rocksdb/table/plain_table_key_coding.cc

327 lines
11 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef ROCKSDB_LITE
#include "table/plain_table_key_coding.h"
#include "table/plain_table_factory.h"
#include "db/dbformat.h"
namespace rocksdb {
namespace {
enum EntryType : unsigned char {
kFullKey = 0,
kPrefixFromPreviousKey = 1,
kKeySuffix = 2,
};
// Control byte:
// First two bits indicate type of entry
// Other bytes are inlined sizes. If all bits are 1 (0x03F), overflow bytes
// are used. key_size-0x3F will be encoded as a variint32 after this bytes.
const unsigned char kSizeInlineLimit = 0x3F;
// Return 0 for error
size_t EncodeSize(EntryType type, uint32_t key_size, char* out_buffer) {
out_buffer[0] = type << 6;
if (key_size < static_cast<uint32_t>(kSizeInlineLimit)) {
// size inlined
out_buffer[0] |= static_cast<char>(key_size);
return 1;
} else {
out_buffer[0] |= kSizeInlineLimit;
char* ptr = EncodeVarint32(out_buffer + 1, key_size - kSizeInlineLimit);
return ptr - out_buffer;
}
}
// Return position after the size byte(s). nullptr means error
const char* DecodeSize(const char* offset, const char* limit,
EntryType* entry_type, uint32_t* key_size) {
assert(offset < limit);
*entry_type = static_cast<EntryType>(
(static_cast<unsigned char>(offset[0]) & ~kSizeInlineLimit) >> 6);
char inline_key_size = offset[0] & kSizeInlineLimit;
if (inline_key_size < kSizeInlineLimit) {
*key_size = inline_key_size;
return offset + 1;
} else {
uint32_t extra_size;
const char* ptr = GetVarint32Ptr(offset + 1, limit, &extra_size);
if (ptr == nullptr) {
return nullptr;
}
*key_size = kSizeInlineLimit + extra_size;
return ptr;
}
}
} // namespace
Status PlainTableKeyEncoder::AppendKey(const Slice& key, WritableFile* file,
uint64_t* offset, char* meta_bytes_buf,
size_t* meta_bytes_buf_size) {
ParsedInternalKey parsed_key;
if (!ParseInternalKey(key, &parsed_key)) {
return Status::Corruption(Slice());
}
Slice key_to_write = key; // Portion of internal key to write out.
uint32_t user_key_size = fixed_user_key_len_;
if (encoding_type_ == kPlain) {
if (fixed_user_key_len_ == kPlainTableVariableLength) {
user_key_size = static_cast<uint32_t>(key.size() - 8);
// Write key length
char key_size_buf[5]; // tmp buffer for key size as varint32
char* ptr = EncodeVarint32(key_size_buf, user_key_size);
assert(ptr <= key_size_buf + sizeof(key_size_buf));
auto len = ptr - key_size_buf;
Status s = file->Append(Slice(key_size_buf, len));
if (!s.ok()) {
return s;
}
*offset += len;
}
} else {
assert(encoding_type_ == kPrefix);
char size_bytes[12];
size_t size_bytes_pos = 0;
user_key_size = static_cast<uint32_t>(key.size() - 8);
Slice prefix =
prefix_extractor_->Transform(Slice(key.data(), user_key_size));
if (key_count_for_prefix_ == 0 || prefix != pre_prefix_.GetKey() ||
key_count_for_prefix_ % index_sparseness_ == 0) {
key_count_for_prefix_ = 1;
pre_prefix_.SetKey(prefix);
size_bytes_pos += EncodeSize(kFullKey, user_key_size, size_bytes);
Status s = file->Append(Slice(size_bytes, size_bytes_pos));
if (!s.ok()) {
return s;
}
*offset += size_bytes_pos;
} else {
key_count_for_prefix_++;
if (key_count_for_prefix_ == 2) {
// For second key within a prefix, need to encode prefix length
size_bytes_pos +=
EncodeSize(kPrefixFromPreviousKey,
static_cast<uint32_t>(pre_prefix_.GetKey().size()),
size_bytes + size_bytes_pos);
}
uint32_t prefix_len = static_cast<uint32_t>(pre_prefix_.GetKey().size());
size_bytes_pos += EncodeSize(kKeySuffix, user_key_size - prefix_len,
size_bytes + size_bytes_pos);
Status s = file->Append(Slice(size_bytes, size_bytes_pos));
if (!s.ok()) {
return s;
}
*offset += size_bytes_pos;
key_to_write = Slice(key.data() + prefix_len, key.size() - prefix_len);
}
}
// Encode full key
// For value size as varint32 (up to 5 bytes).
// If the row is of value type with seqId 0, flush the special flag together
// in this buffer to safe one file append call, which takes 1 byte.
if (parsed_key.sequence == 0 && parsed_key.type == kTypeValue) {
Status s =
file->Append(Slice(key_to_write.data(), key_to_write.size() - 8));
if (!s.ok()) {
return s;
}
*offset += key_to_write.size() - 8;
meta_bytes_buf[*meta_bytes_buf_size] = PlainTableFactory::kValueTypeSeqId0;
*meta_bytes_buf_size += 1;
} else {
file->Append(key_to_write);
*offset += key_to_write.size();
}
return Status::OK();
}
namespace {
Status ReadInternalKey(const char* key_ptr, const char* limit,
uint32_t user_key_size, ParsedInternalKey* parsed_key,
size_t* bytes_read, bool* internal_key_valid,
Slice* internal_key) {
if (key_ptr + user_key_size + 1 >= limit) {
return Status::Corruption("Unexpected EOF when reading the next key");
}
if (*(key_ptr + user_key_size) == PlainTableFactory::kValueTypeSeqId0) {
// Special encoding for the row with seqID=0
parsed_key->user_key = Slice(key_ptr, user_key_size);
parsed_key->sequence = 0;
parsed_key->type = kTypeValue;
*bytes_read += user_key_size + 1;
*internal_key_valid = false;
} else {
if (key_ptr + user_key_size + 8 >= limit) {
return Status::Corruption(
"Unexpected EOF when reading internal bytes of the next key");
}
*internal_key_valid = true;
*internal_key = Slice(key_ptr, user_key_size + 8);
if (!ParseInternalKey(*internal_key, parsed_key)) {
return Status::Corruption(
Slice("Incorrect value type found when reading the next key"));
}
*bytes_read += user_key_size + 8;
}
return Status::OK();
}
} // namespace
Status PlainTableKeyDecoder::NextPlainEncodingKey(
const char* start, const char* limit, ParsedInternalKey* parsed_key,
Slice* internal_key, size_t* bytes_read, bool* seekable) {
const char* key_ptr = start;
uint32_t user_key_size = 0;
if (fixed_user_key_len_ != kPlainTableVariableLength) {
user_key_size = fixed_user_key_len_;
key_ptr = start;
} else {
uint32_t tmp_size = 0;
key_ptr = GetVarint32Ptr(start, limit, &tmp_size);
if (key_ptr == nullptr) {
return Status::Corruption(
"Unexpected EOF when reading the next key's size");
}
user_key_size = tmp_size;
*bytes_read = key_ptr - start;
}
// dummy initial value to avoid compiler complain
bool decoded_internal_key_valid = true;
Slice decoded_internal_key;
Status s =
ReadInternalKey(key_ptr, limit, user_key_size, parsed_key, bytes_read,
&decoded_internal_key_valid, &decoded_internal_key);
if (!s.ok()) {
return s;
}
if (internal_key != nullptr) {
if (decoded_internal_key_valid) {
*internal_key = decoded_internal_key;
} else {
// Need to copy out the internal key
cur_key_.SetInternalKey(*parsed_key);
*internal_key = cur_key_.GetKey();
}
}
return Status::OK();
}
Status PlainTableKeyDecoder::NextPrefixEncodingKey(
const char* start, const char* limit, ParsedInternalKey* parsed_key,
Slice* internal_key, size_t* bytes_read, bool* seekable) {
const char* key_ptr = start;
EntryType entry_type;
bool expect_suffix = false;
do {
uint32_t size = 0;
// dummy initial value to avoid compiler complain
bool decoded_internal_key_valid = true;
const char* pos = DecodeSize(key_ptr, limit, &entry_type, &size);
if (pos == nullptr) {
return Status::Corruption("Unexpected EOF when reading size of the key");
}
*bytes_read += pos - key_ptr;
key_ptr = pos;
switch (entry_type) {
case kFullKey: {
expect_suffix = false;
Slice decoded_internal_key;
Status s =
ReadInternalKey(key_ptr, limit, size, parsed_key, bytes_read,
&decoded_internal_key_valid, &decoded_internal_key);
if (!s.ok()) {
return s;
}
saved_user_key_ = parsed_key->user_key;
if (internal_key != nullptr) {
if (decoded_internal_key_valid) {
*internal_key = decoded_internal_key;
} else {
cur_key_.SetInternalKey(*parsed_key);
*internal_key = cur_key_.GetKey();
}
}
break;
}
case kPrefixFromPreviousKey: {
if (seekable != nullptr) {
*seekable = false;
}
prefix_len_ = size;
assert(prefix_extractor_ == nullptr ||
prefix_extractor_->Transform(saved_user_key_).size() ==
prefix_len_);
// Need read another size flag for suffix
expect_suffix = true;
break;
}
case kKeySuffix: {
expect_suffix = false;
if (seekable != nullptr) {
*seekable = false;
}
assert(prefix_len_ >= 0);
cur_key_.Reserve(prefix_len_ + size);
Slice tmp_slice;
Status s = ReadInternalKey(key_ptr, limit, size, parsed_key, bytes_read,
&decoded_internal_key_valid, &tmp_slice);
if (!s.ok()) {
return s;
}
cur_key_.SetInternalKey(Slice(saved_user_key_.data(), prefix_len_),
*parsed_key);
assert(
prefix_extractor_ == nullptr ||
prefix_extractor_->Transform(ExtractUserKey(cur_key_.GetKey())) ==
Slice(saved_user_key_.data(), prefix_len_));
parsed_key->user_key = ExtractUserKey(cur_key_.GetKey());
if (internal_key != nullptr) {
*internal_key = cur_key_.GetKey();
}
break;
}
default:
return Status::Corruption("Identified size flag.");
}
} while (expect_suffix); // Another round if suffix is expected.
return Status::OK();
}
Status PlainTableKeyDecoder::NextKey(const char* start, const char* limit,
ParsedInternalKey* parsed_key,
Slice* internal_key, size_t* bytes_read,
bool* seekable) {
*bytes_read = 0;
if (seekable != nullptr) {
*seekable = true;
}
if (encoding_type_ == kPlain) {
return NextPlainEncodingKey(start, limit, parsed_key, internal_key,
bytes_read, seekable);
} else {
assert(encoding_type_ == kPrefix);
return NextPrefixEncodingKey(start, limit, parsed_key, internal_key,
bytes_read, seekable);
}
}
} // namespace rocksdb
#endif // ROCKSDB_LITE