|
|
s = TransactionDB::Open(options, txn_db_options, db_name, &ptr);
|
|
}
|
|
if (s.ok()) {
|
|
db->db = ptr;
|
|
}
|
|
} else if (FLAGS_use_blob_db) {
|
|
// Stacked BlobDB
|
|
blob_db::BlobDBOptions blob_db_options;
|
|
blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc;
|
|
blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff;
|
|
blob_db_options.is_fifo = FLAGS_blob_db_is_fifo;
|
|
blob_db_options.max_db_size = FLAGS_blob_db_max_db_size;
|
|
blob_db_options.ttl_range_secs = FLAGS_blob_db_ttl_range_secs;
|
|
blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size;
|
|
blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync;
|
|
blob_db_options.blob_file_size = FLAGS_blob_db_file_size;
|
|
blob_db_options.compression = FLAGS_blob_db_compression_type_e;
|
|
blob_db::BlobDB* ptr = nullptr;
|
|
s = blob_db::BlobDB::Open(options, blob_db_options, db_name, &ptr);
|
|
if (s.ok()) {
|
|
db->db = ptr;
|
|
}
|
|
} else if (FLAGS_use_secondary_db) {
|
|
if (FLAGS_secondary_path.empty()) {
|
|
std::string default_secondary_path;
|
|
FLAGS_env->GetTestDirectory(&default_secondary_path);
|
|
default_secondary_path += "/dbbench_secondary";
|
|
FLAGS_secondary_path = default_secondary_path;
|
|
}
|
|
s = DB::OpenAsSecondary(options, db_name, FLAGS_secondary_path, &db->db);
|
|
if (s.ok() && FLAGS_secondary_update_interval > 0) {
|
|
secondary_update_thread_.reset(new port::Thread(
|
|
[this](int interval, DBWithColumnFamilies* _db) {
|
|
while (0 == secondary_update_stopped_.load(
|
|
std::memory_order_relaxed)) {
|
|
Status secondary_update_status =
|
|
_db->db->TryCatchUpWithPrimary();
|
|
if (!secondary_update_status.ok()) {
|
|
fprintf(stderr, "Failed to catch up with primary: %s\n",
|
|
secondary_update_status.ToString().c_str());
|
|
break;
|
|
}
|
|
++secondary_db_updates_;
|
|
FLAGS_env->SleepForMicroseconds(interval * 1000000);
|
|
}
|
|
},
|
|
FLAGS_secondary_update_interval, db));
|
|
}
|
|
} else {
|
|
s = DB::Open(options, db_name, &db->db);
|
|
}
|
|
if (FLAGS_report_open_timing) {
|
|
std::cout << "OpenDb: "
|
|
<< (FLAGS_env->NowNanos() - open_start) / 1000000.0
|
|
<< " milliseconds\n";
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM };
|
|
|
|
void WriteSeqDeterministic(ThreadState* thread) {
|
|
DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL);
|
|
}
|
|
|
|
void WriteUniqueRandomDeterministic(ThreadState* thread) {
|
|
DoDeterministicCompact(thread, open_options_.compaction_style,
|
|
UNIQUE_RANDOM);
|
|
}
|
|
|
|
void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); }
|
|
|
|
void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); }
|
|
|
|
void WriteUniqueRandom(ThreadState* thread) {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
|
|
class KeyGenerator {
|
|
public:
|
|
KeyGenerator(Random64* rand, WriteMode mode, uint64_t num,
|
|
uint64_t /*num_per_set*/ = 64 * 1024)
|
|
: rand_(rand), mode_(mode), num_(num), next_(0) {
|
|
if (mode_ == UNIQUE_RANDOM) {
|
|
// NOTE: if memory consumption of this approach becomes a concern,
|
|
// we can either break it into pieces and only random shuffle a section
|
|
// each time. Alternatively, use a bit map implementation
|
|
// (https://reviews.facebook.net/differential/diff/54627/)
|
|
values_.resize(num_);
|
|
for (uint64_t i = 0; i < num_; ++i) {
|
|
values_[i] = i;
|
|
}
|
|
RandomShuffle(values_.begin(), values_.end(),
|
|
static_cast<uint32_t>(*seed_base));
|
|
}
|
|
}
|
|
|
|
uint64_t Next() {
|
|
switch (mode_) {
|
|
case SEQUENTIAL:
|
|
return next_++;
|
|
case RANDOM:
|
|
return rand_->Next() % num_;
|
|
case UNIQUE_RANDOM:
|
|
assert(next_ < num_);
|
|
return values_[next_++];
|
|
}
|
|
assert(false);
|
|
return std::numeric_limits<uint64_t>::max();
|
|
}
|
|
|
|
// Only available for UNIQUE_RANDOM mode.
|
|
uint64_t Fetch(uint64_t index) {
|
|
assert(mode_ == UNIQUE_RANDOM);
|
|
assert(index < values_.size());
|
|
return values_[index];
|
|
}
|
|
|
|
private:
|
|
Random64* rand_;
|
|
WriteMode mode_;
|
|
const uint64_t num_;
|
|
uint64_t next_;
|
|
std::vector<uint64_t> values_;
|
|
};
|
|
|
|
DB* SelectDB(ThreadState* thread) { return SelectDBWithCfh(thread)->db; }
|
|
|
|
DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) {
|
|
return SelectDBWithCfh(thread->rand.Next());
|
|
}
|
|
|
|
DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) {
|
|
if (db_.db != nullptr) {
|
|
return &db_;
|
|
} else {
|
|
return &multi_dbs_[rand_int % multi_dbs_.size()];
|
|
}
|
|
}
|
|
|
|
double SineRate(double x) {
|
|
return FLAGS_sine_a * sin((FLAGS_sine_b * x) + FLAGS_sine_c) + FLAGS_sine_d;
|
|
}
|
|
|
|
void DoWrite(ThreadState* thread, WriteMode write_mode) {
|
|
const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
|
|
const int64_t num_ops = writes_ == 0 ? num_ : writes_;
|
|
|
|
size_t num_key_gens = 1;
|
|
if (db_.db == nullptr) {
|
|
num_key_gens = multi_dbs_.size();
|
|
}
|
|
std::vector<std::unique_ptr<KeyGenerator>> key_gens(num_key_gens);
|
|
int64_t max_ops = num_ops * num_key_gens;
|
|
int64_t ops_per_stage = max_ops;
|
|
if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) {
|
|
ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families /
|
|
FLAGS_num_hot_column_families) +
|
|
1;
|
|
}
|
|
|
|
Duration duration(test_duration, max_ops, ops_per_stage);
|
|
const uint64_t num_per_key_gen = num_ + max_num_range_tombstones_;
|
|
for (size_t i = 0; i < num_key_gens; i++) {
|
|
key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode,
|
|
num_per_key_gen, ops_per_stage));
|
|
}
|
|
|
|
if (num_ != FLAGS_num) {
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
RandomGenerator gen;
|
|
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
|
|
FLAGS_write_batch_protection_bytes_per_key,
|
|
user_timestamp_size_);
|
|
Status s;
|
|
int64_t bytes = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<const char[]> begin_key_guard;
|
|
Slice begin_key = AllocateKey(&begin_key_guard);
|
|
std::unique_ptr<const char[]> end_key_guard;
|
|
Slice end_key = AllocateKey(&end_key_guard);
|
|
double p = 0.0;
|
|
uint64_t num_overwrites = 0, num_unique_keys = 0, num_selective_deletes = 0;
|
|
// If user set overwrite_probability flag,
|
|
// check if value is in [0.0,1.0].
|
|
if (FLAGS_overwrite_probability > 0.0) {
|
|
p = FLAGS_overwrite_probability > 1.0 ? 1.0 : FLAGS_overwrite_probability;
|
|
// If overwrite set by user, and UNIQUE_RANDOM mode on,
|
|
// the overwrite_window_size must be > 0.
|
|
if (write_mode == UNIQUE_RANDOM && FLAGS_overwrite_window_size == 0) {
|
|
fprintf(stderr,
|
|
"Overwrite_window_size must be strictly greater than 0.\n");
|
|
ErrorExit();
|
|
}
|
|
}
|
|
|
|
// Default_random_engine provides slightly
|
|
// improved throughput over mt19937.
|
|
std::default_random_engine overwrite_gen{
|
|
static_cast<unsigned int>(*seed_base)};
|
|
std::bernoulli_distribution overwrite_decider(p);
|
|
|
|
// Inserted key window is filled with the last N
|
|
// keys previously inserted into the DB (with
|
|
// N=FLAGS_overwrite_window_size).
|
|
// We use a deque struct because:
|
|
// - random access is O(1)
|
|
// - insertion/removal at beginning/end is also O(1).
|
|
std::deque<int64_t> inserted_key_window;
|
|
Random64 reservoir_id_gen(*seed_base);
|
|
|
|
// --- Variables used in disposable/persistent keys simulation:
|
|
// The following variables are used when
|
|
// disposable_entries_batch_size is >0. We simualte a workload
|
|
// where the following sequence is repeated multiple times:
|
|
// "A set of keys S1 is inserted ('disposable entries'), then after
|
|
// some delay another set of keys S2 is inserted ('persistent entries')
|
|
// and the first set of keys S1 is deleted. S2 artificially represents
|
|
// the insertion of hypothetical results from some undefined computation
|
|
// done on the first set of keys S1. The next sequence can start as soon
|
|
// as the last disposable entry in the set S1 of this sequence is
|
|
// inserted, if the delay is non negligible"
|
|
bool skip_for_loop = false, is_disposable_entry = true;
|
|
std::vector<uint64_t> disposable_entries_index(num_key_gens, 0);
|
|
std::vector<uint64_t> persistent_ent_and_del_index(num_key_gens, 0);
|
|
const uint64_t kNumDispAndPersEntries =
|
|
FLAGS_disposable_entries_batch_size +
|
|
FLAGS_persistent_entries_batch_size;
|
|
if (kNumDispAndPersEntries > 0) {
|
|
if ((write_mode != UNIQUE_RANDOM) || (writes_per_range_tombstone_ > 0) ||
|
|
(p > 0.0)) {
|
|
fprintf(
|
|
stderr,
|
|
"Disposable/persistent deletes are not compatible with overwrites "
|
|
"and DeleteRanges; and are only supported in filluniquerandom.\n");
|
|
ErrorExit();
|
|
}
|
|
if (FLAGS_disposable_entries_value_size < 0 ||
|
|
FLAGS_persistent_entries_value_size < 0) {
|
|
fprintf(
|
|
stderr,
|
|
"disposable_entries_value_size and persistent_entries_value_size"
|
|
"have to be positive.\n");
|
|
ErrorExit();
|
|
}
|
|
}
|
|
Random rnd_disposable_entry(static_cast<uint32_t>(*seed_base));
|
|
std::string random_value;
|
|
// Queue that stores scheduled timestamp of disposable entries deletes,
|
|
// along with starting index of disposable entry keys to delete.
|
|
std::vector<std::queue<std::pair<uint64_t, uint64_t>>> disposable_entries_q(
|
|
num_key_gens);
|
|
// --- End of variables used in disposable/persistent keys simulation.
|
|
|
|
std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
|
|
std::vector<Slice> expanded_keys;
|
|
if (FLAGS_expand_range_tombstones) {
|
|
expanded_key_guards.resize(range_tombstone_width_);
|
|
for (auto& expanded_key_guard : expanded_key_guards) {
|
|
expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
int64_t stage = 0;
|
|
int64_t num_written = 0;
|
|
int64_t next_seq_db_at = num_ops;
|
|
size_t id = 0;
|
|
int64_t num_range_deletions = 0;
|
|
|
|
while ((num_per_key_gen != 0) && !duration.Done(entries_per_batch_)) {
|
|
if (duration.GetStage() != stage) {
|
|
stage = duration.GetStage();
|
|
if (db_.db != nullptr) {
|
|
db_.CreateNewCf(open_options_, stage);
|
|
} else {
|
|
for (auto& db : multi_dbs_) {
|
|
db.CreateNewCf(open_options_, stage);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (write_mode != SEQUENTIAL) {
|
|
id = thread->rand.Next() % num_key_gens;
|
|
} else {
|
|
// When doing a sequential load with multiple databases, load them in
|
|
// order rather than all at the same time to avoid:
|
|
// 1) long delays between flushing memtables
|
|
// 2) flushing memtables for all of them at the same point in time
|
|
// 3) not putting the same number of keys in each database
|
|
if (num_written >= next_seq_db_at) {
|
|
next_seq_db_at += num_ops;
|
|
id++;
|
|
if (id >= num_key_gens) {
|
|
fprintf(stderr, "Logic error. Filled all databases\n");
|
|
ErrorExit();
|
|
}
|
|
}
|
|
}
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id);
|
|
|
|
batch.Clear();
|
|
int64_t batch_bytes = 0;
|
|
|
|
for (int64_t j = 0; j < entries_per_batch_; j++) {
|
|
int64_t rand_num = 0;
|
|
if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
|
|
if ((inserted_key_window.size() > 0) &&
|
|
overwrite_decider(overwrite_gen)) {
|
|
num_overwrites++;
|
|
rand_num = inserted_key_window[reservoir_id_gen.Next() %
|
|
inserted_key_window.size()];
|
|
} else {
|
|
num_unique_keys++;
|
|
rand_num = key_gens[id]->Next();
|
|
if (inserted_key_window.size() < FLAGS_overwrite_window_size) {
|
|
inserted_key_window.push_back(rand_num);
|
|
} else {
|
|
inserted_key_window.pop_front();
|
|
inserted_key_window.push_back(rand_num);
|
|
}
|
|
}
|
|
} else if (kNumDispAndPersEntries > 0) {
|
|
// Check if queue is non-empty and if we need to insert
|
|
// 'persistent' KV entries (KV entries that are never deleted)
|
|
// and delete disposable entries previously inserted.
|
|
if (!disposable_entries_q[id].empty() &&
|
|
(disposable_entries_q[id].front().first <
|
|
FLAGS_env->NowMicros())) {
|
|
// If we need to perform a "merge op" pattern,
|
|
// we first write all the persistent KV entries not targeted
|
|
// by deletes, and then we write the disposable entries deletes.
|
|
if (persistent_ent_and_del_index[id] <
|
|
FLAGS_persistent_entries_batch_size) {
|
|
// Generate key to insert.
|
|
rand_num =
|
|
key_gens[id]->Fetch(disposable_entries_q[id].front().second +
|
|
FLAGS_disposable_entries_batch_size +
|
|
persistent_ent_and_del_index[id]);
|
|
persistent_ent_and_del_index[id]++;
|
|
is_disposable_entry = false;
|
|
skip_for_loop = false;
|
|
} else if (persistent_ent_and_del_index[id] <
|
|
kNumDispAndPersEntries) {
|
|
// Find key of the entry to delete.
|
|
rand_num =
|
|
key_gens[id]->Fetch(disposable_entries_q[id].front().second +
|
|
(persistent_ent_and_del_index[id] -
|
|
FLAGS_persistent_entries_batch_size));
|
|
persistent_ent_and_del_index[id]++;
|
|
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
|
|
// For the delete operation, everything happens here and we
|
|
// skip the rest of the for-loop, which is designed for
|
|
// inserts.
|
|
if (FLAGS_num_column_families <= 1) {
|
|
batch.Delete(key);
|
|
} else {
|
|
// We use same rand_num as seed for key and column family so
|
|
// that we can deterministically find the cfh corresponding to a
|
|
// particular key while reading the key.
|
|
batch.Delete(db_with_cfh->GetCfh(rand_num), key);
|
|
}
|
|
// A delete only includes Key+Timestamp (no value).
|
|
batch_bytes += key_size_ + user_timestamp_size_;
|
|
bytes += key_size_ + user_timestamp_size_;
|
|
num_selective_deletes++;
|
|
// Skip rest of the for-loop (j=0, j<entries_per_batch_,j++).
|
|
skip_for_loop = true;
|
|
} else {
|
|
assert(false); // should never reach this point.
|
|
}
|
|
// If disposable_entries_q needs to be updated (ie: when a selective
|
|
// insert+delete was successfully completed, pop the job out of the
|
|
// queue).
|
|
if (!disposable_entries_q[id].empty() &&
|
|
(disposable_entries_q[id].front().first <
|
|
FLAGS_env->NowMicros()) &&
|
|
persistent_ent_and_del_index[id] == kNumDispAndPersEntries) {
|
|
disposable_entries_q[id].pop();
|
|
persistent_ent_and_del_index[id] = 0;
|
|
}
|
|
|
|
// If we are deleting disposable entries, skip the rest of the
|
|
// for-loop since there is no key-value inserts at this moment in
|
|
// time.
|
|
if (skip_for_loop) {
|
|
continue;
|
|
}
|
|
|
|
}
|
|
// If no job is in the queue, then we keep inserting disposable KV
|
|
// entries that will be deleted later by a series of deletes.
|
|
else {
|
|
rand_num = key_gens[id]->Fetch(disposable_entries_index[id]);
|
|
disposable_entries_index[id]++;
|
|
is_disposable_entry = true;
|
|
if ((disposable_entries_index[id] %
|
|
FLAGS_disposable_entries_batch_size) == 0) {
|
|
// Skip the persistent KV entries inserts for now
|
|
disposable_entries_index[id] +=
|
|
FLAGS_persistent_entries_batch_size;
|
|
}
|
|
}
|
|
} else {
|
|
rand_num = key_gens[id]->Next();
|
|
}
|
|
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
|
|
Slice val;
|
|
if (kNumDispAndPersEntries > 0) {
|
|
random_value = rnd_disposable_entry.RandomString(
|
|
is_disposable_entry ? FLAGS_disposable_entries_value_size
|
|
: FLAGS_persistent_entries_value_size);
|
|
val = Slice(random_value);
|
|
num_unique_keys++;
|
|
} else {
|
|
val = gen.Generate();
|
|
}
|
|
if (use_blob_db_) {
|
|
// Stacked BlobDB
|
|
blob_db::BlobDB* blobdb =
|
|
static_cast<blob_db::BlobDB*>(db_with_cfh->db);
|
|
if (FLAGS_blob_db_max_ttl_range > 0) {
|
|
int ttl = rand() % FLAGS_blob_db_max_ttl_range;
|
|
s = blobdb->PutWithTTL(write_options_, key, val, ttl);
|
|
} else {
|
|
s = blobdb->Put(write_options_, key, val);
|
|
}
|
|
} else if (FLAGS_num_column_families <= 1) {
|
|
batch.Put(key, val);
|
|
} else {
|
|
// We use same rand_num as seed for key and column family so that we
|
|
// can deterministically find the cfh corresponding to a particular
|
|
// key while reading the key.
|
|
batch.Put(db_with_cfh->GetCfh(rand_num), key, val);
|
|
}
|
|
batch_bytes += val.size() + key_size_ + user_timestamp_size_;
|
|
bytes += val.size() + key_size_ + user_timestamp_size_;
|
|
++num_written;
|
|
|
|
// If all disposable entries have been inserted, then we need to
|
|
// add in the job queue a call for 'persistent entry insertions +
|
|
// disposable entry deletions'.
|
|
if (kNumDispAndPersEntries > 0 && is_disposable_entry &&
|
|
((disposable_entries_index[id] % kNumDispAndPersEntries) == 0)) {
|
|
// Queue contains [timestamp, starting_idx],
|
|
// timestamp = current_time + delay (minimum aboslute time when to
|
|
// start inserting the selective deletes) starting_idx = index in the
|
|
// keygen of the rand_num to generate the key of the first KV entry to
|
|
// delete (= key of the first selective delete).
|
|
disposable_entries_q[id].push(std::make_pair(
|
|
FLAGS_env->NowMicros() +
|
|
FLAGS_disposable_entries_delete_delay /* timestamp */,
|
|
disposable_entries_index[id] - kNumDispAndPersEntries
|
|
/*starting idx*/));
|
|
}
|
|
if (writes_per_range_tombstone_ > 0 &&
|
|
num_written > writes_before_delete_range_ &&
|
|
(num_written - writes_before_delete_range_) /
|
|
writes_per_range_tombstone_ <=
|
|
max_num_range_tombstones_ &&
|
|
(num_written - writes_before_delete_range_) %
|
|
writes_per_range_tombstone_ ==
|
|
0) {
|
|
num_range_deletions++;
|
|
int64_t begin_num = key_gens[id]->Next();
|
|
if (FLAGS_expand_range_tombstones) {
|
|
for (int64_t offset = 0; offset < range_tombstone_width_;
|
|
++offset) {
|
|
GenerateKeyFromInt(begin_num + offset, FLAGS_num,
|
|
&expanded_keys[offset]);
|
|
if (use_blob_db_) {
|
|
// Stacked BlobDB
|
|
s = db_with_cfh->db->Delete(write_options_,
|
|
expanded_keys[offset]);
|
|
} else if (FLAGS_num_column_families <= 1) {
|
|
batch.Delete(expanded_keys[offset]);
|
|
} else {
|
|
batch.Delete(db_with_cfh->GetCfh(rand_num),
|
|
expanded_keys[offset]);
|
|
}
|
|
}
|
|
} else {
|
|
GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
|
|
GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
|
|
&end_key);
|
|
if (use_blob_db_) {
|
|
// Stacked BlobDB
|
|
s = db_with_cfh->db->DeleteRange(
|
|
write_options_, db_with_cfh->db->DefaultColumnFamily(),
|
|
begin_key, end_key);
|
|
} else if (FLAGS_num_column_families <= 1) {
|
|
batch.DeleteRange(begin_key, end_key);
|
|
} else {
|
|
batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key,
|
|
end_key);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (thread->shared->write_rate_limiter.get() != nullptr) {
|
|
thread->shared->write_rate_limiter->Request(
|
|
batch_bytes, Env::IO_HIGH, nullptr /* stats */,
|
|
RateLimiter::OpType::kWrite);
|
|
// Set time at which last op finished to Now() to hide latency and
|
|
// sleep from rate limiter. Also, do the check once per batch, not
|
|
// once per write.
|
|
thread->stats.ResetLastOpTime();
|
|
}
|
|
if (user_timestamp_size_ > 0) {
|
|
Slice user_ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.UpdateTimestamps(
|
|
user_ts, [this](uint32_t) { return user_timestamp_size_; });
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp to write batch: %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
if (!use_blob_db_) {
|
|
// Not stacked BlobDB
|
|
s = db_with_cfh->db->Write(write_options_, &batch);
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db,
|
|
entries_per_batch_, kWrite);
|
|
if (FLAGS_sine_write_rate) {
|
|
uint64_t now = FLAGS_env->NowMicros();
|
|
|
|
uint64_t usecs_since_last;
|
|
if (now > thread->stats.GetSineInterval()) {
|
|
usecs_since_last = now - thread->stats.GetSineInterval();
|
|
} else {
|
|
usecs_since_last = 0;
|
|
}
|
|
|
|
if (usecs_since_last >
|
|
(FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) {
|
|
double usecs_since_start =
|
|
static_cast<double>(now - thread->stats.GetStart());
|
|
thread->stats.ResetSineInterval();
|
|
uint64_t write_rate =
|
|
static_cast<uint64_t>(SineRate(usecs_since_start / 1000000.0));
|
|
thread->shared->write_rate_limiter.reset(
|
|
NewGenericRateLimiter(write_rate));
|
|
}
|
|
}
|
|
if (!s.ok()) {
|
|
s = listener_->WaitForRecovery(600000000) ? Status::OK() : s;
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
|
|
fprintf(stdout,
|
|
"Number of unique keys inserted: %" PRIu64
|
|
".\nNumber of overwrites: %" PRIu64 "\n",
|
|
num_unique_keys, num_overwrites);
|
|
} else if (kNumDispAndPersEntries > 0) {
|
|
fprintf(stdout,
|
|
"Number of unique keys inserted (disposable+persistent): %" PRIu64
|
|
".\nNumber of 'disposable entry delete': %" PRIu64 "\n",
|
|
num_written, num_selective_deletes);
|
|
}
|
|
if (num_range_deletions > 0) {
|
|
std::cout << "Number of range deletions: " << num_range_deletions
|
|
<< std::endl;
|
|
}
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
Status DoDeterministicCompact(ThreadState* thread,
|
|
CompactionStyle compaction_style,
|
|
WriteMode write_mode) {
|
|
ColumnFamilyMetaData meta;
|
|
std::vector<DB*> db_list;
|
|
if (db_.db != nullptr) {
|
|
db_list.push_back(db_.db);
|
|
} else {
|
|
for (auto& db : multi_dbs_) {
|
|
db_list.push_back(db.db);
|
|
}
|
|
}
|
|
std::vector<Options> options_list;
|
|
for (auto db : db_list) {
|
|
options_list.push_back(db->GetOptions());
|
|
if (compaction_style != kCompactionStyleFIFO) {
|
|
db->SetOptions({{"disable_auto_compactions", "1"},
|
|
{"level0_slowdown_writes_trigger", "400000000"},
|
|
{"level0_stop_writes_trigger", "400000000"}});
|
|
} else {
|
|
db->SetOptions({{"disable_auto_compactions", "1"}});
|
|
}
|
|
}
|
|
|
|
assert(!db_list.empty());
|
|
auto num_db = db_list.size();
|
|
size_t num_levels = static_cast<size_t>(open_options_.num_levels);
|
|
size_t output_level = open_options_.num_levels - 1;
|
|
std::vector<std::vector<std::vector<SstFileMetaData>>> sorted_runs(num_db);
|
|
std::vector<size_t> num_files_at_level0(num_db, 0);
|
|
if (compaction_style == kCompactionStyleLevel) {
|
|
if (num_levels == 0) {
|
|
return Status::InvalidArgument("num_levels should be larger than 1");
|
|
}
|
|
bool should_stop = false;
|
|
while (!should_stop) {
|
|
if (sorted_runs[0].empty()) {
|
|
DoWrite(thread, write_mode);
|
|
} else {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
db->Flush(FlushOptions());
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
|
|
writes_ == 0) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
sorted_runs[i].emplace_back(
|
|
meta.levels[0].files.begin(),
|
|
meta.levels[0].files.end() - num_files_at_level0[i]);
|
|
num_files_at_level0[i] = meta.levels[0].files.size();
|
|
if (sorted_runs[i].back().size() == 1) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
if (sorted_runs[i].size() == output_level) {
|
|
auto& L1 = sorted_runs[i].back();
|
|
L1.erase(L1.begin(), L1.begin() + L1.size() / 3);
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
}
|
|
writes_ /=
|
|
static_cast<int64_t>(open_options_.max_bytes_for_level_multiplier);
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
if (sorted_runs[i].size() < num_levels - 1) {
|
|
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n",
|
|
num_levels);
|
|
exit(1);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
auto compactionOptions = CompactionOptions();
|
|
compactionOptions.compression = FLAGS_compression_type_e;
|
|
auto options = db->GetOptions();
|
|
MutableCFOptions mutable_cf_options(options);
|
|
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
|
|
compactionOptions.output_file_size_limit = MaxFileSizeForLevel(
|
|
mutable_cf_options, static_cast<int>(output_level),
|
|
compaction_style);
|
|
std::cout << sorted_runs[i][j].size() << std::endl;
|
|
db->CompactFiles(
|
|
compactionOptions,
|
|
{sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
|
|
static_cast<int>(output_level - j) /*level*/);
|
|
}
|
|
}
|
|
} else if (compaction_style == kCompactionStyleUniversal) {
|
|
auto ratio = open_options_.compaction_options_universal.size_ratio;
|
|
bool should_stop = false;
|
|
while (!should_stop) {
|
|
if (sorted_runs[0].empty()) {
|
|
DoWrite(thread, write_mode);
|
|
} else {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
db->Flush(FlushOptions());
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
|
|
writes_ == 0) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
sorted_runs[i].emplace_back(
|
|
meta.levels[0].files.begin(),
|
|
meta.levels[0].files.end() - num_files_at_level0[i]);
|
|
num_files_at_level0[i] = meta.levels[0].files.size();
|
|
if (sorted_runs[i].back().size() == 1) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
num_files_at_level0[i] = meta.levels[0].files.size();
|
|
}
|
|
writes_ = static_cast<int64_t>(writes_ * static_cast<double>(100) /
|
|
(ratio + 200));
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
if (sorted_runs[i].size() < num_levels) {
|
|
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n",
|
|
num_levels);
|
|
exit(1);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
auto compactionOptions = CompactionOptions();
|
|
compactionOptions.compression = FLAGS_compression_type_e;
|
|
auto options = db->GetOptions();
|
|
MutableCFOptions mutable_cf_options(options);
|
|
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
|
|
compactionOptions.output_file_size_limit = MaxFileSizeForLevel(
|
|
mutable_cf_options, static_cast<int>(output_level),
|
|
compaction_style);
|
|
db->CompactFiles(
|
|
compactionOptions,
|
|
{sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
|
|
(output_level > j ? static_cast<int>(output_level - j)
|
|
: 0) /*level*/);
|
|
}
|
|
}
|
|
} else if (compaction_style == kCompactionStyleFIFO) {
|
|
if (num_levels != 1) {
|
|
return Status::InvalidArgument(
|
|
"num_levels should be 1 for FIFO compaction");
|
|
}
|
|
if (FLAGS_num_multi_db != 0) {
|
|
return Status::InvalidArgument("Doesn't support multiDB");
|
|
}
|
|
auto db = db_list[0];
|
|
std::vector<std::string> file_names;
|
|
while (true) {
|
|
if (sorted_runs[0].empty()) {
|
|
DoWrite(thread, write_mode);
|
|
} else {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
db->Flush(FlushOptions());
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
auto total_size = meta.levels[0].size;
|
|
if (total_size >=
|
|
db->GetOptions().compaction_options_fifo.max_table_files_size) {
|
|
for (const auto& file_meta : meta.levels[0].files) {
|
|
file_names.emplace_back(file_meta.name);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// TODO(shuzhang1989): Investigate why CompactFiles not working
|
|
// auto compactionOptions = CompactionOptions();
|
|
// db->CompactFiles(compactionOptions, file_names, 0);
|
|
auto compactionOptions = CompactRangeOptions();
|
|
compactionOptions.max_subcompactions =
|
|
static_cast<uint32_t>(FLAGS_subcompactions);
|
|
db->CompactRange(compactionOptions, nullptr, nullptr);
|
|
} else {
|
|
fprintf(stdout,
|
|
"%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n",
|
|
"filldeterministic");
|
|
return Status::InvalidArgument("None compaction is not supported");
|
|
}
|
|
|
|
// Verify seqno and key range
|
|
// Note: the seqno get changed at the max level by implementation
|
|
// optimization, so skip the check of the max level.
|
|
#ifndef NDEBUG
|
|
for (size_t k = 0; k < num_db; k++) {
|
|
auto db = db_list[k];
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
// verify the number of sorted runs
|
|
if (compaction_style == kCompactionStyleLevel) {
|
|
assert(num_levels - 1 == sorted_runs[k].size());
|
|
} else if (compaction_style == kCompactionStyleUniversal) {
|
|
assert(meta.levels[0].files.size() + num_levels - 1 ==
|
|
sorted_runs[k].size());
|
|
} else if (compaction_style == kCompactionStyleFIFO) {
|
|
// TODO(gzh): FIFO compaction
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
auto total_size = meta.levels[0].size;
|
|
assert(total_size <=
|
|
db->GetOptions().compaction_options_fifo.max_table_files_size);
|
|
break;
|
|
}
|
|
|
|
// verify smallest/largest seqno and key range of each sorted run
|
|
auto max_level = num_levels - 1;
|
|
int level;
|
|
for (size_t i = 0; i < sorted_runs[k].size(); i++) {
|
|
level = static_cast<int>(max_level - i);
|
|
SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber;
|
|
SequenceNumber sorted_run_largest_seqno = 0;
|
|
std::string sorted_run_smallest_key, sorted_run_largest_key;
|
|
bool first_key = true;
|
|
for (const auto& fileMeta : sorted_runs[k][i]) {
|
|
sorted_run_smallest_seqno =
|
|
std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno);
|
|
sorted_run_largest_seqno =
|
|
std::max(sorted_run_largest_seqno, fileMeta.largest_seqno);
|
|
if (first_key ||
|
|
db->DefaultColumnFamily()->GetComparator()->Compare(
|
|
fileMeta.smallestkey, sorted_run_smallest_key) < 0) {
|
|
sorted_run_smallest_key = fileMeta.smallestkey;
|
|
}
|
|
if (first_key ||
|
|
db->DefaultColumnFamily()->GetComparator()->Compare(
|
|
fileMeta.largestkey, sorted_run_largest_key) > 0) {
|
|
sorted_run_largest_key = fileMeta.largestkey;
|
|
}
|
|
first_key = false;
|
|
}
|
|
if (compaction_style == kCompactionStyleLevel ||
|
|
(compaction_style == kCompactionStyleUniversal && level > 0)) {
|
|
SequenceNumber level_smallest_seqno = kMaxSequenceNumber;
|
|
SequenceNumber level_largest_seqno = 0;
|
|
for (const auto& fileMeta : meta.levels[level].files) {
|
|
level_smallest_seqno =
|
|
std::min(level_smallest_seqno, fileMeta.smallest_seqno);
|
|
level_largest_seqno =
|
|
std::max(level_largest_seqno, fileMeta.largest_seqno);
|
|
}
|
|
assert(sorted_run_smallest_key ==
|
|
meta.levels[level].files.front().smallestkey);
|
|
assert(sorted_run_largest_key ==
|
|
meta.levels[level].files.back().largestkey);
|
|
if (level != static_cast<int>(max_level)) {
|
|
// compaction at max_level would change sequence number
|
|
assert(sorted_run_smallest_seqno == level_smallest_seqno);
|
|
assert(sorted_run_largest_seqno == level_largest_seqno);
|
|
}
|
|
} else if (compaction_style == kCompactionStyleUniversal) {
|
|
// level <= 0 means sorted runs on level 0
|
|
auto level0_file =
|
|
meta.levels[0].files[sorted_runs[k].size() - 1 - i];
|
|
assert(sorted_run_smallest_key == level0_file.smallestkey);
|
|
assert(sorted_run_largest_key == level0_file.largestkey);
|
|
if (level != static_cast<int>(max_level)) {
|
|
assert(sorted_run_smallest_seqno == level0_file.smallest_seqno);
|
|
assert(sorted_run_largest_seqno == level0_file.largest_seqno);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
// print the size of each sorted_run
|
|
for (size_t k = 0; k < num_db; k++) {
|
|
auto db = db_list[k];
|
|
fprintf(stdout,
|
|
"---------------------- DB %" ROCKSDB_PRIszt
|
|
" LSM ---------------------\n",
|
|
k);
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
for (auto& levelMeta : meta.levels) {
|
|
if (levelMeta.files.empty()) {
|
|
continue;
|
|
}
|
|
if (levelMeta.level == 0) {
|
|
for (auto& fileMeta : levelMeta.files) {
|
|
fprintf(stdout, "Level[%d]: %s(size: %" PRIi64 " bytes)\n",
|
|
levelMeta.level, fileMeta.name.c_str(), fileMeta.size);
|
|
}
|
|
} else {
|
|
fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n",
|
|
levelMeta.level, levelMeta.files.front().name.c_str(),
|
|
levelMeta.files.back().name.c_str(), levelMeta.size);
|
|
}
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
db_list[i]->SetOptions(
|
|
{{"disable_auto_compactions",
|
|
std::to_string(options_list[i].disable_auto_compactions)},
|
|
{"level0_slowdown_writes_trigger",
|
|
std::to_string(options_list[i].level0_slowdown_writes_trigger)},
|
|
{"level0_stop_writes_trigger",
|
|
std::to_string(options_list[i].level0_stop_writes_trigger)}});
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
void ReadSequential(ThreadState* thread) {
|
|
if (db_.db != nullptr) {
|
|
ReadSequential(thread, db_.db);
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
ReadSequential(thread, db_with_cfh.db);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReadSequential(ThreadState* thread, DB* db) {
|
|
ReadOptions options = read_options_;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
options.adaptive_readahead = FLAGS_adaptive_readahead;
|
|
options.async_io = FLAGS_async_io;
|
|
options.auto_readahead_size = FLAGS_auto_readahead_size;
|
|
|
|
Iterator* iter = db->NewIterator(options);
|
|
int64_t i = 0;
|
|
int64_t bytes = 0;
|
|
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
|
|
bytes += iter->key().size() + iter->value().size();
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
++i;
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
i % 1024 == 1023) {
|
|
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
|
|
nullptr /* stats */,
|
|
RateLimiter::OpType::kRead);
|
|
}
|
|
}
|
|
|
|
delete iter;
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
void ReadToRowCache(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
int64_t key_rand = 0;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
PinnableSlice pinnable_val;
|
|
|
|
while (key_rand < FLAGS_num) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
// We use same key_rand as seed for key and column family so that we can
|
|
// deterministically find the cfh corresponding to a particular key, as it
|
|
// is done in DoWrite method.
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
key_rand++;
|
|
read++;
|
|
Status s;
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand),
|
|
key, &pinnable_val);
|
|
} else {
|
|
pinnable_val.Reset();
|
|
s = db_with_cfh->db->Get(read_options_,
|
|
db_with_cfh->db->DefaultColumnFamily(), key,
|
|
&pinnable_val);
|
|
}
|
|
|
|
if (s.ok()) {
|
|
found++;
|
|
bytes += key.size() + pinnable_val.size();
|
|
} else if (!s.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
read % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
|
|
read);
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void ReadReverse(ThreadState* thread) {
|
|
if (db_.db != nullptr) {
|
|
ReadReverse(thread, db_.db);
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
ReadReverse(thread, db_with_cfh.db);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReadReverse(ThreadState* thread, DB* db) {
|
|
Iterator* iter = db->NewIterator(read_options_);
|
|
int64_t i = 0;
|
|
int64_t bytes = 0;
|
|
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
|
|
bytes += iter->key().size() + iter->value().size();
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
++i;
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
i % 1024 == 1023) {
|
|
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
|
|
nullptr /* stats */,
|
|
RateLimiter::OpType::kRead);
|
|
}
|
|
}
|
|
delete iter;
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
void ReadRandomFast(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t nonexist = 0;
|
|
ReadOptions options = read_options_;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::string value;
|
|
Slice ts;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
DB* db = SelectDBWithCfh(thread)->db;
|
|
|
|
int64_t pot = 1;
|
|
while (pot < FLAGS_num) {
|
|
pot <<= 1;
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
do {
|
|
for (int i = 0; i < 100; ++i) {
|
|
int64_t key_rand = thread->rand.Next() & (pot - 1);
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
++read;
|
|
std::string ts_ret;
|
|
std::string* ts_ptr = nullptr;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand,
|
|
ts_guard.get());
|
|
options.timestamp = &ts;
|
|
ts_ptr = &ts_ret;
|
|
}
|
|
auto status = db->Get(options, key, &value, ts_ptr);
|
|
if (status.ok()) {
|
|
++found;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
abort();
|
|
}
|
|
if (key_rand >= FLAGS_num) {
|
|
++nonexist;
|
|
}
|
|
}
|
|
if (thread->shared->read_rate_limiter.get() != nullptr) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
100, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(nullptr, db, 100, kRead);
|
|
} while (!duration.Done(100));
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg),
|
|
"(%" PRIu64 " of %" PRIu64
|
|
" found, "
|
|
"issued %" PRIu64 " non-exist keys)\n",
|
|
found, read, nonexist);
|
|
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
int64_t GetRandomKey(Random64* rand) {
|
|
uint64_t rand_int = rand->Next();
|
|
int64_t key_rand;
|
|
if (read_random_exp_range_ == 0) {
|
|
key_rand = rand_int % FLAGS_num;
|
|
} else {
|
|
const uint64_t kBigInt = static_cast<uint64_t>(1U) << 62;
|
|
long double order = -static_cast<long double>(rand_int % kBigInt) /
|
|
static_cast<long double>(kBigInt) *
|
|
read_random_exp_range_;
|
|
long double exp_ran = std::exp(order);
|
|
uint64_t rand_num =
|
|
static_cast<int64_t>(exp_ran * static_cast<long double>(FLAGS_num));
|
|
// Map to a different number to avoid locality.
|
|
const uint64_t kBigPrime = 0x5bd1e995;
|
|
// Overflow is like %(2^64). Will have little impact of results.
|
|
key_rand = static_cast<int64_t>((rand_num * kBigPrime) % FLAGS_num);
|
|
}
|
|
return key_rand;
|
|
}
|
|
|
|
void ReadRandom(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
int num_keys = 0;
|
|
int64_t key_rand = 0;
|
|
ReadOptions options = read_options_;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
PinnableSlice pinnable_val;
|
|
std::vector<PinnableSlice> pinnable_vals;
|
|
if (read_operands_) {
|
|
// Start off with a small-ish value that'll be increased later if
|
|
// `GetMergeOperands()` tells us it is not large enough.
|
|
pinnable_vals.resize(8);
|
|
}
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(1)) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
// We use same key_rand as seed for key and column family so that we can
|
|
// deterministically find the cfh corresponding to a particular key, as it
|
|
// is done in DoWrite method.
|
|
if (entries_per_batch_ > 1 && FLAGS_multiread_stride) {
|
|
if (++num_keys == entries_per_batch_) {
|
|
num_keys = 0;
|
|
key_rand = GetRandomKey(&thread->rand);
|
|
if ((key_rand + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
|
|
FLAGS_num) {
|
|
key_rand = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
|
|
}
|
|
} else {
|
|
key_rand += FLAGS_multiread_stride;
|
|
}
|
|
} else {
|
|
key_rand = GetRandomKey(&thread->rand);
|
|
}
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
read++;
|
|
std::string ts_ret;
|
|
std::string* ts_ptr = nullptr;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
ts_ptr = &ts_ret;
|
|
}
|
|
Status s;
|
|
pinnable_val.Reset();
|
|
for (size_t i = 0; i < pinnable_vals.size(); ++i) {
|
|
pinnable_vals[i].Reset();
|
|
}
|
|
ColumnFamilyHandle* cfh;
|
|
if (FLAGS_num_column_families > 1) {
|
|
cfh = db_with_cfh->GetCfh(key_rand);
|
|
} else {
|
|
cfh = db_with_cfh->db->DefaultColumnFamily();
|
|
}
|
|
if (read_operands_) {
|
|
GetMergeOperandsOptions get_merge_operands_options;
|
|
get_merge_operands_options.expected_max_number_of_operands =
|
|
static_cast<int>(pinnable_vals.size());
|
|
int number_of_operands;
|
|
s = db_with_cfh->db->GetMergeOperands(
|
|
options, cfh, key, pinnable_vals.data(),
|
|
&get_merge_operands_options, &number_of_operands);
|
|
if (s.IsIncomplete()) {
|
|
// Should only happen a few times when we encounter a key that had
|
|
// more merge operands than any key seen so far. Production use case
|
|
// would typically retry in such event to get all the operands so do
|
|
// that here.
|
|
pinnable_vals.resize(number_of_operands);
|
|
get_merge_operands_options.expected_max_number_of_operands =
|
|
static_cast<int>(pinnable_vals.size());
|
|
s = db_with_cfh->db->GetMergeOperands(
|
|
options, cfh, key, pinnable_vals.data(),
|
|
&get_merge_operands_options, &number_of_operands);
|
|
}
|
|
} else {
|
|
s = db_with_cfh->db->Get(options, cfh, key, &pinnable_val, ts_ptr);
|
|
}
|
|
|
|
if (s.ok()) {
|
|
found++;
|
|
bytes += key.size() + pinnable_val.size() + user_timestamp_size_;
|
|
for (size_t i = 0; i < pinnable_vals.size(); ++i) {
|
|
bytes += pinnable_vals[i].size();
|
|
pinnable_vals[i].Reset();
|
|
}
|
|
} else if (!s.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
read % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
|
|
read);
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Calls MultiGet over a list of keys from a random distribution.
|
|
// Returns the total number of keys found.
|
|
void MultiReadRandom(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t bytes = 0;
|
|
int64_t num_multireads = 0;
|
|
int64_t found = 0;
|
|
ReadOptions options = read_options_;
|
|
std::vector<Slice> keys;
|
|
std::vector<std::unique_ptr<const char[]>> key_guards;
|
|
std::vector<std::string> values(entries_per_batch_);
|
|
PinnableSlice* pin_values = new PinnableSlice[entries_per_batch_];
|
|
std::unique_ptr<PinnableSlice[]> pin_values_guard(pin_values);
|
|
std::vector<Status> stat_list(entries_per_batch_);
|
|
while (static_cast<int64_t>(keys.size()) < entries_per_batch_) {
|
|
key_guards.push_back(std::unique_ptr<const char[]>());
|
|
keys.push_back(AllocateKey(&key_guards.back()));
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(entries_per_batch_)) {
|
|
DB* db = SelectDB(thread);
|
|
if (FLAGS_multiread_stride) {
|
|
int64_t key = GetRandomKey(&thread->rand);
|
|
if ((key + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
|
|
static_cast<int64_t>(FLAGS_num)) {
|
|
key = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
|
|
}
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
GenerateKeyFromInt(key, FLAGS_num, &keys[i]);
|
|
key += FLAGS_multiread_stride;
|
|
}
|
|
} else {
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]);
|
|
}
|
|
}
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
if (!FLAGS_multiread_batched) {
|
|
std::vector<Status> statuses = db->MultiGet(options, keys, &values);
|
|
assert(static_cast<int64_t>(statuses.size()) == entries_per_batch_);
|
|
|
|
read += entries_per_batch_;
|
|
num_multireads++;
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
if (statuses[i].ok()) {
|
|
bytes += keys[i].size() + values[i].size() + user_timestamp_size_;
|
|
++found;
|
|
} else if (!statuses[i].IsNotFound()) {
|
|
fprintf(stderr, "MultiGet returned an error: %s\n",
|
|
statuses[i].ToString().c_str());
|
|
abort();
|
|
}
|
|
}
|
|
} else {
|
|
db->MultiGet(options, db->DefaultColumnFamily(), keys.size(),
|
|
keys.data(), pin_values, stat_list.data());
|
|
|
|
read += entries_per_batch_;
|
|
num_multireads++;
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
if (stat_list[i].ok()) {
|
|
bytes +=
|
|
keys[i].size() + pin_values[i].size() + user_timestamp_size_;
|
|
++found;
|
|
} else if (!stat_list[i].IsNotFound()) {
|
|
fprintf(stderr, "MultiGet returned an error: %s\n",
|
|
stat_list[i].ToString().c_str());
|
|
abort();
|
|
}
|
|
stat_list[i] = Status::OK();
|
|
pin_values[i].Reset();
|
|
}
|
|
}
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
num_multireads % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */,
|
|
RateLimiter::OpType::kRead);
|
|
}
|
|
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
|
|
read);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Calls ApproximateSize over random key ranges.
|
|
void ApproximateSizeRandom(ThreadState* thread) {
|
|
int64_t size_sum = 0;
|
|
int64_t num_sizes = 0;
|
|
const size_t batch_size = entries_per_batch_;
|
|
std::vector<Range> ranges;
|
|
std::vector<Slice> lkeys;
|
|
std::vector<std::unique_ptr<const char[]>> lkey_guards;
|
|
std::vector<Slice> rkeys;
|
|
std::vector<std::unique_ptr<const char[]>> rkey_guards;
|
|
std::vector<uint64_t> sizes;
|
|
while (ranges.size() < batch_size) {
|
|
// Ugly without C++17 return from emplace_back
|
|
lkey_guards.emplace_back();
|
|
rkey_guards.emplace_back();
|
|
lkeys.emplace_back(AllocateKey(&lkey_guards.back()));
|
|
rkeys.emplace_back(AllocateKey(&rkey_guards.back()));
|
|
ranges.emplace_back(lkeys.back(), rkeys.back());
|
|
sizes.push_back(0);
|
|
}
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
for (size_t i = 0; i < batch_size; ++i) {
|
|
int64_t lkey = GetRandomKey(&thread->rand);
|
|
int64_t rkey = GetRandomKey(&thread->rand);
|
|
if (lkey > rkey) {
|
|
std::swap(lkey, rkey);
|
|
}
|
|
GenerateKeyFromInt(lkey, FLAGS_num, &lkeys[i]);
|
|
GenerateKeyFromInt(rkey, FLAGS_num, &rkeys[i]);
|
|
}
|
|
db->GetApproximateSizes(
|
|
ranges.data(), static_cast<int>(entries_per_batch_), sizes.data());
|
|
num_sizes += entries_per_batch_;
|
|
for (int64_t size : sizes) {
|
|
size_sum += size;
|
|
}
|
|
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kOthers);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(Avg approx size=%g)",
|
|
static_cast<double>(size_sum) / static_cast<double>(num_sizes));
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// The inverse function of Pareto distribution
|
|
int64_t ParetoCdfInversion(double u, double theta, double k, double sigma) {
|
|
double ret;
|
|
if (k == 0.0) {
|
|
ret = theta - sigma * std::log(u);
|
|
} else {
|
|
ret = theta + sigma * (std::pow(u, -1 * k) - 1) / k;
|
|
}
|
|
return static_cast<int64_t>(ceil(ret));
|
|
}
|
|
// The inverse function of power distribution (y=ax^b)
|
|
int64_t PowerCdfInversion(double u, double a, double b) {
|
|
double ret;
|
|
ret = std::pow((u / a), (1 / b));
|
|
return static_cast<int64_t>(ceil(ret));
|
|
}
|
|
|
|
// Add the noice to the QPS
|
|
double AddNoise(double origin, double noise_ratio) {
|
|
if (noise_ratio < 0.0 || noise_ratio > 1.0) {
|
|
return origin;
|
|
}
|
|
int band_int = static_cast<int>(FLAGS_sine_a);
|
|
double delta = (rand() % band_int - band_int / 2) * noise_ratio;
|
|
if (origin + delta < 0) {
|
|
return origin;
|
|
} else {
|
|
return (origin + delta);
|
|
}
|
|
}
|
|
|
|
// Decide the ratio of different query types
|
|
// 0 Get, 1 Put, 2 Seek, 3 SeekForPrev, 4 Delete, 5 SingleDelete, 6 merge
|
|
class QueryDecider {
|
|
public:
|
|
std::vector<int> type_;
|
|
std::vector<double> ratio_;
|
|
int range_;
|
|
|
|
QueryDecider() = default;
|
|
~QueryDecider() = default;
|
|
|
|
Status Initiate(std::vector<double> ratio_input) {
|
|
int range_max = 1000;
|
|
double sum = 0.0;
|
|
for (auto& ratio : ratio_input) {
|
|
sum += ratio;
|
|
}
|
|
range_ = 0;
|
|
for (auto& ratio : ratio_input) {
|
|
range_ += static_cast<int>(ceil(range_max * (ratio / sum)));
|
|
type_.push_back(range_);
|
|
ratio_.push_back(ratio / sum);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
int GetType(int64_t rand_num) {
|
|
if (rand_num < 0) {
|
|
rand_num = rand_num * (-1);
|
|
}
|
|
assert(range_ != 0);
|
|
int pos = static_cast<int>(rand_num % range_);
|
|
for (int i = 0; i < static_cast<int>(type_.size()); i++) {
|
|
if (pos < type_[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// KeyrangeUnit is the struct of a keyrange. It is used in a keyrange vector
|
|
// to transfer a random value to one keyrange based on the hotness.
|
|
struct KeyrangeUnit {
|
|
int64_t keyrange_start;
|
|
int64_t keyrange_access;
|
|
int64_t keyrange_keys;
|
|
};
|
|
|
|
// From our observations, the prefix hotness (key-range hotness) follows
|
|
// the two-term-exponential distribution: f(x) = a*exp(b*x) + c*exp(d*x).
|
|
// However, we cannot directly use the inverse function to decide a
|
|
// key-range from a random distribution. To achieve it, we create a list of
|
|
// KeyrangeUnit, each KeyrangeUnit occupies a range of integers whose size is
|
|
// decided based on the hotness of the key-range. When a random value is
|
|
// generated based on uniform distribution, we map it to the KeyrangeUnit Vec
|
|
// and one KeyrangeUnit is selected. The probability of a KeyrangeUnit being
|
|
// selected is the same as the hotness of this KeyrangeUnit. After that, the
|
|
// key can be randomly allocated to the key-range of this KeyrangeUnit, or we
|
|
// can based on the power distribution (y=ax^b) to generate the offset of
|
|
// the key in the selected key-range. In this way, we generate the keyID
|
|
// based on the hotness of the prefix and also the key hotness distribution.
|
|
class GenerateTwoTermExpKeys {
|
|
public:
|
|
// Avoid uninitialized warning-as-error in some compilers
|
|
int64_t keyrange_rand_max_ = 0;
|
|
int64_t keyrange_size_ = 0;
|
|
int64_t keyrange_num_ = 0;
|
|
std::vector<KeyrangeUnit> keyrange_set_;
|
|
|
|
// Initiate the KeyrangeUnit vector and calculate the size of each
|
|
// KeyrangeUnit.
|
|
Status InitiateExpDistribution(int64_t total_keys, double prefix_a,
|
|
double prefix_b, double prefix_c,
|
|
double prefix_d) {
|
|
int64_t amplify = 0;
|
|
int64_t keyrange_start = 0;
|
|
if (FLAGS_keyrange_num <= 0) {
|
|
keyrange_num_ = 1;
|
|
} else {
|
|
keyrange_num_ = FLAGS_keyrange_num;
|
|
}
|
|
keyrange_size_ = total_keys / keyrange_num_;
|
|
|
|
// Calculate the key-range shares size based on the input parameters
|
|
for (int64_t pfx = keyrange_num_; pfx >= 1; pfx--) {
|
|
// Step 1. Calculate the probability that this key range will be
|
|
// accessed in a query. It is based on the two-term expoential
|
|
// distribution
|
|
double keyrange_p = prefix_a * std::exp(prefix_b * pfx) +
|
|
prefix_c * std::exp(prefix_d * pfx);
|
|
if (keyrange_p < std::pow(10.0, -16.0)) {
|
|
keyrange_p = 0.0;
|
|
}
|
|
// Step 2. Calculate the amplify
|
|
// In order to allocate a query to a key-range based on the random
|
|
// number generated for this query, we need to extend the probability
|
|
// of each key range from [0,1] to [0, amplify]. Amplify is calculated
|
|
// by 1/(smallest key-range probability). In this way, we ensure that
|
|
// all key-ranges are assigned with an Integer that >=0
|
|
if (amplify == 0 && keyrange_p > 0) {
|
|
amplify = static_cast<int64_t>(std::floor(1 / keyrange_p)) + 1;
|
|
}
|
|
|
|
// Step 3. For each key-range, we calculate its position in the
|
|
// [0, amplify] range, including the start, the size (keyrange_access)
|
|
KeyrangeUnit p_unit;
|
|
p_unit.keyrange_start = keyrange_start;
|
|
if (0.0 >= keyrange_p) {
|
|
p_unit.keyrange_access = 0;
|
|
} else {
|
|
p_unit.keyrange_access =
|
|
static_cast<int64_t>(std::floor(amplify * keyrange_p));
|
|
}
|
|
p_unit.keyrange_keys = keyrange_size_;
|
|
keyrange_set_.push_back(p_unit);
|
|
keyrange_start += p_unit.keyrange_access;
|
|
}
|
|
keyrange_rand_max_ = keyrange_start;
|
|
|
|
// Step 4. Shuffle the key-ranges randomly
|
|
// Since the access probability is calculated from small to large,
|
|
// If we do not re-allocate them, hot key-ranges are always at the end
|
|
// and cold key-ranges are at the begin of the key space. Therefore, the
|
|
// key-ranges are shuffled and the rand seed is only decide by the
|
|
// key-range hotness distribution. With the same distribution parameters
|
|
// the shuffle results are the same.
|
|
Random64 rand_loca(keyrange_rand_max_);
|
|
for (int64_t i = 0; i < FLAGS_keyrange_num; i++) {
|
|
int64_t pos = rand_loca.Next() % FLAGS_keyrange_num;
|
|
assert(i >= 0 && i < static_cast<int64_t>(keyrange_set_.size()) &&
|
|
pos >= 0 && pos < static_cast<int64_t>(keyrange_set_.size()));
|
|
std::swap(keyrange_set_[i], keyrange_set_[pos]);
|
|
}
|
|
|
|
// Step 5. Recalculate the prefix start postion after shuffling
|
|
int64_t offset = 0;
|
|
for (auto& p_unit : keyrange_set_) {
|
|
p_unit.keyrange_start = offset;
|
|
offset += p_unit.keyrange_access;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
// Generate the Key ID according to the input ini_rand and key distribution
|
|
int64_t DistGetKeyID(int64_t ini_rand, double key_dist_a,
|
|
double key_dist_b) {
|
|
int64_t keyrange_rand = ini_rand % keyrange_rand_max_;
|
|
|
|
// Calculate and select one key-range that contains the new key
|
|
int64_t start = 0, end = static_cast<int64_t>(keyrange_set_.size());
|
|
while (start + 1 < end) {
|
|
int64_t mid = start + (end - start) / 2;
|
|
assert(mid >= 0 && mid < static_cast<int64_t>(keyrange_set_.size()));
|
|
if (keyrange_rand < keyrange_set_[mid].keyrange_start) {
|
|
end = mid;
|
|
} else {
|
|
start = mid;
|
|
}
|
|
}
|
|
int64_t keyrange_id = start;
|
|
|
|
// Select one key in the key-range and compose the keyID
|
|
int64_t key_offset = 0, key_seed;
|
|
if (key_dist_a == 0.0 || key_dist_b == 0.0) {
|
|
key_offset = ini_rand % keyrange_size_;
|
|
} else {
|
|
double u =
|
|
static_cast<double>(ini_rand % keyrange_size_) / keyrange_size_;
|
|
key_seed = static_cast<int64_t>(
|
|
ceil(std::pow((u / key_dist_a), (1 / key_dist_b))));
|
|
Random64 rand_key(key_seed);
|
|
key_offset = rand_key.Next() % keyrange_size_;
|
|
}
|
|
return keyrange_size_ * keyrange_id + key_offset;
|
|
}
|
|
};
|
|
|
|
// The social graph workload mixed with Get, Put, Iterator queries.
|
|
// The value size and iterator length follow Pareto distribution.
|
|
// The overall key access follow power distribution. If user models the
|
|
// workload based on different key-ranges (or different prefixes), user
|
|
// can use two-term-exponential distribution to fit the workload. User
|
|
// needs to decide the ratio between Get, Put, Iterator queries before
|
|
// starting the benchmark.
|
|
void MixGraph(ThreadState* thread) {
|
|
int64_t gets = 0;
|
|
int64_t puts = 0;
|
|
int64_t get_found = 0;
|
|
int64_t seek = 0;
|
|
int64_t seek_found = 0;
|
|
int64_t bytes = 0;
|
|
double total_scan_length = 0;
|
|
double total_val_size = 0;
|
|
const int64_t default_value_max = 1 * 1024 * 1024;
|
|
int64_t value_max = default_value_max;
|
|
int64_t scan_len_max = FLAGS_mix_max_scan_len;
|
|
double write_rate = 1000000.0;
|
|
double read_rate = 1000000.0;
|
|
bool use_prefix_modeling = false;
|
|
bool use_random_modeling = false;
|
|
GenerateTwoTermExpKeys gen_exp;
|
|
std::vector<double> ratio{FLAGS_mix_get_ratio, FLAGS_mix_put_ratio,
|
|
FLAGS_mix_seek_ratio};
|
|
char value_buffer[default_value_max];
|
|
QueryDecider query;
|
|
RandomGenerator gen;
|
|
Status s;
|
|
if (value_max > FLAGS_mix_max_value_size) {
|
|
value_max = FLAGS_mix_max_value_size;
|
|
}
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
PinnableSlice pinnable_val;
|
|
query.Initiate(ratio);
|
|
|
|
// the limit of qps initiation
|
|
if (FLAGS_sine_mix_rate) {
|
|
thread->shared->read_rate_limiter.reset(
|
|
NewGenericRateLimiter(static_cast<int64_t>(read_rate)));
|
|
thread->shared->write_rate_limiter.reset(
|
|
NewGenericRateLimiter(static_cast<int64_t>(write_rate)));
|
|
}
|
|
|
|
// Decide if user wants to use prefix based key generation
|
|
if (FLAGS_keyrange_dist_a != 0.0 || FLAGS_keyrange_dist_b != 0.0 ||
|
|
FLAGS_keyrange_dist_c != 0.0 || FLAGS_keyrange_dist_d != 0.0) {
|
|
use_prefix_modeling = true;
|
|
gen_exp.InitiateExpDistribution(
|
|
FLAGS_num, FLAGS_keyrange_dist_a, FLAGS_keyrange_dist_b,
|
|
FLAGS_keyrange_dist_c, FLAGS_keyrange_dist_d);
|
|
}
|
|
if (FLAGS_key_dist_a == 0 || FLAGS_key_dist_b == 0) {
|
|
use_random_modeling = true;
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(1)) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
int64_t ini_rand, rand_v, key_rand, key_seed;
|
|
ini_rand = GetRandomKey(&thread->rand);
|
|
rand_v = ini_rand % FLAGS_num;
|
|
double u = static_cast<double>(rand_v) / FLAGS_num;
|
|
|
|
// Generate the keyID based on the key hotness and prefix hotness
|
|
if (use_random_modeling) {
|
|
key_rand = ini_rand;
|
|
} else if (use_prefix_modeling) {
|
|
key_rand =
|
|
gen_exp.DistGetKeyID(ini_rand, FLAGS_key_dist_a, FLAGS_key_dist_b);
|
|
} else {
|
|
key_seed = PowerCdfInversion(u, FLAGS_key_dist_a, FLAGS_key_dist_b);
|
|
Random64 rand(key_seed);
|
|
key_rand = static_cast<int64_t>(rand.Next()) % FLAGS_num;
|
|
}
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
int query_type = query.GetType(rand_v);
|
|
|
|
// change the qps
|
|
uint64_t now = FLAGS_env->NowMicros();
|
|
uint64_t usecs_since_last;
|
|
if (now > thread->stats.GetSineInterval()) {
|
|
usecs_since_last = now - thread->stats.GetSineInterval();
|
|
} else {
|
|
usecs_since_last = 0;
|
|
}
|
|
|
|
if (FLAGS_sine_mix_rate &&
|
|
usecs_since_last >
|
|
(FLAGS_sine_mix_rate_interval_milliseconds * uint64_t{1000})) {
|
|
double usecs_since_start =
|
|
static_cast<double>(now - thread->stats.GetStart());
|
|
thread->stats.ResetSineInterval();
|
|
double mix_rate_with_noise = AddNoise(
|
|
SineRate(usecs_since_start / 1000000.0), FLAGS_sine_mix_rate_noise);
|
|
read_rate = mix_rate_with_noise * (query.ratio_[0] + query.ratio_[2]);
|
|
write_rate = mix_rate_with_noise * query.ratio_[1];
|
|
|
|
if (read_rate > 0) {
|
|
thread->shared->read_rate_limiter->SetBytesPerSecond(
|
|
static_cast<int64_t>(read_rate));
|
|
}
|
|
if (write_rate > 0) {
|
|
thread->shared->write_rate_limiter->SetBytesPerSecond(
|
|
static_cast<int64_t>(write_rate));
|
|
}
|
|
}
|
|
// Start the query
|
|
if (query_type == 0) {
|
|
// the Get query
|
|
gets++;
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand),
|
|
key, &pinnable_val);
|
|
} else {
|
|
pinnable_val.Reset();
|
|
s = db_with_cfh->db->Get(read_options_,
|
|
db_with_cfh->db->DefaultColumnFamily(), key,
|
|
&pinnable_val);
|
|
}
|
|
|
|
if (s.ok()) {
|
|
get_found++;
|
|
bytes += key.size() + pinnable_val.size();
|
|
} else if (!s.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter && (gets + seek) % 100 == 0) {
|
|
thread->shared->read_rate_limiter->Request(100, Env::IO_HIGH,
|
|
nullptr /*stats*/);
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
|
|
} else if (query_type == 1) {
|
|
// the Put query
|
|
puts++;
|
|
int64_t val_size = ParetoCdfInversion(u, FLAGS_value_theta,
|
|
FLAGS_value_k, FLAGS_value_sigma);
|
|
if (val_size < 10) {
|
|
val_size = 10;
|
|
} else if (val_size > value_max) {
|
|
val_size = val_size % value_max;
|
|
}
|
|
total_val_size += val_size;
|
|
|
|
s = db_with_cfh->db->Put(
|
|
write_options_, key,
|
|
gen.Generate(static_cast<unsigned int>(val_size)));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
|
|
if (thread->shared->write_rate_limiter && puts % 100 == 0) {
|
|
thread->shared->write_rate_limiter->Request(100, Env::IO_HIGH,
|
|
nullptr /*stats*/);
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kWrite);
|
|
} else if (query_type == 2) {
|
|
// Seek query
|
|
if (db_with_cfh->db != nullptr) {
|
|
Iterator* single_iter = nullptr;
|
|
single_iter = db_with_cfh->db->NewIterator(read_options_);
|
|
if (single_iter != nullptr) {
|
|
single_iter->Seek(key);
|
|
seek++;
|
|
if (single_iter->Valid() && single_iter->key().compare(key) == 0) {
|
|
seek_found++;
|
|
}
|
|
int64_t scan_length =
|
|
ParetoCdfInversion(u, FLAGS_iter_theta, FLAGS_iter_k,
|
|
FLAGS_iter_sigma) %
|
|
scan_len_max;
|
|
for (int64_t j = 0; j < scan_length && single_iter->Valid(); j++) {
|
|
Slice value = single_iter->value();
|
|
memcpy(value_buffer, value.data(),
|
|
std::min(value.size(), sizeof(value_buffer)));
|
|
bytes += single_iter->key().size() + single_iter->value().size();
|
|
single_iter->Next();
|
|
assert(single_iter->status().ok());
|
|
total_scan_length++;
|
|
}
|
|
}
|
|
delete single_iter;
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kSeek);
|
|
}
|
|
}
|
|
char msg[256];
|
|
snprintf(msg, sizeof(msg),
|
|
"( Gets:%" PRIu64 " Puts:%" PRIu64 " Seek:%" PRIu64
|
|
", reads %" PRIu64 " in %" PRIu64
|
|
" found, "
|
|
"avg size: %.1f value, %.1f scan)\n",
|
|
gets, puts, seek, get_found + seek_found, gets + seek,
|
|
total_val_size / puts, total_scan_length / seek);
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void IteratorCreation(ThreadState* thread) {
|
|
Duration duration(FLAGS_duration, reads_);
|
|
ReadOptions options = read_options_;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
Iterator* iter = db->NewIterator(options);
|
|
delete iter;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
|
|
}
|
|
}
|
|
|
|
void IteratorCreationWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
IteratorCreation(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void SeekRandom(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
ReadOptions options = read_options_;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
std::vector<Iterator*> tailing_iters;
|
|
if (FLAGS_use_tailing_iterator) {
|
|
if (db_.db != nullptr) {
|
|
tailing_iters.push_back(db_.db->NewIterator(options));
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
tailing_iters.push_back(db_with_cfh.db->NewIterator(options));
|
|
}
|
|
}
|
|
}
|
|
options.auto_prefix_mode = FLAGS_auto_prefix_mode;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
std::unique_ptr<const char[]> upper_bound_key_guard;
|
|
Slice upper_bound = AllocateKey(&upper_bound_key_guard);
|
|
std::unique_ptr<const char[]> lower_bound_key_guard;
|
|
Slice lower_bound = AllocateKey(&lower_bound_key_guard);
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
char value_buffer[256];
|
|
while (!duration.Done(1)) {
|
|
int64_t seek_pos = thread->rand.Next() % FLAGS_num;
|
|
GenerateKeyFromIntForSeek(static_cast<uint64_t>(seek_pos), FLAGS_num,
|
|
&key);
|
|
if (FLAGS_max_scan_distance != 0) {
|
|
if (FLAGS_reverse_iterator) {
|
|
GenerateKeyFromInt(
|
|
static_cast<uint64_t>(std::max(
|
|
static_cast<int64_t>(0), seek_pos - FLAGS_max_scan_distance)),
|
|
FLAGS_num, &lower_bound);
|
|
options.iterate_lower_bound = &lower_bound;
|
|
} else {
|
|
auto min_num =
|
|
std::min(FLAGS_num, seek_pos + FLAGS_max_scan_distance);
|
|
GenerateKeyFromInt(static_cast<uint64_t>(min_num), FLAGS_num,
|
|
&upper_bound);
|
|
options.iterate_upper_bound = &upper_bound;
|
|
}
|
|
} else if (FLAGS_auto_prefix_mode && prefix_extractor_ &&
|
|
!FLAGS_reverse_iterator) {
|
|
// Set upper bound to next prefix
|
|
auto mutable_upper_bound = const_cast<char*>(upper_bound.data());
|
|
std::memcpy(mutable_upper_bound, key.data(), prefix_size_);
|
|
mutable_upper_bound[prefix_size_ - 1]++;
|
|
upper_bound = Slice(upper_bound.data(), prefix_size_);
|
|
options.iterate_upper_bound = &upper_bound;
|
|
}
|
|
|
|
// Pick a Iterator to use
|
|
uint64_t db_idx_to_use =
|
|
(db_.db == nullptr)
|
|
? (uint64_t{thread->rand.Next()} % multi_dbs_.size())
|
|
: 0;
|
|
std::unique_ptr<Iterator> single_iter;
|
|
Iterator* iter_to_use;
|
|
if (FLAGS_use_tailing_iterator) {
|
|
iter_to_use = tailing_iters[db_idx_to_use];
|
|
} else {
|
|
if (db_.db != nullptr) {
|
|
single_iter.reset(db_.db->NewIterator(options));
|
|
} else {
|
|
single_iter.reset(multi_dbs_[db_idx_to_use].db->NewIterator(options));
|
|
}
|
|
iter_to_use = single_iter.get();
|
|
}
|
|
|
|
iter_to_use->Seek(key);
|
|
read++;
|
|
if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) {
|
|
found++;
|
|
}
|
|
|
|
for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) {
|
|
// Copy out iterator's value to make sure we read them.
|
|
Slice value = iter_to_use->value();
|
|
memcpy(value_buffer, value.data(),
|
|
std::min(value.size(), sizeof(value_buffer)));
|
|
bytes += iter_to_use->key().size() + iter_to_use->value().size();
|
|
|
|
if (!FLAGS_reverse_iterator) {
|
|
iter_to_use->Next();
|
|
} else {
|
|
iter_to_use->Prev();
|
|
}
|
|
assert(iter_to_use->status().ok());
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
read % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
|
|
}
|
|
for (auto iter : tailing_iters) {
|
|
delete iter;
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
|
|
read);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void SeekRandomWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
SeekRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void SeekRandomWhileMerging(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
SeekRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kMerge);
|
|
}
|
|
}
|
|
|
|
void DoDelete(ThreadState* thread, bool seq) {
|
|
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
|
|
FLAGS_write_batch_protection_bytes_per_key,
|
|
user_timestamp_size_);
|
|
Duration duration(seq ? 0 : FLAGS_duration, deletes_);
|
|
int64_t i = 0;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
while (!duration.Done(entries_per_batch_)) {
|
|
DB* db = SelectDB(thread);
|
|
batch.Clear();
|
|
for (int64_t j = 0; j < entries_per_batch_; ++j) {
|
|
const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num);
|
|
GenerateKeyFromInt(k, FLAGS_num, &key);
|
|
batch.Delete(key);
|
|
}
|
|
Status s;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.UpdateTimestamps(
|
|
ts, [this](uint32_t) { return user_timestamp_size_; });
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
s = db->Write(write_options_, &batch);
|
|
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "del error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
i += entries_per_batch_;
|
|
}
|
|
}
|
|
|
|
void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); }
|
|
|
|
void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); }
|
|
|
|
void ReadWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
ReadRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void MultiReadWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
MultiReadRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void ReadWhileMerging(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
ReadRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kMerge);
|
|
}
|
|
}
|
|
|
|
void BGWriter(ThreadState* thread, enum OperationType write_merge) {
|
|
// Special thread that keeps writing until other threads are done.
|
|
RandomGenerator gen;
|
|
int64_t bytes = 0;
|
|
|
|
std::unique_ptr<RateLimiter> write_rate_limiter;
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter.reset(
|
|
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
|
|
}
|
|
|
|
// Don't merge stats from this thread with the readers.
|
|
thread->stats.SetExcludeFromMerge();
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
std::unique_ptr<const char[]> begin_key_guard;
|
|
Slice begin_key = AllocateKey(&begin_key_guard);
|
|
std::unique_ptr<const char[]> end_key_guard;
|
|
Slice end_key = AllocateKey(&end_key_guard);
|
|
uint64_t num_range_deletions = 0;
|
|
std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
|
|
std::vector<Slice> expanded_keys;
|
|
if (FLAGS_expand_range_tombstones) {
|
|
expanded_key_guards.resize(range_tombstone_width_);
|
|
for (auto& expanded_key_guard : expanded_key_guards) {
|
|
expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
|
|
}
|
|
}
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
uint32_t written = 0;
|
|
bool hint_printed = false;
|
|
|
|
while (true) {
|
|
DB* db = SelectDB(thread);
|
|
{
|
|
MutexLock l(&thread->shared->mu);
|
|
if (FLAGS_finish_after_writes && written == writes_) {
|
|
fprintf(stderr, "Exiting the writer after %u writes...\n", written);
|
|
break;
|
|
}
|
|
if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
|
|
// Other threads have finished
|
|
if (FLAGS_finish_after_writes) {
|
|
// Wait for the writes to be finished
|
|
if (!hint_printed) {
|
|
fprintf(stderr, "Reads are finished. Have %d more writes to do\n",
|
|
static_cast<int>(writes_) - written);
|
|
hint_printed = true;
|
|
}
|
|
} else {
|
|
// Finish the write immediately
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Status s;
|
|
|
|
Slice val = gen.Generate();
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
}
|
|
if (write_merge == kWrite) {
|
|
if (user_timestamp_size_ == 0) {
|
|
s = db->Put(write_options_, key, val);
|
|
} else {
|
|
s = db->Put(write_options_, key, ts, val);
|
|
}
|
|
} else {
|
|
s = db->Merge(write_options_, key, val);
|
|
}
|
|
// Restore write_options_
|
|
written++;
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
bytes += key.size() + val.size() + user_timestamp_size_;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH,
|
|
nullptr /* stats */,
|
|
RateLimiter::OpType::kWrite);
|
|
}
|
|
|
|
if (writes_per_range_tombstone_ > 0 &&
|
|
written > writes_before_delete_range_ &&
|
|
(written - writes_before_delete_range_) /
|
|
writes_per_range_tombstone_ <=
|
|
max_num_range_tombstones_ &&
|
|
(written - writes_before_delete_range_) %
|
|
writes_per_range_tombstone_ ==
|
|
0) {
|
|
num_range_deletions++;
|
|
int64_t begin_num = thread->rand.Next() % FLAGS_num;
|
|
if (FLAGS_expand_range_tombstones) {
|
|
for (int64_t offset = 0; offset < range_tombstone_width_; ++offset) {
|
|
GenerateKeyFromInt(begin_num + offset, FLAGS_num,
|
|
&expanded_keys[offset]);
|
|
if (!db->Delete(write_options_, expanded_keys[offset]).ok()) {
|
|
fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
} else {
|
|
GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
|
|
GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
|
|
&end_key);
|
|
if (!db->DeleteRange(write_options_, db->DefaultColumnFamily(),
|
|
begin_key, end_key)
|
|
.ok()) {
|
|
fprintf(stderr, "deleterange error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
// TODO: DeleteRange is not included in calculcation of bytes/rate
|
|
// limiter request
|
|
}
|
|
}
|
|
if (num_range_deletions > 0) {
|
|
std::cout << "Number of range deletions: " << num_range_deletions
|
|
<< std::endl;
|
|
}
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
void ReadWhileScanning(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
ReadRandom(thread);
|
|
} else {
|
|
BGScan(thread);
|
|
}
|
|
}
|
|
|
|
void BGScan(ThreadState* thread) {
|
|
if (FLAGS_num_multi_db > 0) {
|
|
fprintf(stderr, "Not supporting multiple DBs.\n");
|
|
abort();
|
|
}
|
|
assert(db_.db != nullptr);
|
|
ReadOptions read_options = read_options_;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
read_options.timestamp = &ts;
|
|
}
|
|
Iterator* iter = db_.db->NewIterator(read_options);
|
|
|
|
fprintf(stderr, "num reads to do %" PRIu64 "\n", reads_);
|
|
Duration duration(FLAGS_duration, reads_);
|
|
uint64_t num_seek_to_first = 0;
|
|
uint64_t num_next = 0;
|
|
while (!duration.Done(1)) {
|
|
if (!iter->Valid()) {
|
|
iter->SeekToFirst();
|
|
num_seek_to_first++;
|
|
} else if (!iter->status().ok()) {
|
|
fprintf(stderr, "Iterator error: %s\n",
|
|
iter->status().ToString().c_str());
|
|
abort();
|
|
} else {
|
|
iter->Next();
|
|
num_next++;
|
|
}
|
|
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
|
|
}
|
|
(void)num_seek_to_first;
|
|
(void)num_next;
|
|
delete iter;
|
|
}
|
|
|
|
// Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
|
|
// in DB atomically i.e in a single batch. Also refer GetMany.
|
|
Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key,
|
|
const Slice& value) {
|
|
std::string suffixes[3] = {"2", "1", "0"};
|
|
std::string keys[3];
|
|
|
|
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
|
|
FLAGS_write_batch_protection_bytes_per_key,
|
|
user_timestamp_size_);
|
|
Status s;
|
|
for (int i = 0; i < 3; i++) {
|
|
keys[i] = key.ToString() + suffixes[i];
|
|
batch.Put(keys[i], value);
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.UpdateTimestamps(
|
|
ts, [this](uint32_t) { return user_timestamp_size_; });
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp to batch: %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
|
|
s = db->Write(writeoptions, &batch);
|
|
return s;
|
|
}
|
|
|
|
// Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
|
|
// in DB atomically i.e in a single batch. Also refer GetMany.
|
|
Status DeleteMany(DB* db, const WriteOptions& writeoptions,
|
|
const Slice& key) {
|
|
std::string suffixes[3] = {"1", "2", "0"};
|
|
std::string keys[3];
|
|
|
|
WriteBatch batch(0, 0, FLAGS_write_batch_protection_bytes_per_key,
|
|
user_timestamp_size_);
|
|
Status s;
|
|
for (int i = 0; i < 3; i++) {
|
|
keys[i] = key.ToString() + suffixes[i];
|
|
batch.Delete(keys[i]);
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.UpdateTimestamps(
|
|
ts, [this](uint32_t) { return user_timestamp_size_; });
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp to batch: %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
|
|
s = db->Write(writeoptions, &batch);
|
|
return s;
|
|
}
|
|
|
|
// Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
|
|
// in the same snapshot, and verifies that all the values are identical.
|
|
// ASSUMES that PutMany was used to put (K, V) into the DB.
|
|
Status GetMany(DB* db, const Slice& key, std::string* value) {
|
|
std::string suffixes[3] = {"0", "1", "2"};
|
|
std::string keys[3];
|
|
Slice key_slices[3];
|
|
std::string values[3];
|
|
ReadOptions readoptionscopy = read_options_;
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
readoptionscopy.timestamp = &ts;
|
|
}
|
|
|
|
readoptionscopy.snapshot = db->GetSnapshot();
|
|
Status s;
|
|
for (int i = 0; i < 3; i++) {
|
|
keys[i] = key.ToString() + suffixes[i];
|
|
key_slices[i] = keys[i];
|
|
s = db->Get(readoptionscopy, key_slices[i], value);
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
|
|
values[i] = "";
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (s.IsNotFound()) {
|
|
values[i] = "";
|
|
} else {
|
|
values[i] = *value;
|
|
}
|
|
}
|
|
db->ReleaseSnapshot(readoptionscopy.snapshot);
|
|
|
|
if ((values[0] != values[1]) || (values[1] != values[2])) {
|
|
fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
|
|
key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
|
|
values[2].c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
// Differs from readrandomwriterandom in the following ways:
|
|
// (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
|
|
// (b) Does deletes as well (per FLAGS_deletepercent)
|
|
// (c) In order to achieve high % of 'found' during lookups, and to do
|
|
// multiple writes (including puts and deletes) it uses upto
|
|
// FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
|
|
// (d) Does not have a MultiGet option.
|
|
void RandomWithVerify(ThreadState* thread) {
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int get_weight = 0;
|
|
int put_weight = 0;
|
|
int delete_weight = 0;
|
|
int64_t gets_done = 0;
|
|
int64_t puts_done = 0;
|
|
int64_t deletes_done = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
// the number of iterations is the larger of read_ or write_
|
|
for (int64_t i = 0; i < readwrites_; i++) {
|
|
DB* db = SelectDB(thread);
|
|
if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
|
|
// one batch completed, reinitialize for next batch
|
|
get_weight = FLAGS_readwritepercent;
|
|
delete_weight = FLAGS_deletepercent;
|
|
put_weight = 100 - get_weight - delete_weight;
|
|
}
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct,
|
|
FLAGS_numdistinct, &key);
|
|
if (get_weight > 0) {
|
|
// do all the gets first
|
|
Status s = GetMany(db, key, &value);
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (!s.IsNotFound()) {
|
|
found++;
|
|
}
|
|
get_weight--;
|
|
gets_done++;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
|
|
} else if (put_weight > 0) {
|
|
// then do all the corresponding number of puts
|
|
// for all the gets we have done earlier
|
|
Status s = PutMany(db, write_options_, key, gen.Generate());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
put_weight--;
|
|
puts_done++;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
} else if (delete_weight > 0) {
|
|
Status s = DeleteMany(db, write_options_, key);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
delete_weight--;
|
|
deletes_done++;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
|
|
}
|
|
}
|
|
char msg[128];
|
|
snprintf(msg, sizeof(msg),
|
|
"( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" PRIu64
|
|
" found:%" PRIu64 ")",
|
|
gets_done, puts_done, deletes_done, readwrites_, found);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// This is different from ReadWhileWriting because it does not use
|
|
// an extra thread.
|
|
void ReadRandomWriteRandom(ThreadState* thread) {
|
|
ReadOptions options = read_options_;
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int get_weight = 0;
|
|
int put_weight = 0;
|
|
int64_t reads_done = 0;
|
|
int64_t writes_done = 0;
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
// the number of iterations is the larger of read_ or write_
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
if (get_weight == 0 && put_weight == 0) {
|
|
// one batch completed, reinitialize for next batch
|
|
get_weight = FLAGS_readwritepercent;
|
|
put_weight = 100 - get_weight;
|
|
}
|
|
if (get_weight > 0) {
|
|
// do all the gets first
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand,
|
|
ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
Status s = db->Get(options, key, &value);
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (!s.IsNotFound()) {
|
|
found++;
|
|
}
|
|
get_weight--;
|
|
reads_done++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
} else if (put_weight > 0) {
|
|
// then do all the corresponding number of puts
|
|
// for all the gets we have done earlier
|
|
Status s;
|
|
if (user_timestamp_size_ > 0) {
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = db->Put(write_options_, key, ts, gen.Generate());
|
|
} else {
|
|
s = db->Put(write_options_, key, gen.Generate());
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
put_weight--;
|
|
writes_done++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kWrite);
|
|
}
|
|
}
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg),
|
|
"( reads:%" PRIu64 " writes:%" PRIu64 " total:%" PRIu64
|
|
" found:%" PRIu64 ")",
|
|
reads_done, writes_done, readwrites_, found);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
//
|
|
// Read-modify-write for random keys
|
|
void UpdateRandom(ThreadState* thread) {
|
|
ReadOptions options = read_options_;
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
// the number of iterations is the larger of read_ or write_
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
// Read with newest timestamp because we are doing rmw.
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
auto status = db->Get(options, key, &value);
|
|
if (status.ok()) {
|
|
++found;
|
|
bytes += key.size() + value.size() + user_timestamp_size_;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->write_rate_limiter) {
|
|
thread->shared->write_rate_limiter->Request(
|
|
key.size() + value.size(), Env::IO_HIGH, nullptr /*stats*/,
|
|
RateLimiter::OpType::kWrite);
|
|
}
|
|
|
|
Slice val = gen.Generate();
|
|
Status s;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = db->Put(write_options_, key, ts, val);
|
|
} else {
|
|
s = db->Put(write_options_, key, val);
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
bytes += key.size() + val.size() + user_timestamp_size_;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
|
|
}
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
|
|
readwrites_, found);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read-XOR-write for random keys. Xors the existing value with a randomly
|
|
// generated value, and stores the result. Assuming A in the array of bytes
|
|
// representing the existing value, we generate an array B of the same size,
|
|
// then compute C = A^B as C[i]=A[i]^B[i], and store C
|
|
void XORUpdateRandom(ThreadState* thread) {
|
|
ReadOptions options = read_options_;
|
|
RandomGenerator gen;
|
|
std::string existing_value;
|
|
int64_t found = 0;
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
|
|
BytesXOROperator xor_operator;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
// the number of iterations is the larger of read_ or write_
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
auto status = db->Get(options, key, &existing_value);
|
|
if (status.ok()) {
|
|
++found;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
|
|
Slice value =
|
|
gen.Generate(static_cast<unsigned int>(existing_value.size()));
|
|
std::string new_value;
|
|
|
|
if (status.ok()) {
|
|
Slice existing_value_slice = Slice(existing_value);
|
|
xor_operator.XOR(&existing_value_slice, value, &new_value);
|
|
} else {
|
|
xor_operator.XOR(nullptr, value, &new_value);
|
|
}
|
|
|
|
Status s;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = db->Put(write_options_, key, ts, Slice(new_value));
|
|
} else {
|
|
s = db->Put(write_options_, key, Slice(new_value));
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
thread->stats.FinishedOps(nullptr, db, 1);
|
|
}
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
|
|
readwrites_, found);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read-modify-write for random keys.
|
|
// Each operation causes the key grow by value_size (simulating an append).
|
|
// Generally used for benchmarking against merges of similar type
|
|
void AppendRandom(ThreadState* thread) {
|
|
ReadOptions options = read_options_;
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
// The number of iterations is the larger of read_ or write_
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
auto status = db->Get(options, key, &value);
|
|
if (status.ok()) {
|
|
++found;
|
|
bytes += key.size() + value.size() + user_timestamp_size_;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
abort();
|
|
} else {
|
|
// If not existing, then just assume an empty string of data
|
|
value.clear();
|
|
}
|
|
|
|
// Update the value (by appending data)
|
|
Slice operand = gen.Generate();
|
|
if (value.size() > 0) {
|
|
// Use a delimiter to match the semantics for StringAppendOperator
|
|
value.append(1, ',');
|
|
}
|
|
value.append(operand.data(), operand.size());
|
|
|
|
Status s;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = db->Put(write_options_, key, ts, value);
|
|
} else {
|
|
// Write back to the database
|
|
s = db->Put(write_options_, key, value);
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
bytes += key.size() + value.size() + user_timestamp_size_;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
|
|
readwrites_, found);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read-modify-write for random keys (using MergeOperator)
|
|
// The merge operator to use should be defined by FLAGS_merge_operator
|
|
// Adjust FLAGS_value_size so that the keys are reasonable for this operator
|
|
// Assumes that the merge operator is non-null (i.e.: is well-defined)
|
|
//
|
|
// For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8
|
|
// to simulate random additions over 64-bit integers using merge.
|
|
//
|
|
// The number of merges on the same key can be controlled by adjusting
|
|
// FLAGS_merge_keys.
|
|
void MergeRandom(ThreadState* thread) {
|
|
RandomGenerator gen;
|
|
int64_t bytes = 0;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
// The number of iterations is the larger of read_ or write_
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
while (!duration.Done(1)) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
int64_t key_rand = thread->rand.Next() % merge_keys_;
|
|
GenerateKeyFromInt(key_rand, merge_keys_, &key);
|
|
|
|
Status s;
|
|
Slice val = gen.Generate();
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Merge(write_options_,
|
|
db_with_cfh->GetCfh(key_rand), key, val);
|
|
} else {
|
|
s = db_with_cfh->db->Merge(
|
|
write_options_, db_with_cfh->db->DefaultColumnFamily(), key, val);
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
bytes += key.size() + val.size();
|
|
thread->stats.FinishedOps(nullptr, db_with_cfh->db, 1, kMerge);
|
|
}
|
|
|
|
// Print some statistics
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read and merge random keys. The amount of reads and merges are controlled
|
|
// by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct
|
|
// keys (and thus also the number of reads and merges on the same key) can be
|
|
// adjusted with FLAGS_merge_keys.
|
|
//
|
|
// As with MergeRandom, the merge operator to use should be defined by
|
|
// FLAGS_merge_operator.
|
|
void ReadRandomMergeRandom(ThreadState* thread) {
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t num_hits = 0;
|
|
int64_t num_gets = 0;
|
|
int64_t num_merges = 0;
|
|
size_t max_length = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
// the number of iterations is the larger of read_ or write_
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key);
|
|
|
|
bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent;
|
|
|
|
if (do_merge) {
|
|
Status s = db->Merge(write_options_, key, gen.Generate());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
num_merges++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kMerge);
|
|
} else {
|
|
Status s = db->Get(read_options_, key, &value);
|
|
if (value.length() > max_length) {
|
|
max_length = value.length();
|
|
}
|
|
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (!s.IsNotFound()) {
|
|
num_hits++;
|
|
}
|
|
num_gets++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
}
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg),
|
|
"(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64
|
|
" hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")",
|
|
num_gets, num_merges, readwrites_, num_hits, max_length);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void WriteSeqSeekSeq(ThreadState* thread) {
|
|
writes_ = FLAGS_num;
|
|
DoWrite(thread, SEQUENTIAL);
|
|
// exclude writes from the ops/sec calculation
|
|
thread->stats.Start(thread->tid);
|
|
|
|
DB* db = SelectDB(thread);
|
|
ReadOptions read_opts = read_options_;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
read_opts.timestamp = &ts;
|
|
}
|
|
std::unique_ptr<Iterator> iter(db->NewIterator(read_opts));
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
for (int64_t i = 0; i < FLAGS_num; ++i) {
|
|
GenerateKeyFromInt(i, FLAGS_num, &key);
|
|
iter->Seek(key);
|
|
assert(iter->Valid() && iter->key() == key);
|
|
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
|
|
|
|
for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) {
|
|
if (!FLAGS_reverse_iterator) {
|
|
iter->Next();
|
|
} else {
|
|
iter->Prev();
|
|
}
|
|
GenerateKeyFromInt(++i, FLAGS_num, &key);
|
|
assert(iter->Valid() && iter->key() == key);
|
|
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
|
|
}
|
|
|
|
iter->Seek(key);
|
|
assert(iter->Valid() && iter->key() == key);
|
|
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
|
|
}
|
|
}
|
|
|
|
bool binary_search(std::vector<int>& data, int start, int end, int key) {
|
|
if (data.empty()) {
|
|
return false;
|
|
}
|
|
if (start > end) {
|
|
return false;
|
|
}
|
|
int mid = start + (end - start) / 2;
|
|
if (mid > static_cast<int>(data.size()) - 1) {
|
|
return false;
|
|
}
|
|
if (data[mid] == key) {
|
|
return true;
|
|
} else if (data[mid] > key) {
|
|
return binary_search(data, start, mid - 1, key);
|
|
} else {
|
|
return binary_search(data, mid + 1, end, key);
|
|
}
|
|
}
|
|
|
|
// Does a bunch of merge operations for a key(key1) where the merge operand
|
|
// is a sorted list. Next performance comparison is done between doing a Get
|
|
// for key1 followed by searching for another key(key2) in the large sorted
|
|
// list vs calling GetMergeOperands for key1 and then searching for the key2
|
|
// in all the sorted sub-lists. Later case is expected to be a lot faster.
|
|
void GetMergeOperands(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
const int kTotalValues = 100000;
|
|
const int kListSize = 100;
|
|
std::string key = "my_key";
|
|
std::string value;
|
|
|
|
for (int i = 1; i < kTotalValues; i++) {
|
|
if (i % kListSize == 0) {
|
|
// Remove trailing ','
|
|
value.pop_back();
|
|
db->Merge(WriteOptions(), key, value);
|
|
value.clear();
|
|
} else {
|
|
value.append(std::to_string(i)).append(",");
|
|
}
|
|
}
|
|
|
|
SortList s;
|
|
std::vector<int> data;
|
|
// This value can be experimented with and it will demonstrate the
|
|
// perf difference between doing a Get and searching for lookup_key in the
|
|
// resultant large sorted list vs doing GetMergeOperands and searching
|
|
// for lookup_key within this resultant sorted sub-lists.
|
|
int lookup_key = 1;
|
|
|
|
// Get API call
|
|
std::cout << "--- Get API call --- \n";
|
|
PinnableSlice p_slice;
|
|
uint64_t st = FLAGS_env->NowNanos();
|
|
db->Get(ReadOptions(), db->DefaultColumnFamily(), key, &p_slice);
|
|
s.MakeVector(data, p_slice);
|
|
bool found =
|
|
binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
|
|
std::cout << "Found key? " << std::to_string(found) << "\n";
|
|
uint64_t sp = FLAGS_env->NowNanos();
|
|
std::cout << "Get: " << (sp - st) / 1000000000.0 << " seconds\n";
|
|
std::string* dat_ = p_slice.GetSelf();
|
|
std::cout << "Sample data from Get API call: " << dat_->substr(0, 10)
|
|
<< "\n";
|
|
data.clear();
|
|
|
|
// GetMergeOperands API call
|
|
std::cout << "--- GetMergeOperands API --- \n";
|
|
std::vector<PinnableSlice> a_slice((kTotalValues / kListSize) + 1);
|
|
st = FLAGS_env->NowNanos();
|
|
int number_of_operands = 0;
|
|
GetMergeOperandsOptions get_merge_operands_options;
|
|
get_merge_operands_options.expected_max_number_of_operands =
|
|
(kTotalValues / 100) + 1;
|
|
db->GetMergeOperands(ReadOptions(), db->DefaultColumnFamily(), key,
|
|
a_slice.data(), &get_merge_operands_options,
|
|
&number_of_operands);
|
|
for (PinnableSlice& psl : a_slice) {
|
|
s.MakeVector(data, psl);
|
|
found =
|
|
binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
|
|
data.clear();
|
|
if (found) {
|
|
break;
|
|
}
|
|
}
|
|
std::cout << "Found key? " << std::to_string(found) << "\n";
|
|
sp = FLAGS_env->NowNanos();
|
|
std::cout << "Get Merge operands: " << (sp - st) / 1000000000.0
|
|
<< " seconds \n";
|
|
int to_print = 0;
|
|
std::cout << "Sample data from GetMergeOperands API call: ";
|
|
for (PinnableSlice& psl : a_slice) {
|
|
std::cout << "List: " << to_print << " : " << *psl.GetSelf() << "\n";
|
|
if (to_print++ > 2) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VerifyChecksum(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = FLAGS_adaptive_readahead;
|
|
ro.async_io = FLAGS_async_io;
|
|
ro.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
ro.readahead_size = FLAGS_readahead_size;
|
|
ro.auto_readahead_size = FLAGS_auto_readahead_size;
|
|
Status s = db->VerifyChecksum(ro);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "VerifyChecksum() failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void VerifyFileChecksums(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = FLAGS_adaptive_readahead;
|
|
ro.async_io = FLAGS_async_io;
|
|
ro.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
ro.readahead_size = FLAGS_readahead_size;
|
|
ro.auto_readahead_size = FLAGS_auto_readahead_size;
|
|
Status s = db->VerifyFileChecksums(ro);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "VerifyFileChecksums() failed: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
// This benchmark stress tests Transactions. For a given --duration (or
|
|
// total number of --writes, a Transaction will perform a read-modify-write
|
|
// to increment the value of a key in each of N(--transaction-sets) sets of
|
|
// keys (where each set has --num keys). If --threads is set, this will be
|
|
// done in parallel.
|
|
//
|
|
// To test transactions, use --transaction_db=true. Not setting this
|
|
// parameter
|
|
// will run the same benchmark without transactions.
|
|
//
|
|
// RandomTransactionVerify() will then validate the correctness of the results
|
|
// by checking if the sum of all keys in each set is the same.
|
|
void RandomTransaction(ThreadState* thread) {
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
uint16_t num_prefix_ranges = static_cast<uint16_t>(FLAGS_transaction_sets);
|
|
uint64_t transactions_done = 0;
|
|
|
|
if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) {
|
|
fprintf(stderr, "invalid value for transaction_sets\n");
|
|
abort();
|
|
}
|
|
|
|
TransactionOptions txn_options;
|
|
txn_options.lock_timeout = FLAGS_transaction_lock_timeout;
|
|
txn_options.set_snapshot = FLAGS_transaction_set_snapshot;
|
|
|
|
RandomTransactionInserter inserter(&thread->rand, write_options_,
|
|
read_options_, FLAGS_num,
|
|
num_prefix_ranges);
|
|
|
|
if (FLAGS_num_multi_db > 1) {
|
|
fprintf(stderr,
|
|
"Cannot run RandomTransaction benchmark with "
|
|
"FLAGS_multi_db > 1.");
|
|
abort();
|
|
}
|
|
|
|
while (!duration.Done(1)) {
|
|
bool success;
|
|
|
|
// RandomTransactionInserter will attempt to insert a key for each
|
|
// # of FLAGS_transaction_sets
|
|
if (FLAGS_optimistic_transaction_db) {
|
|
success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db);
|
|
} else if (FLAGS_transaction_db) {
|
|
TransactionDB* txn_db = static_cast<TransactionDB*>(db_.db);
|
|
success = inserter.TransactionDBInsert(txn_db, txn_options);
|
|
} else {
|
|
success = inserter.DBInsert(db_.db);
|
|
}
|
|
|
|
if (!success) {
|
|
fprintf(stderr, "Unexpected error: %s\n",
|
|
inserter.GetLastStatus().ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers);
|
|
transactions_done++;
|
|
}
|
|
|
|
char msg[100];
|
|
if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) {
|
|
snprintf(msg, sizeof(msg),
|
|
"( transactions:%" PRIu64 " aborts:%" PRIu64 ")",
|
|
transactions_done, inserter.GetFailureCount());
|
|
} else {
|
|
snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done);
|
|
}
|
|
thread->stats.AddMessage(msg);
|
|
thread->stats.AddBytes(static_cast<int64_t>(inserter.GetBytesInserted()));
|
|
}
|
|
|
|
// Verifies consistency of data after RandomTransaction() has been run.
|
|
// Since each iteration of RandomTransaction() incremented a key in each set
|
|
// by the same value, the sum of the keys in each set should be the same.
|
|
void RandomTransactionVerify() {
|
|
if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) {
|
|
// transactions not used, nothing to verify.
|
|
return;
|
|
}
|
|
|
|
Status s = RandomTransactionInserter::Verify(
|
|
db_.db, static_cast<uint16_t>(FLAGS_transaction_sets));
|
|
|
|
if (s.ok()) {
|
|
fprintf(stdout, "RandomTransactionVerify Success.\n");
|
|
} else {
|
|
fprintf(stdout, "RandomTransactionVerify FAILED!!\n");
|
|
}
|
|
}
|
|
|
|
// Writes and deletes random keys without overwriting keys.
|
|
//
|
|
// This benchmark is intended to partially replicate the behavior of MyRocks
|
|
// secondary indices: All data is stored in keys and updates happen by
|
|
// deleting the old version of the key and inserting the new version.
|
|
void RandomReplaceKeys(ThreadState* thread) {
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
std::vector<uint32_t> counters(FLAGS_numdistinct, 0);
|
|
size_t max_counter = 50;
|
|
RandomGenerator gen;
|
|
|
|
Status s;
|
|
DB* db = SelectDB(thread);
|
|
for (int64_t i = 0; i < FLAGS_numdistinct; i++) {
|
|
GenerateKeyFromInt(i * max_counter, FLAGS_num, &key);
|
|
if (user_timestamp_size_ > 0) {
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = db->Put(write_options_, key, ts, gen.Generate());
|
|
} else {
|
|
s = db->Put(write_options_, key, gen.Generate());
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
db->GetSnapshot();
|
|
|
|
std::default_random_engine generator;
|
|
std::normal_distribution<double> distribution(FLAGS_numdistinct / 2.0,
|
|
FLAGS_stddev);
|
|
Duration duration(FLAGS_duration, FLAGS_num);
|
|
while (!duration.Done(1)) {
|
|
int64_t rnd_id = static_cast<int64_t>(distribution(generator));
|
|
int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id),
|
|
static_cast<int64_t>(0));
|
|
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
|
|
&key);
|
|
if (user_timestamp_size_ > 0) {
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key, ts)
|
|
: db->Delete(write_options_, key, ts);
|
|
} else {
|
|
s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key)
|
|
: db->Delete(write_options_, key);
|
|
}
|
|
if (s.ok()) {
|
|
counters[key_id] = (counters[key_id] + 1) % max_counter;
|
|
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
|
|
&key);
|
|
if (user_timestamp_size_ > 0) {
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = db->Put(write_options_, key, ts, Slice());
|
|
} else {
|
|
s = db->Put(write_options_, key, Slice());
|
|
}
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
|
|
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
|
|
}
|
|
|
|
char msg[200];
|
|
snprintf(msg, sizeof(msg),
|
|
"use single deletes: %d, "
|
|
"standard deviation: %lf\n",
|
|
FLAGS_use_single_deletes, FLAGS_stddev);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
|
|
Iterator* iter = nullptr;
|
|
// Only work on single database
|
|
assert(db_.db != nullptr);
|
|
iter = db_.db->NewIterator(read_options_);
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
char value_buffer[256];
|
|
while (true) {
|
|
{
|
|
MutexLock l(&thread->shared->mu);
|
|
if (thread->shared->num_done >= 1) {
|
|
// Write thread have finished
|
|
break;
|
|
}
|
|
}
|
|
if (!FLAGS_use_tailing_iterator) {
|
|
delete iter;
|
|
iter = db_.db->NewIterator(read_options_);
|
|
}
|
|
// Pick a Iterator to use
|
|
|
|
int64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
|
|
GenerateKeyFromInt(key_id, FLAGS_num, &key);
|
|
// Reset last 8 bytes to 0
|
|
char* start = const_cast<char*>(key.data());
|
|
start += key.size() - 8;
|
|
memset(start, 0, 8);
|
|
++read;
|
|
|
|
bool key_found = false;
|
|
// Seek the prefix
|
|
for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key);
|
|
iter->Next()) {
|
|
key_found = true;
|
|
// Copy out iterator's value to make sure we read them.
|
|
if (do_deletion) {
|
|
bytes += iter->key().size();
|
|
if (KeyExpired(timestamp_emulator_.get(), iter->key())) {
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
|
|
db_.db->Delete(write_options_, iter->key());
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
bytes += iter->key().size() + iter->value().size();
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
|
|
Slice value = iter->value();
|
|
memcpy(value_buffer, value.data(),
|
|
std::min(value.size(), sizeof(value_buffer)));
|
|
|
|
assert(iter->status().ok());
|
|
}
|
|
}
|
|
found += key_found;
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
}
|
|
delete iter;
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
|
|
read);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void TimeSeriesWrite(ThreadState* thread) {
|
|
// Special thread that keeps writing until other threads are done.
|
|
RandomGenerator gen;
|
|
int64_t bytes = 0;
|
|
|
|
// Don't merge stats from this thread with the readers.
|
|
thread->stats.SetExcludeFromMerge();
|
|
|
|
std::unique_ptr<RateLimiter> write_rate_limiter;
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter.reset(
|
|
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
|
|
}
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
Duration duration(FLAGS_duration, writes_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
|
|
uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
|
|
// Write key id
|
|
GenerateKeyFromInt(key_id, FLAGS_num, &key);
|
|
// Write timestamp
|
|
|
|
char* start = const_cast<char*>(key.data());
|
|
char* pos = start + 8;
|
|
int bytes_to_fill =
|
|
std::min(key_size_ - static_cast<int>(pos - start), 8);
|
|
uint64_t timestamp_value = timestamp_emulator_->Get();
|
|
if (port::kLittleEndian) {
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
|
|
}
|
|
} else {
|
|
memcpy(pos, static_cast<void*>(×tamp_value), bytes_to_fill);
|
|
}
|
|
|
|
timestamp_emulator_->Inc();
|
|
|
|
Status s;
|
|
Slice val = gen.Generate();
|
|
s = db->Put(write_options_, key, val);
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
bytes = key.size() + val.size();
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
thread->stats.AddBytes(bytes);
|
|
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH,
|
|
nullptr /* stats */,
|
|
RateLimiter::OpType::kWrite);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimeSeries(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
bool do_deletion = FLAGS_expire_style == "delete" &&
|
|
thread->tid <= FLAGS_num_deletion_threads;
|
|
TimeSeriesReadOrDelete(thread, do_deletion);
|
|
} else {
|
|
TimeSeriesWrite(thread);
|
|
thread->stats.Stop();
|
|
thread->stats.Report("timeseries write");
|
|
}
|
|
}
|
|
|
|
void Compact(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
CompactRangeOptions cro;
|
|
cro.bottommost_level_compaction =
|
|
BottommostLevelCompaction::kForceOptimized;
|
|
cro.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
|
|
db->CompactRange(cro, nullptr, nullptr);
|
|
}
|
|
|
|
void CompactAll() {
|
|
CompactRangeOptions cro;
|
|
cro.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
|
|
if (db_.db != nullptr) {
|
|
db_.db->CompactRange(cro, nullptr, nullptr);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
db_with_cfh.db->CompactRange(cro, nullptr, nullptr);
|
|
}
|
|
}
|
|
|
|
void WaitForCompactionHelper(DBWithColumnFamilies& db) {
|
|
fprintf(stdout, "waitforcompaction(%s): started\n",
|
|
db.db->GetName().c_str());
|
|
|
|
Status s = db.db->WaitForCompact(WaitForCompactOptions());
|
|
|
|
fprintf(stdout, "waitforcompaction(%s): finished with status (%s)\n",
|
|
db.db->GetName().c_str(), s.ToString().c_str());
|
|
}
|
|
|
|
void WaitForCompaction() {
|
|
// Give background threads a chance to wake
|
|
FLAGS_env->SleepForMicroseconds(5 * 1000000);
|
|
|
|
if (db_.db != nullptr) {
|
|
WaitForCompactionHelper(db_);
|
|
} else {
|
|
for (auto& db_with_cfh : multi_dbs_) {
|
|
WaitForCompactionHelper(db_with_cfh);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CompactLevelHelper(DBWithColumnFamilies& db_with_cfh, int from_level) {
|
|
std::vector<LiveFileMetaData> files;
|
|
db_with_cfh.db->GetLiveFilesMetaData(&files);
|
|
|
|
assert(from_level == 0 || from_level == 1);
|
|
|
|
int real_from_level = from_level;
|
|
if (real_from_level > 0) {
|
|
// With dynamic leveled compaction the first level with data beyond L0
|
|
// might not be L1.
|
|
real_from_level = std::numeric_limits<int>::max();
|
|
|
|
for (auto& f : files) {
|
|
if (f.level > 0 && f.level < real_from_level) {
|
|
real_from_level = f.level;
|
|
}
|
|
}
|
|
|
|
if (real_from_level == std::numeric_limits<int>::max()) {
|
|
fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The goal is to compact from from_level to the level that follows it,
|
|
// and with dynamic leveled compaction the next level might not be
|
|
// real_from_level+1
|
|
int next_level = std::numeric_limits<int>::max();
|
|
|
|
std::vector<std::string> files_to_compact;
|
|
for (auto& f : files) {
|
|
if (f.level == real_from_level) {
|
|
files_to_compact.push_back(f.name);
|
|
} else if (f.level > real_from_level && f.level < next_level) {
|
|
next_level = f.level;
|
|
}
|
|
}
|
|
|
|
if (files_to_compact.empty()) {
|
|
fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
|
|
return true;
|
|
} else if (next_level == std::numeric_limits<int>::max()) {
|
|
// There is no data beyond real_from_level. So we are done.
|
|
fprintf(stdout, "compact%d found no data beyond L%d\n", from_level,
|
|
real_from_level);
|
|
return true;
|
|
}
|
|
|
|
fprintf(stdout, "compact%d found %d files to compact from L%d to L%d\n",
|
|
from_level, static_cast<int>(files_to_compact.size()),
|
|
real_from_level, next_level);
|
|
|
|
ROCKSDB_NAMESPACE::CompactionOptions options;
|
|
// Lets RocksDB use the configured compression for this level
|
|
options.compression = ROCKSDB_NAMESPACE::kDisableCompressionOption;
|
|
|
|
ROCKSDB_NAMESPACE::ColumnFamilyDescriptor cfDesc;
|
|
db_with_cfh.db->DefaultColumnFamily()->GetDescriptor(&cfDesc);
|
|
options.output_file_size_limit = cfDesc.options.target_file_size_base;
|
|
|
|
Status status =
|
|
db_with_cfh.db->CompactFiles(options, files_to_compact, next_level);
|
|
if (!status.ok()) {
|
|
// This can fail for valid reasons including the operation was aborted
|
|
// or a filename is invalid because background compaction removed it.
|
|
// Having read the current cases for which an error is raised I prefer
|
|
// not to figure out whether an exception should be thrown here.
|
|
fprintf(stderr, "compact%d CompactFiles failed: %s\n", from_level,
|
|
status.ToString().c_str());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CompactLevel(int from_level) {
|
|
if (db_.db != nullptr) {
|
|
while (!CompactLevelHelper(db_, from_level)) {
|
|
WaitForCompaction();
|
|
}
|
|
}
|
|
for (auto& db_with_cfh : multi_dbs_) {
|
|
while (!CompactLevelHelper(db_with_cfh, from_level)) {
|
|
WaitForCompaction();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Flush() {
|
|
FlushOptions flush_opt;
|
|
flush_opt.wait = true;
|
|
|
|
if (db_.db != nullptr) {
|
|
Status s;
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_.db->Flush(flush_opt, db_.cfh);
|
|
} else {
|
|
s = db_.db->Flush(flush_opt, db_.db->DefaultColumnFamily());
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
Status s;
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh.db->Flush(flush_opt, db_with_cfh.cfh);
|
|
} else {
|
|
s = db_with_cfh.db->Flush(flush_opt,
|
|
db_with_cfh.db->DefaultColumnFamily());
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
fprintf(stdout, "flush memtable\n");
|
|
}
|
|
|
|
void ResetStats() {
|
|
if (db_.db != nullptr) {
|
|
db_.db->ResetStats();
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
db_with_cfh.db->ResetStats();
|
|
}
|
|
}
|
|
|
|
void PrintStatsHistory() {
|
|
if (db_.db != nullptr) {
|
|
PrintStatsHistoryImpl(db_.db, false);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
PrintStatsHistoryImpl(db_with_cfh.db, true);
|
|
}
|
|
}
|
|
|
|
void PrintStatsHistoryImpl(DB* db, bool print_header) {
|
|
if (print_header) {
|
|
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
|
|
}
|
|
|
|
std::unique_ptr<StatsHistoryIterator> shi;
|
|
Status s =
|
|
db->GetStatsHistory(0, std::numeric_limits<uint64_t>::max(), &shi);
|
|
if (!s.ok()) {
|
|
fprintf(stdout, "%s\n", s.ToString().c_str());
|
|
return;
|
|
}
|
|
assert(shi);
|
|
while (shi->Valid()) {
|
|
uint64_t stats_time = shi->GetStatsTime();
|
|
fprintf(stdout, "------ %s ------\n",
|
|
TimeToHumanString(static_cast<int>(stats_time)).c_str());
|
|
for (auto& entry : shi->GetStatsMap()) {
|
|
fprintf(stdout, " %" PRIu64 " %s %" PRIu64 "\n", stats_time,
|
|
entry.first.c_str(), entry.second);
|
|
}
|
|
shi->Next();
|
|
}
|
|
}
|
|
|
|
void CacheReportProblems() {
|
|
auto debug_logger = std::make_shared<StderrLogger>(DEBUG_LEVEL);
|
|
cache_->ReportProblems(debug_logger);
|
|
}
|
|
|
|
void PrintStats(const char* key) {
|
|
if (db_.db != nullptr) {
|
|
PrintStats(db_.db, key, false);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
PrintStats(db_with_cfh.db, key, true);
|
|
}
|
|
}
|
|
|
|
void PrintStats(DB* db, const char* key, bool print_header = false) {
|
|
if (print_header) {
|
|
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
|
|
}
|
|
std::string stats;
|
|
if (!db->GetProperty(key, &stats)) {
|
|
stats = "(failed)";
|
|
}
|
|
fprintf(stdout, "\n%s\n", stats.c_str());
|
|
}
|
|
|
|
void PrintStats(const std::vector<std::string>& keys) {
|
|
if (db_.db != nullptr) {
|
|
PrintStats(db_.db, keys);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
PrintStats(db_with_cfh.db, keys, true);
|
|
}
|
|
}
|
|
|
|
void PrintStats(DB* db, const std::vector<std::string>& keys,
|
|
bool print_header = false) {
|
|
if (print_header) {
|
|
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
|
|
}
|
|
|
|
for (const auto& key : keys) {
|
|
std::string stats;
|
|
if (!db->GetProperty(key, &stats)) {
|
|
stats = "(failed)";
|
|
}
|
|
fprintf(stdout, "%s: %s\n", key.c_str(), stats.c_str());
|
|
}
|
|
}
|
|
|
|
|
|
void Replay(ThreadState* thread) {
|
|
if (db_.db != nullptr) {
|
|
Replay(thread, &db_);
|
|
}
|
|
}
|
|
|
|
void Replay(ThreadState* /*thread*/, DBWithColumnFamilies* db_with_cfh) {
|
|
Status s;
|
|
std::unique_ptr<TraceReader> trace_reader;
|
|
s = NewFileTraceReader(FLAGS_env, EnvOptions(), FLAGS_trace_file,
|
|
&trace_reader);
|
|
if (!s.ok()) {
|
|
fprintf(
|
|
stderr,
|
|
"Encountered an error creating a TraceReader from the trace file. "
|
|
"Error: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
std::unique_ptr<Replayer> replayer;
|
|
s = db_with_cfh->db->NewDefaultReplayer(db_with_cfh->cfh,
|
|
std::move(trace_reader), &replayer);
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Encountered an error creating a default Replayer. "
|
|
"Error: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
s = replayer->Prepare();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Prepare for replay failed. Error: %s\n",
|
|
s.ToString().c_str());
|
|
}
|
|
s = replayer->Replay(
|
|
ReplayOptions(static_cast<uint32_t>(FLAGS_trace_replay_threads),
|
|
FLAGS_trace_replay_fast_forward),
|
|
nullptr);
|
|
replayer.reset();
|
|
if (s.ok()) {
|
|
fprintf(stdout, "Replay completed from trace_file: %s\n",
|
|
FLAGS_trace_file.c_str());
|
|
} else {
|
|
fprintf(stderr, "Replay failed. Error: %s\n", s.ToString().c_str());
|
|
}
|
|
}
|
|
|
|
void Backup(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
std::unique_ptr<BackupEngineOptions> engine_options(
|
|
new BackupEngineOptions(FLAGS_backup_dir));
|
|
Status s;
|
|
BackupEngine* backup_engine;
|
|
if (FLAGS_backup_rate_limit > 0) {
|
|
engine_options->backup_rate_limiter.reset(NewGenericRateLimiter(
|
|
FLAGS_backup_rate_limit, 100000 /* refill_period_us */,
|
|
10 /* fairness */, RateLimiter::Mode::kAllIo));
|
|
}
|
|
// Build new backup of the entire DB
|
|
engine_options->destroy_old_data = true;
|
|
s = BackupEngine::Open(FLAGS_env, *engine_options, &backup_engine);
|
|
assert(s.ok());
|
|
s = backup_engine->CreateNewBackup(db);
|
|
assert(s.ok());
|
|
std::vector<BackupInfo> backup_info;
|
|
backup_engine->GetBackupInfo(&backup_info);
|
|
// Verify that a new backup is created
|
|
assert(backup_info.size() == 1);
|
|
}
|
|
|
|
void Restore(ThreadState* /* thread */) {
|
|
std::unique_ptr<BackupEngineOptions> engine_options(
|
|
new BackupEngineOptions(FLAGS_backup_dir));
|
|
if (FLAGS_restore_rate_limit > 0) {
|
|
engine_options->restore_rate_limiter.reset(NewGenericRateLimiter(
|
|
FLAGS_restore_rate_limit, 100000 /* refill_period_us */,
|
|
10 /* fairness */, RateLimiter::Mode::kAllIo));
|
|
}
|
|
BackupEngineReadOnly* backup_engine;
|
|
Status s =
|
|
BackupEngineReadOnly::Open(FLAGS_env, *engine_options, &backup_engine);
|
|
assert(s.ok());
|
|
s = backup_engine->RestoreDBFromLatestBackup(FLAGS_restore_dir,
|
|
FLAGS_restore_dir);
|
|
assert(s.ok());
|
|
delete backup_engine;
|
|
}
|
|
|
|
};
|
|
|
|
int db_bench_tool(int argc, char** argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
ConfigOptions config_options;
|
|
static bool initialized = false;
|
|
if (!initialized) {
|
|
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
|
|
" [OPTIONS]...");
|
|
SetVersionString(GetRocksVersionAsString(true));
|
|
initialized = true;
|
|
}
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
FLAGS_compaction_style_e =
|
|
(ROCKSDB_NAMESPACE::CompactionStyle)FLAGS_compaction_style;
|
|
if (FLAGS_statistics && !FLAGS_statistics_string.empty()) {
|
|
fprintf(stderr,
|
|
"Cannot provide both --statistics and --statistics_string.\n");
|
|
exit(1);
|
|
}
|
|
if (!FLAGS_statistics_string.empty()) {
|
|
Status s = Statistics::CreateFromString(config_options,
|
|
FLAGS_statistics_string, &dbstats);
|
|
if (dbstats == nullptr) {
|
|
fprintf(stderr,
|
|
"No Statistics registered matching string: %s status=%s\n",
|
|
FLAGS_statistics_string.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
if (FLAGS_statistics) {
|
|
dbstats = ROCKSDB_NAMESPACE::CreateDBStatistics();
|
|
}
|
|
if (dbstats) {
|
|
dbstats->set_stats_level(static_cast<StatsLevel>(FLAGS_stats_level));
|
|
}
|
|
FLAGS_compaction_pri_e =
|
|
(ROCKSDB_NAMESPACE::CompactionPri)FLAGS_compaction_pri;
|
|
|
|
std::vector<std::string> fanout = ROCKSDB_NAMESPACE::StringSplit(
|
|
FLAGS_max_bytes_for_level_multiplier_additional, ',');
|
|
for (size_t j = 0; j < fanout.size(); j++) {
|
|
FLAGS_max_bytes_for_level_multiplier_additional_v.push_back(
|
|
#ifndef CYGWIN
|
|
std::stoi(fanout[j]));
|
|
#else
|
|
stoi(fanout[j]));
|
|
#endif
|
|
}
|
|
|
|
FLAGS_compression_type_e =
|
|
StringToCompressionType(FLAGS_compression_type.c_str());
|
|
|
|
FLAGS_wal_compression_e =
|
|
StringToCompressionType(FLAGS_wal_compression.c_str());
|
|
|
|
FLAGS_compressed_secondary_cache_compression_type_e = StringToCompressionType(
|
|
FLAGS_compressed_secondary_cache_compression_type.c_str());
|
|
|
|
// Stacked BlobDB
|
|
FLAGS_blob_db_compression_type_e =
|
|
StringToCompressionType(FLAGS_blob_db_compression_type.c_str());
|
|
|
|
int env_opts = !FLAGS_env_uri.empty() + !FLAGS_fs_uri.empty();
|
|
if (env_opts > 1) {
|
|
fprintf(stderr, "Error: --env_uri and --fs_uri are mutually exclusive\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (env_opts == 1) {
|
|
Status s = Env::CreateFromUri(config_options, FLAGS_env_uri, FLAGS_fs_uri,
|
|
&FLAGS_env, &env_guard);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Failed creating env: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
} else if (FLAGS_simulate_hdd || FLAGS_simulate_hybrid_fs_file != "") {
|
|
//**TODO: Make the simulate fs something that can be loaded
|
|
// from the ObjectRegistry...
|
|
static std::shared_ptr<ROCKSDB_NAMESPACE::Env> composite_env =
|
|
NewCompositeEnv(std::make_shared<SimulatedHybridFileSystem>(
|
|
FileSystem::Default(), FLAGS_simulate_hybrid_fs_file,
|
|
/*throughput_multiplier=*/
|
|
int{FLAGS_simulate_hybrid_hdd_multipliers},
|
|
/*is_full_fs_warm=*/FLAGS_simulate_hdd));
|
|
FLAGS_env = composite_env.get();
|
|
}
|
|
|
|
// Let -readonly imply -use_existing_db
|
|
FLAGS_use_existing_db |= FLAGS_readonly;
|
|
|
|
if (FLAGS_build_info) {
|
|
std::string build_info;
|
|
std::cout << GetRocksBuildInfoAsString(build_info, true) << std::endl;
|
|
// Similar to --version, nothing else will be done when this flag is set
|
|
exit(0);
|
|
}
|
|
|
|
if (!FLAGS_seed) {
|
|
uint64_t now = FLAGS_env->GetSystemClock()->NowMicros();
|
|
seed_base = static_cast<int64_t>(now);
|
|
fprintf(stdout, "Set seed to %" PRIu64 " because --seed was 0\n",
|
|
*seed_base);
|
|
} else {
|
|
seed_base = FLAGS_seed;
|
|
}
|
|
|
|
if (FLAGS_use_existing_keys && !FLAGS_use_existing_db) {
|
|
fprintf(stderr,
|
|
"`-use_existing_db` must be true for `-use_existing_keys` to be "
|
|
"settable\n");
|
|
exit(1);
|
|
}
|
|
|
|
FLAGS_value_size_distribution_type_e =
|
|
StringToDistributionType(FLAGS_value_size_distribution_type.c_str());
|
|
|
|
// Note options sanitization may increase thread pool sizes according to
|
|
// max_background_flushes/max_background_compactions/max_background_jobs
|
|
FLAGS_env->SetBackgroundThreads(FLAGS_num_high_pri_threads,
|
|
ROCKSDB_NAMESPACE::Env::Priority::HIGH);
|
|
FLAGS_env->SetBackgroundThreads(FLAGS_num_bottom_pri_threads,
|
|
ROCKSDB_NAMESPACE::Env::Priority::BOTTOM);
|
|
FLAGS_env->SetBackgroundThreads(FLAGS_num_low_pri_threads,
|
|
ROCKSDB_NAMESPACE::Env::Priority::LOW);
|
|
|
|
// Choose a location for the test database if none given with --db=<path>
|
|
if (FLAGS_db.empty()) {
|
|
std::string default_db_path;
|
|
FLAGS_env->GetTestDirectory(&default_db_path);
|
|
default_db_path += "/dbbench";
|
|
FLAGS_db = default_db_path;
|
|
}
|
|
|
|
if (FLAGS_backup_dir.empty()) {
|
|
FLAGS_backup_dir = FLAGS_db + "/backup";
|
|
}
|
|
|
|
if (FLAGS_restore_dir.empty()) {
|
|
FLAGS_restore_dir = FLAGS_db + "/restore";
|
|
}
|
|
|
|
if (FLAGS_stats_interval_seconds > 0) {
|
|
// When both are set then FLAGS_stats_interval determines the frequency
|
|
// at which the timer is checked for FLAGS_stats_interval_seconds
|
|
FLAGS_stats_interval = 1000;
|
|
}
|
|
|
|
if (FLAGS_seek_missing_prefix && FLAGS_prefix_size <= 8) {
|
|
fprintf(stderr, "prefix_size > 8 required by --seek_missing_prefix\n");
|
|
exit(1);
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::Benchmark benchmark;
|
|
benchmark.Run();
|
|
|
|
if (FLAGS_print_malloc_stats) {
|
|
std::string stats_string;
|
|
ROCKSDB_NAMESPACE::DumpMallocStats(&stats_string);
|
|
fprintf(stdout, "Malloc stats:\n%s\n", stats_string.c_str());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
#endif
|