mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-28 15:33:54 +00:00
9645e66fc9
Summary: ClockCache is still in experimental stage, and currently fails some pre-release fbcode tests. See https://www.internalfb.com/diff/D37772011. API calls to construct ClockCache are done via the function NewClockCache. For now, NewClockCache calls will return an LRUCache (with appropriate arguments), which is stable. The idea that NewClockCache returns nullptr was also floated, but this would be interpreted as unsupported cache, and a default LRUCache would be constructed instead, potentially causing a performance regression that is harder to identify. A new version of the NewClockCache function was created for our internal tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10351 Test Plan: ``make -j24 check`` and re-run the pre-release tests. Reviewed By: pdillinger Differential Revision: D37802685 Pulled By: guidotag fbshipit-source-id: 0a8d10612ff21e576f7360cb13e20bc36e244972
610 lines
19 KiB
C++
610 lines
19 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "cache/clock_cache.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <functional>
|
|
|
|
#include "monitoring/perf_context_imp.h"
|
|
#include "monitoring/statistics.h"
|
|
#include "port/lang.h"
|
|
#include "util/distributed_mutex.h"
|
|
#include "util/hash.h"
|
|
#include "util/math.h"
|
|
#include "util/random.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace clock_cache {
|
|
|
|
ClockHandleTable::ClockHandleTable(int hash_bits)
|
|
: length_bits_(hash_bits),
|
|
length_bits_mask_((uint32_t{1} << length_bits_) - 1),
|
|
occupancy_(0),
|
|
occupancy_limit_(static_cast<uint32_t>((uint32_t{1} << length_bits_) *
|
|
kStrictLoadFactor)),
|
|
array_(new ClockHandle[size_t{1} << length_bits_]) {
|
|
assert(hash_bits <= 32);
|
|
}
|
|
|
|
ClockHandleTable::~ClockHandleTable() {
|
|
ApplyToEntriesRange([](ClockHandle* h) { h->FreeData(); }, 0, GetTableSize());
|
|
}
|
|
|
|
ClockHandle* ClockHandleTable::Lookup(const Slice& key) {
|
|
int probe = 0;
|
|
int slot = FindVisibleElement(key, probe, 0);
|
|
return (slot == -1) ? nullptr : &array_[slot];
|
|
}
|
|
|
|
ClockHandle* ClockHandleTable::Insert(ClockHandle* h, ClockHandle** old) {
|
|
int probe = 0;
|
|
int slot =
|
|
FindVisibleElementOrAvailableSlot(h->key(), probe, 1 /*displacement*/);
|
|
*old = nullptr;
|
|
if (slot == -1) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (array_[slot].IsEmpty() || array_[slot].IsTombstone()) {
|
|
bool empty = array_[slot].IsEmpty();
|
|
Assign(slot, h);
|
|
ClockHandle* new_entry = &array_[slot];
|
|
if (empty) {
|
|
// This used to be an empty slot.
|
|
return new_entry;
|
|
}
|
|
// It used to be a tombstone, so there may already be a copy of the
|
|
// key in the table.
|
|
slot = FindVisibleElement(h->key(), probe, 0 /*displacement*/);
|
|
if (slot == -1) {
|
|
// No existing copy of the key.
|
|
return new_entry;
|
|
}
|
|
*old = &array_[slot];
|
|
return new_entry;
|
|
} else {
|
|
// There is an existing copy of the key.
|
|
*old = &array_[slot];
|
|
// Find an available slot for the new element.
|
|
array_[slot].displacements++;
|
|
slot = FindAvailableSlot(h->key(), probe, 1 /*displacement*/);
|
|
if (slot == -1) {
|
|
// No available slots. Roll back displacements.
|
|
probe = 0;
|
|
slot = FindVisibleElement(h->key(), probe, -1);
|
|
array_[slot].displacements--;
|
|
FindAvailableSlot(h->key(), probe, -1);
|
|
return nullptr;
|
|
}
|
|
Assign(slot, h);
|
|
return &array_[slot];
|
|
}
|
|
}
|
|
|
|
void ClockHandleTable::Remove(ClockHandle* h) {
|
|
assert(!h->IsInClockList()); // Already off the clock list.
|
|
int probe = 0;
|
|
FindSlot(
|
|
h->key(), [&h](ClockHandle* e) { return e == h; }, probe,
|
|
-1 /*displacement*/);
|
|
h->SetIsVisible(false);
|
|
h->SetIsElement(false);
|
|
occupancy_--;
|
|
}
|
|
|
|
void ClockHandleTable::Assign(int slot, ClockHandle* h) {
|
|
ClockHandle* dst = &array_[slot];
|
|
uint32_t disp = dst->displacements;
|
|
*dst = *h;
|
|
dst->displacements = disp;
|
|
dst->SetIsVisible(true);
|
|
dst->SetIsElement(true);
|
|
dst->SetClockPriority(ClockHandle::ClockPriority::NONE);
|
|
occupancy_++;
|
|
}
|
|
|
|
void ClockHandleTable::Exclude(ClockHandle* h) { h->SetIsVisible(false); }
|
|
|
|
int ClockHandleTable::FindVisibleElement(const Slice& key, int& probe,
|
|
int displacement) {
|
|
return FindSlot(
|
|
key, [&](ClockHandle* h) { return h->Matches(key) && h->IsVisible(); },
|
|
probe, displacement);
|
|
}
|
|
|
|
int ClockHandleTable::FindAvailableSlot(const Slice& key, int& probe,
|
|
int displacement) {
|
|
return FindSlot(
|
|
key, [](ClockHandle* h) { return h->IsEmpty() || h->IsTombstone(); },
|
|
probe, displacement);
|
|
}
|
|
|
|
int ClockHandleTable::FindVisibleElementOrAvailableSlot(const Slice& key,
|
|
int& probe,
|
|
int displacement) {
|
|
return FindSlot(
|
|
key,
|
|
[&](ClockHandle* h) {
|
|
return h->IsEmpty() || h->IsTombstone() ||
|
|
(h->Matches(key) && h->IsVisible());
|
|
},
|
|
probe, displacement);
|
|
}
|
|
|
|
inline int ClockHandleTable::FindSlot(const Slice& key,
|
|
std::function<bool(ClockHandle*)> cond,
|
|
int& probe, int displacement) {
|
|
uint32_t base = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1));
|
|
uint32_t increment =
|
|
ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1);
|
|
uint32_t current = ModTableSize(base + probe * increment);
|
|
while (true) {
|
|
ClockHandle* h = &array_[current];
|
|
probe++;
|
|
if (current == base && probe > 1) {
|
|
// We looped back.
|
|
return -1;
|
|
}
|
|
if (cond(h)) {
|
|
return current;
|
|
}
|
|
if (h->IsEmpty()) {
|
|
// We check emptyness after the condition, because
|
|
// the condition may be emptyness.
|
|
return -1;
|
|
}
|
|
h->displacements += displacement;
|
|
current = ModTableSize(current + increment);
|
|
}
|
|
}
|
|
|
|
ClockCacheShard::ClockCacheShard(
|
|
size_t capacity, size_t estimated_value_size, bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy)
|
|
: capacity_(capacity),
|
|
strict_capacity_limit_(strict_capacity_limit),
|
|
clock_pointer_(0),
|
|
table_(
|
|
CalcHashBits(capacity, estimated_value_size, metadata_charge_policy)),
|
|
usage_(0),
|
|
clock_usage_(0) {
|
|
set_metadata_charge_policy(metadata_charge_policy);
|
|
}
|
|
|
|
void ClockCacheShard::EraseUnRefEntries() {
|
|
autovector<ClockHandle> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
uint32_t slot = 0;
|
|
do {
|
|
ClockHandle* old = &(table_.array_[slot]);
|
|
if (!old->IsInClockList()) {
|
|
continue;
|
|
}
|
|
ClockRemove(old);
|
|
table_.Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
last_reference_list.push_back(*old);
|
|
slot = table_.ModTableSize(slot + 1);
|
|
} while (slot != 0);
|
|
}
|
|
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
for (auto& h : last_reference_list) {
|
|
h.FreeData();
|
|
}
|
|
}
|
|
|
|
void ClockCacheShard::ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
uint32_t average_entries_per_lock, uint32_t* state) {
|
|
// The state is essentially going to be the starting hash, which works
|
|
// nicely even if we resize between calls because we use upper-most
|
|
// hash bits for table indexes.
|
|
DMutexLock l(mutex_);
|
|
uint32_t length_bits = table_.GetLengthBits();
|
|
uint32_t length = table_.GetTableSize();
|
|
|
|
assert(average_entries_per_lock > 0);
|
|
// Assuming we are called with same average_entries_per_lock repeatedly,
|
|
// this simplifies some logic (index_end will not overflow).
|
|
assert(average_entries_per_lock < length || *state == 0);
|
|
|
|
uint32_t index_begin = *state >> (32 - length_bits);
|
|
uint32_t index_end = index_begin + average_entries_per_lock;
|
|
if (index_end >= length) {
|
|
// Going to end
|
|
index_end = length;
|
|
*state = UINT32_MAX;
|
|
} else {
|
|
*state = index_end << (32 - length_bits);
|
|
}
|
|
|
|
table_.ApplyToEntriesRange(
|
|
[callback,
|
|
metadata_charge_policy = metadata_charge_policy_](ClockHandle* h) {
|
|
callback(h->key(), h->value, h->GetCharge(metadata_charge_policy),
|
|
h->deleter);
|
|
},
|
|
index_begin, index_end);
|
|
}
|
|
|
|
void ClockCacheShard::ClockRemove(ClockHandle* h) {
|
|
assert(h->IsInClockList());
|
|
h->SetClockPriority(ClockHandle::ClockPriority::NONE);
|
|
assert(clock_usage_ >= h->total_charge);
|
|
clock_usage_ -= h->total_charge;
|
|
}
|
|
|
|
void ClockCacheShard::ClockInsert(ClockHandle* h) {
|
|
assert(!h->IsInClockList());
|
|
bool is_high_priority =
|
|
h->HasHit() || h->GetCachePriority() == Cache::Priority::HIGH;
|
|
h->SetClockPriority(static_cast<ClockHandle::ClockPriority>(
|
|
is_high_priority * ClockHandle::ClockPriority::HIGH +
|
|
(1 - is_high_priority) * ClockHandle::ClockPriority::MEDIUM));
|
|
clock_usage_ += h->total_charge;
|
|
}
|
|
|
|
void ClockCacheShard::EvictFromClock(size_t charge,
|
|
autovector<ClockHandle>* deleted) {
|
|
assert(charge <= capacity_);
|
|
while (clock_usage_ > 0 && (usage_ + charge) > capacity_) {
|
|
ClockHandle* old = &table_.array_[clock_pointer_];
|
|
clock_pointer_ = table_.ModTableSize(clock_pointer_ + 1);
|
|
// Clock list contains only elements which can be evicted.
|
|
if (!old->IsInClockList()) {
|
|
continue;
|
|
}
|
|
if (old->GetClockPriority() == ClockHandle::ClockPriority::LOW) {
|
|
ClockRemove(old);
|
|
table_.Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
deleted->push_back(*old);
|
|
return;
|
|
}
|
|
old->DecreaseClockPriority();
|
|
}
|
|
}
|
|
|
|
size_t ClockCacheShard::CalcEstimatedHandleCharge(
|
|
size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
ClockHandle h;
|
|
h.CalcTotalCharge(estimated_value_size, metadata_charge_policy);
|
|
return h.total_charge;
|
|
}
|
|
|
|
int ClockCacheShard::CalcHashBits(
|
|
size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
size_t handle_charge =
|
|
CalcEstimatedHandleCharge(estimated_value_size, metadata_charge_policy);
|
|
assert(handle_charge > 0);
|
|
uint32_t num_entries =
|
|
static_cast<uint32_t>(capacity / (kLoadFactor * handle_charge)) + 1;
|
|
assert(num_entries <= uint32_t{1} << 31);
|
|
return FloorLog2((num_entries << 1) - 1);
|
|
}
|
|
|
|
void ClockCacheShard::SetCapacity(size_t capacity) {
|
|
assert(false); // Not supported. TODO(Guido) Support it?
|
|
autovector<ClockHandle> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
capacity_ = capacity;
|
|
EvictFromClock(0, &last_reference_list);
|
|
}
|
|
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
for (auto& h : last_reference_list) {
|
|
h.FreeData();
|
|
}
|
|
}
|
|
|
|
void ClockCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
|
|
DMutexLock l(mutex_);
|
|
strict_capacity_limit_ = strict_capacity_limit;
|
|
}
|
|
|
|
Status ClockCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge, Cache::DeleterFn deleter,
|
|
Cache::Handle** handle,
|
|
Cache::Priority priority) {
|
|
if (key.size() != kCacheKeySize) {
|
|
return Status::NotSupported("ClockCache only supports key size " +
|
|
std::to_string(kCacheKeySize) + "B");
|
|
}
|
|
|
|
ClockHandle tmp;
|
|
tmp.value = value;
|
|
tmp.deleter = deleter;
|
|
tmp.hash = hash;
|
|
tmp.CalcTotalCharge(charge, metadata_charge_policy_);
|
|
tmp.SetCachePriority(priority);
|
|
for (int i = 0; i < kCacheKeySize; i++) {
|
|
tmp.key_data[i] = key.data()[i];
|
|
}
|
|
|
|
Status s = Status::OK();
|
|
autovector<ClockHandle> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
assert(table_.GetOccupancy() <= table_.GetOccupancyLimit());
|
|
// Free the space following strict clock policy until enough space
|
|
// is freed or the clock list is empty.
|
|
EvictFromClock(tmp.total_charge, &last_reference_list);
|
|
if ((usage_ + tmp.total_charge > capacity_ &&
|
|
(strict_capacity_limit_ || handle == nullptr)) ||
|
|
table_.GetOccupancy() == table_.GetOccupancyLimit()) {
|
|
if (handle == nullptr) {
|
|
// Don't insert the entry but still return ok, as if the entry inserted
|
|
// into cache and get evicted immediately.
|
|
last_reference_list.push_back(tmp);
|
|
} else {
|
|
if (table_.GetOccupancy() == table_.GetOccupancyLimit()) {
|
|
// TODO: Consider using a distinct status for this case, but usually
|
|
// it will be handled the same way as reaching charge capacity limit
|
|
s = Status::MemoryLimit(
|
|
"Insert failed because all slots in the hash table are full.");
|
|
} else {
|
|
s = Status::MemoryLimit(
|
|
"Insert failed because the total charge has exceeded the "
|
|
"capacity.");
|
|
}
|
|
}
|
|
} else {
|
|
// Insert into the cache. Note that the cache might get larger than its
|
|
// capacity if not enough space was freed up.
|
|
ClockHandle* old;
|
|
ClockHandle* h = table_.Insert(&tmp, &old);
|
|
assert(h != nullptr); // We're below occupancy, so this insertion should
|
|
// never fail.
|
|
usage_ += h->total_charge;
|
|
if (old != nullptr) {
|
|
s = Status::OkOverwritten();
|
|
assert(old->IsVisible());
|
|
table_.Exclude(old);
|
|
if (!old->HasRefs()) {
|
|
// old is in clock because it's in cache and its reference count is 0.
|
|
ClockRemove(old);
|
|
table_.Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
last_reference_list.push_back(*old);
|
|
}
|
|
}
|
|
if (handle == nullptr) {
|
|
ClockInsert(h);
|
|
} else {
|
|
// If caller already holds a ref, no need to take one here.
|
|
if (!h->HasRefs()) {
|
|
h->Ref();
|
|
}
|
|
*handle = reinterpret_cast<Cache::Handle*>(h);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
for (auto& h : last_reference_list) {
|
|
h.FreeData();
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Cache::Handle* ClockCacheShard::Lookup(const Slice& key, uint32_t /* hash */) {
|
|
ClockHandle* h = nullptr;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
h = table_.Lookup(key);
|
|
if (h != nullptr) {
|
|
assert(h->IsVisible());
|
|
if (!h->HasRefs()) {
|
|
// The entry is in clock since it's in the hash table and has no
|
|
// external references.
|
|
ClockRemove(h);
|
|
}
|
|
h->Ref();
|
|
h->SetHit();
|
|
}
|
|
}
|
|
return reinterpret_cast<Cache::Handle*>(h);
|
|
}
|
|
|
|
bool ClockCacheShard::Ref(Cache::Handle* h) {
|
|
ClockHandle* e = reinterpret_cast<ClockHandle*>(h);
|
|
DMutexLock l(mutex_);
|
|
// To create another reference - entry must be already externally referenced.
|
|
assert(e->HasRefs());
|
|
e->Ref();
|
|
return true;
|
|
}
|
|
|
|
bool ClockCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) {
|
|
if (handle == nullptr) {
|
|
return false;
|
|
}
|
|
ClockHandle* h = reinterpret_cast<ClockHandle*>(handle);
|
|
ClockHandle copy;
|
|
bool last_reference = false;
|
|
assert(!h->IsInClockList());
|
|
{
|
|
DMutexLock l(mutex_);
|
|
last_reference = h->Unref();
|
|
if (last_reference && h->IsVisible()) {
|
|
// The item is still in cache, and nobody else holds a reference to it.
|
|
if (usage_ > capacity_ || erase_if_last_ref) {
|
|
// The clock list must be empty since the cache is full.
|
|
assert(clock_usage_ == 0 || erase_if_last_ref);
|
|
// Take this opportunity and remove the item.
|
|
table_.Remove(h);
|
|
} else {
|
|
// Put the item back on the clock list, and don't free it.
|
|
ClockInsert(h);
|
|
last_reference = false;
|
|
}
|
|
}
|
|
// If it was the last reference, then decrement the cache usage.
|
|
if (last_reference) {
|
|
assert(usage_ >= h->total_charge);
|
|
usage_ -= h->total_charge;
|
|
copy = *h;
|
|
}
|
|
}
|
|
|
|
// Free the entry here outside of mutex for performance reasons.
|
|
if (last_reference) {
|
|
copy.FreeData();
|
|
}
|
|
return last_reference;
|
|
}
|
|
|
|
void ClockCacheShard::Erase(const Slice& key, uint32_t /* hash */) {
|
|
ClockHandle copy;
|
|
bool last_reference = false;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
ClockHandle* h = table_.Lookup(key);
|
|
if (h != nullptr) {
|
|
table_.Exclude(h);
|
|
if (!h->HasRefs()) {
|
|
// The entry is in Clock since it's in cache and has no external
|
|
// references.
|
|
ClockRemove(h);
|
|
table_.Remove(h);
|
|
assert(usage_ >= h->total_charge);
|
|
usage_ -= h->total_charge;
|
|
last_reference = true;
|
|
copy = *h;
|
|
}
|
|
}
|
|
}
|
|
// Free the entry here outside of mutex for performance reasons.
|
|
// last_reference will only be true if e != nullptr.
|
|
if (last_reference) {
|
|
copy.FreeData();
|
|
}
|
|
}
|
|
|
|
size_t ClockCacheShard::GetUsage() const {
|
|
DMutexLock l(mutex_);
|
|
return usage_;
|
|
}
|
|
|
|
size_t ClockCacheShard::GetPinnedUsage() const {
|
|
DMutexLock l(mutex_);
|
|
assert(usage_ >= clock_usage_);
|
|
return usage_ - clock_usage_;
|
|
}
|
|
|
|
std::string ClockCacheShard::GetPrintableOptions() const {
|
|
return std::string{};
|
|
}
|
|
|
|
ClockCache::ClockCache(size_t capacity, size_t estimated_value_size,
|
|
int num_shard_bits, bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy)
|
|
: ShardedCache(capacity, num_shard_bits, strict_capacity_limit) {
|
|
assert(estimated_value_size > 0 ||
|
|
metadata_charge_policy != kDontChargeCacheMetadata);
|
|
num_shards_ = 1 << num_shard_bits;
|
|
shards_ = reinterpret_cast<ClockCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(ClockCacheShard) * num_shards_));
|
|
size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_;
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
new (&shards_[i])
|
|
ClockCacheShard(per_shard, estimated_value_size, strict_capacity_limit,
|
|
metadata_charge_policy);
|
|
}
|
|
}
|
|
|
|
ClockCache::~ClockCache() {
|
|
if (shards_ != nullptr) {
|
|
assert(num_shards_ > 0);
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
shards_[i].~ClockCacheShard();
|
|
}
|
|
port::cacheline_aligned_free(shards_);
|
|
}
|
|
}
|
|
|
|
CacheShard* ClockCache::GetShard(uint32_t shard) {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
const CacheShard* ClockCache::GetShard(uint32_t shard) const {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
void* ClockCache::Value(Handle* handle) {
|
|
return reinterpret_cast<const ClockHandle*>(handle)->value;
|
|
}
|
|
|
|
size_t ClockCache::GetCharge(Handle* handle) const {
|
|
CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata;
|
|
if (num_shards_ > 0) {
|
|
metadata_charge_policy = shards_[0].metadata_charge_policy_;
|
|
}
|
|
return reinterpret_cast<const ClockHandle*>(handle)->GetCharge(
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
Cache::DeleterFn ClockCache::GetDeleter(Handle* handle) const {
|
|
auto h = reinterpret_cast<const ClockHandle*>(handle);
|
|
return h->deleter;
|
|
}
|
|
|
|
uint32_t ClockCache::GetHash(Handle* handle) const {
|
|
return reinterpret_cast<const ClockHandle*>(handle)->hash;
|
|
}
|
|
|
|
void ClockCache::DisownData() {
|
|
// Leak data only if that won't generate an ASAN/valgrind warning.
|
|
if (!kMustFreeHeapAllocations) {
|
|
shards_ = nullptr;
|
|
num_shards_ = 0;
|
|
}
|
|
}
|
|
|
|
} // namespace clock_cache
|
|
|
|
std::shared_ptr<Cache> NewClockCache(
|
|
size_t capacity, size_t /*estimated_value_size*/, int num_shard_bits,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit, 0.5,
|
|
nullptr, kDefaultToAdaptiveMutex, metadata_charge_policy);
|
|
}
|
|
|
|
std::shared_ptr<Cache> ExperimentalNewClockCache(
|
|
size_t capacity, size_t estimated_value_size, int num_shard_bits,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
if (num_shard_bits >= 20) {
|
|
return nullptr; // The cache cannot be sharded into too many fine pieces.
|
|
}
|
|
if (num_shard_bits < 0) {
|
|
num_shard_bits = GetDefaultCacheShardBits(capacity);
|
|
}
|
|
return std::make_shared<clock_cache::ClockCache>(
|
|
capacity, estimated_value_size, num_shard_bits, strict_capacity_limit,
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|