mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-25 22:44:05 +00:00
afa3518839
Summary:
This reverts commit 8d87e9cea1
.
Based on offline discussions, it's too early to upgrade to gtest 1.10, as it prevents some developers from using an older version of gtest to integrate to some other systems. Revert it for now.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6923
Reviewed By: pdillinger
Differential Revision: D21864799
fbshipit-source-id: d0726b1ff649fc911b9378f1763316200bd363fc
916 lines
28 KiB
C++
916 lines
28 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2012 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#ifndef GFLAGS
|
|
#include <cstdio>
|
|
int main() {
|
|
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
|
|
return 0;
|
|
}
|
|
#else
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "logging/logging.h"
|
|
#include "memory/arena.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "table/block_based/filter_policy_internal.h"
|
|
#include "test_util/testharness.h"
|
|
#include "test_util/testutil.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/hash.h"
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
DEFINE_int32(bits_per_key, 10, "");
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
static const int kVerbose = 1;
|
|
|
|
static Slice Key(int i, char* buffer) {
|
|
std::string s;
|
|
PutFixed32(&s, static_cast<uint32_t>(i));
|
|
memcpy(buffer, s.c_str(), sizeof(i));
|
|
return Slice(buffer, sizeof(i));
|
|
}
|
|
|
|
static int NextLength(int length) {
|
|
if (length < 10) {
|
|
length += 1;
|
|
} else if (length < 100) {
|
|
length += 10;
|
|
} else if (length < 1000) {
|
|
length += 100;
|
|
} else {
|
|
length += 1000;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
class BlockBasedBloomTest : public testing::Test {
|
|
private:
|
|
std::unique_ptr<const FilterPolicy> policy_;
|
|
std::string filter_;
|
|
std::vector<std::string> keys_;
|
|
|
|
public:
|
|
BlockBasedBloomTest() { ResetPolicy(); }
|
|
|
|
void Reset() {
|
|
keys_.clear();
|
|
filter_.clear();
|
|
}
|
|
|
|
void ResetPolicy(double bits_per_key) {
|
|
policy_.reset(new BloomFilterPolicy(bits_per_key,
|
|
BloomFilterPolicy::kDeprecatedBlock));
|
|
Reset();
|
|
}
|
|
|
|
void ResetPolicy() { ResetPolicy(FLAGS_bits_per_key); }
|
|
|
|
void Add(const Slice& s) {
|
|
keys_.push_back(s.ToString());
|
|
}
|
|
|
|
void Build() {
|
|
std::vector<Slice> key_slices;
|
|
for (size_t i = 0; i < keys_.size(); i++) {
|
|
key_slices.push_back(Slice(keys_[i]));
|
|
}
|
|
filter_.clear();
|
|
policy_->CreateFilter(&key_slices[0], static_cast<int>(key_slices.size()),
|
|
&filter_);
|
|
keys_.clear();
|
|
if (kVerbose >= 2) DumpFilter();
|
|
}
|
|
|
|
size_t FilterSize() const {
|
|
return filter_.size();
|
|
}
|
|
|
|
Slice FilterData() const { return Slice(filter_); }
|
|
|
|
void DumpFilter() {
|
|
fprintf(stderr, "F(");
|
|
for (size_t i = 0; i+1 < filter_.size(); i++) {
|
|
const unsigned int c = static_cast<unsigned int>(filter_[i]);
|
|
for (int j = 0; j < 8; j++) {
|
|
fprintf(stderr, "%c", (c & (1 <<j)) ? '1' : '.');
|
|
}
|
|
}
|
|
fprintf(stderr, ")\n");
|
|
}
|
|
|
|
bool Matches(const Slice& s) {
|
|
if (!keys_.empty()) {
|
|
Build();
|
|
}
|
|
return policy_->KeyMayMatch(s, filter_);
|
|
}
|
|
|
|
double FalsePositiveRate() {
|
|
char buffer[sizeof(int)];
|
|
int result = 0;
|
|
for (int i = 0; i < 10000; i++) {
|
|
if (Matches(Key(i + 1000000000, buffer))) {
|
|
result++;
|
|
}
|
|
}
|
|
return result / 10000.0;
|
|
}
|
|
};
|
|
|
|
TEST_F(BlockBasedBloomTest, EmptyFilter) {
|
|
ASSERT_TRUE(! Matches("hello"));
|
|
ASSERT_TRUE(! Matches("world"));
|
|
}
|
|
|
|
TEST_F(BlockBasedBloomTest, Small) {
|
|
Add("hello");
|
|
Add("world");
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
ASSERT_TRUE(! Matches("x"));
|
|
ASSERT_TRUE(! Matches("foo"));
|
|
}
|
|
|
|
TEST_F(BlockBasedBloomTest, VaryingLengths) {
|
|
char buffer[sizeof(int)];
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
int mediocre_filters = 0;
|
|
int good_filters = 0;
|
|
|
|
for (int length = 1; length <= 10000; length = NextLength(length)) {
|
|
Reset();
|
|
for (int i = 0; i < length; i++) {
|
|
Add(Key(i, buffer));
|
|
}
|
|
Build();
|
|
|
|
ASSERT_LE(FilterSize(), (size_t)((length * 10 / 8) + 40)) << length;
|
|
|
|
// All added keys must match
|
|
for (int i = 0; i < length; i++) {
|
|
ASSERT_TRUE(Matches(Key(i, buffer)))
|
|
<< "Length " << length << "; key " << i;
|
|
}
|
|
|
|
// Check false positive rate
|
|
double rate = FalsePositiveRate();
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n",
|
|
rate*100.0, length, static_cast<int>(FilterSize()));
|
|
}
|
|
ASSERT_LE(rate, 0.02); // Must not be over 2%
|
|
if (rate > 0.0125) mediocre_filters++; // Allowed, but not too often
|
|
else good_filters++;
|
|
}
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n",
|
|
good_filters, mediocre_filters);
|
|
}
|
|
ASSERT_LE(mediocre_filters, good_filters/5);
|
|
}
|
|
|
|
// Ensure the implementation doesn't accidentally change in an
|
|
// incompatible way
|
|
TEST_F(BlockBasedBloomTest, Schema) {
|
|
char buffer[sizeof(int)];
|
|
|
|
ResetPolicy(8); // num_probes = 5
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 3589896109U);
|
|
|
|
ResetPolicy(9); // num_probes = 6
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 969445585U);
|
|
|
|
ResetPolicy(11); // num_probes = 7
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 1694458207U);
|
|
|
|
ResetPolicy(10); // num_probes = 6
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 2373646410U);
|
|
|
|
ResetPolicy(10);
|
|
for (int key = /*CHANGED*/ 1; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 1908442116U);
|
|
|
|
ResetPolicy(10);
|
|
for (int key = 1; key < /*CHANGED*/ 88; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 3057004015U);
|
|
|
|
// With new fractional bits_per_key, check that we are rounding to
|
|
// whole bits per key for old Bloom filters.
|
|
ResetPolicy(9.5); // Treated as 10
|
|
for (int key = 1; key < 88; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), /*SAME*/ 3057004015U);
|
|
|
|
ResetPolicy(10.499); // Treated as 10
|
|
for (int key = 1; key < 88; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), /*SAME*/ 3057004015U);
|
|
|
|
ResetPolicy();
|
|
}
|
|
|
|
// Different bits-per-byte
|
|
|
|
class FullBloomTest : public testing::TestWithParam<BloomFilterPolicy::Mode> {
|
|
private:
|
|
BlockBasedTableOptions table_options_;
|
|
std::shared_ptr<const FilterPolicy>& policy_;
|
|
std::unique_ptr<FilterBitsBuilder> bits_builder_;
|
|
std::unique_ptr<FilterBitsReader> bits_reader_;
|
|
std::unique_ptr<const char[]> buf_;
|
|
size_t filter_size_;
|
|
|
|
public:
|
|
FullBloomTest() : policy_(table_options_.filter_policy), filter_size_(0) {
|
|
ResetPolicy();
|
|
}
|
|
|
|
BuiltinFilterBitsBuilder* GetBuiltinFilterBitsBuilder() {
|
|
// Throws on bad cast
|
|
return &dynamic_cast<BuiltinFilterBitsBuilder&>(*bits_builder_);
|
|
}
|
|
|
|
const BloomFilterPolicy* GetBloomFilterPolicy() {
|
|
// Throws on bad cast
|
|
return &dynamic_cast<const BloomFilterPolicy&>(*policy_);
|
|
}
|
|
|
|
void Reset() {
|
|
bits_builder_.reset(BloomFilterPolicy::GetBuilderFromContext(
|
|
FilterBuildingContext(table_options_)));
|
|
bits_reader_.reset(nullptr);
|
|
buf_.reset(nullptr);
|
|
filter_size_ = 0;
|
|
}
|
|
|
|
void ResetPolicy(double bits_per_key) {
|
|
policy_.reset(new BloomFilterPolicy(bits_per_key, GetParam()));
|
|
Reset();
|
|
}
|
|
|
|
void ResetPolicy() { ResetPolicy(FLAGS_bits_per_key); }
|
|
|
|
void Add(const Slice& s) {
|
|
bits_builder_->AddKey(s);
|
|
}
|
|
|
|
void OpenRaw(const Slice& s) {
|
|
bits_reader_.reset(policy_->GetFilterBitsReader(s));
|
|
}
|
|
|
|
void Build() {
|
|
Slice filter = bits_builder_->Finish(&buf_);
|
|
bits_reader_.reset(policy_->GetFilterBitsReader(filter));
|
|
filter_size_ = filter.size();
|
|
}
|
|
|
|
size_t FilterSize() const {
|
|
return filter_size_;
|
|
}
|
|
|
|
Slice FilterData() { return Slice(buf_.get(), filter_size_); }
|
|
|
|
int GetNumProbesFromFilterData() {
|
|
assert(filter_size_ >= 5);
|
|
int8_t raw_num_probes = static_cast<int8_t>(buf_.get()[filter_size_ - 5]);
|
|
if (raw_num_probes == -1) { // New bloom filter marker
|
|
return static_cast<uint8_t>(buf_.get()[filter_size_ - 3]);
|
|
} else {
|
|
return raw_num_probes;
|
|
}
|
|
}
|
|
|
|
bool Matches(const Slice& s) {
|
|
if (bits_reader_ == nullptr) {
|
|
Build();
|
|
}
|
|
return bits_reader_->MayMatch(s);
|
|
}
|
|
|
|
// Provides a kind of fingerprint on the Bloom filter's
|
|
// behavior, for reasonbly high FP rates.
|
|
uint64_t PackedMatches() {
|
|
char buffer[sizeof(int)];
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < 64; i++) {
|
|
if (Matches(Key(i + 12345, buffer))) {
|
|
result |= uint64_t{1} << i;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Provides a kind of fingerprint on the Bloom filter's
|
|
// behavior, for lower FP rates.
|
|
std::string FirstFPs(int count) {
|
|
char buffer[sizeof(int)];
|
|
std::string rv;
|
|
int fp_count = 0;
|
|
for (int i = 0; i < 1000000; i++) {
|
|
// Pack four match booleans into each hexadecimal digit
|
|
if (Matches(Key(i + 1000000, buffer))) {
|
|
++fp_count;
|
|
rv += std::to_string(i);
|
|
if (fp_count == count) {
|
|
break;
|
|
}
|
|
rv += ',';
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
double FalsePositiveRate() {
|
|
char buffer[sizeof(int)];
|
|
int result = 0;
|
|
for (int i = 0; i < 10000; i++) {
|
|
if (Matches(Key(i + 1000000000, buffer))) {
|
|
result++;
|
|
}
|
|
}
|
|
return result / 10000.0;
|
|
}
|
|
|
|
uint32_t SelectByImpl(uint32_t for_legacy_bloom,
|
|
uint32_t for_fast_local_bloom) {
|
|
switch (GetParam()) {
|
|
case BloomFilterPolicy::kLegacyBloom:
|
|
return for_legacy_bloom;
|
|
case BloomFilterPolicy::kFastLocalBloom:
|
|
return for_fast_local_bloom;
|
|
case BloomFilterPolicy::kDeprecatedBlock:
|
|
case BloomFilterPolicy::kAuto:
|
|
/* N/A */;
|
|
}
|
|
// otherwise
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
TEST_P(FullBloomTest, FilterSize) {
|
|
// In addition to checking the consistency of space computation, we are
|
|
// checking that denoted and computed doubles are interpreted as expected
|
|
// as bits_per_key values.
|
|
bool some_computed_less_than_denoted = false;
|
|
// Note: enforced minimum is 1 bit per key (1000 millibits), and enforced
|
|
// maximum is 100 bits per key (100000 millibits).
|
|
for (auto bpk :
|
|
std::vector<std::pair<double, int> >{{-HUGE_VAL, 1000},
|
|
{-INFINITY, 1000},
|
|
{0.0, 1000},
|
|
{1.234, 1234},
|
|
{3.456, 3456},
|
|
{9.5, 9500},
|
|
{10.0, 10000},
|
|
{10.499, 10499},
|
|
{21.345, 21345},
|
|
{99.999, 99999},
|
|
{1234.0, 100000},
|
|
{HUGE_VAL, 100000},
|
|
{INFINITY, 100000},
|
|
{NAN, 100000}}) {
|
|
ResetPolicy(bpk.first);
|
|
auto bfp = GetBloomFilterPolicy();
|
|
EXPECT_EQ(bpk.second, bfp->GetMillibitsPerKey());
|
|
EXPECT_EQ((bpk.second + 500) / 1000, bfp->GetWholeBitsPerKey());
|
|
|
|
double computed = bpk.first;
|
|
// This transforms e.g. 9.5 -> 9.499999999999998, which we still
|
|
// round to 10 for whole bits per key.
|
|
computed += 0.5;
|
|
computed /= 1234567.0;
|
|
computed *= 1234567.0;
|
|
computed -= 0.5;
|
|
some_computed_less_than_denoted |= (computed < bpk.first);
|
|
ResetPolicy(computed);
|
|
bfp = GetBloomFilterPolicy();
|
|
EXPECT_EQ(bpk.second, bfp->GetMillibitsPerKey());
|
|
EXPECT_EQ((bpk.second + 500) / 1000, bfp->GetWholeBitsPerKey());
|
|
|
|
auto bits_builder = GetBuiltinFilterBitsBuilder();
|
|
for (int n = 1; n < 100; n++) {
|
|
auto space = bits_builder->CalculateSpace(n);
|
|
auto n2 = bits_builder->CalculateNumEntry(space);
|
|
EXPECT_GE(n2, n);
|
|
auto space2 = bits_builder->CalculateSpace(n2);
|
|
EXPECT_EQ(space, space2);
|
|
}
|
|
}
|
|
// Check that the compiler hasn't optimized our computation into nothing
|
|
EXPECT_TRUE(some_computed_less_than_denoted);
|
|
ResetPolicy();
|
|
}
|
|
|
|
TEST_P(FullBloomTest, FullEmptyFilter) {
|
|
// Empty filter is not match, at this level
|
|
ASSERT_TRUE(!Matches("hello"));
|
|
ASSERT_TRUE(!Matches("world"));
|
|
}
|
|
|
|
TEST_P(FullBloomTest, FullSmall) {
|
|
Add("hello");
|
|
Add("world");
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
ASSERT_TRUE(!Matches("x"));
|
|
ASSERT_TRUE(!Matches("foo"));
|
|
}
|
|
|
|
TEST_P(FullBloomTest, FullVaryingLengths) {
|
|
char buffer[sizeof(int)];
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
int mediocre_filters = 0;
|
|
int good_filters = 0;
|
|
|
|
for (int length = 1; length <= 10000; length = NextLength(length)) {
|
|
Reset();
|
|
for (int i = 0; i < length; i++) {
|
|
Add(Key(i, buffer));
|
|
}
|
|
Build();
|
|
|
|
ASSERT_LE(FilterSize(),
|
|
(size_t)((length * 10 / 8) + CACHE_LINE_SIZE * 2 + 5));
|
|
|
|
// All added keys must match
|
|
for (int i = 0; i < length; i++) {
|
|
ASSERT_TRUE(Matches(Key(i, buffer)))
|
|
<< "Length " << length << "; key " << i;
|
|
}
|
|
|
|
// Check false positive rate
|
|
double rate = FalsePositiveRate();
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n",
|
|
rate*100.0, length, static_cast<int>(FilterSize()));
|
|
}
|
|
ASSERT_LE(rate, 0.02); // Must not be over 2%
|
|
if (rate > 0.0125)
|
|
mediocre_filters++; // Allowed, but not too often
|
|
else
|
|
good_filters++;
|
|
}
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n",
|
|
good_filters, mediocre_filters);
|
|
}
|
|
ASSERT_LE(mediocre_filters, good_filters/5);
|
|
}
|
|
|
|
namespace {
|
|
inline uint32_t SelectByCacheLineSize(uint32_t for64, uint32_t for128,
|
|
uint32_t for256) {
|
|
(void)for64;
|
|
(void)for128;
|
|
(void)for256;
|
|
#if CACHE_LINE_SIZE == 64
|
|
return for64;
|
|
#elif CACHE_LINE_SIZE == 128
|
|
return for128;
|
|
#elif CACHE_LINE_SIZE == 256
|
|
return for256;
|
|
#else
|
|
#error "CACHE_LINE_SIZE unknown or unrecognized"
|
|
#endif
|
|
}
|
|
} // namespace
|
|
|
|
// Ensure the implementation doesn't accidentally change in an
|
|
// incompatible way. This test doesn't check the reading side
|
|
// (FirstFPs/PackedMatches) for LegacyBloom because it requires the
|
|
// ability to read filters generated using other cache line sizes.
|
|
// See RawSchema.
|
|
TEST_P(FullBloomTest, Schema) {
|
|
char buffer[sizeof(int)];
|
|
|
|
// Use enough keys so that changing bits / key by 1 is guaranteed to
|
|
// change number of allocated cache lines. So keys > max cache line bits.
|
|
|
|
ResetPolicy(2); // num_probes = 1
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 1);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(1567096579, 1964771444, 2659542661U),
|
|
3817481309U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("11,13,17,25,29,30,35,37,45,53", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(3); // num_probes = 2
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 2);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(2707206547U, 2571983456U, 218344685),
|
|
2807269961U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("4,15,17,24,27,28,29,53,63,70", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(5); // num_probes = 3
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 3);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(515748486, 94611728, 2436112214U),
|
|
204628445));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("15,24,29,39,53,87,89,100,103,104", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(8); // num_probes = 5
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 5);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(1302145999, 2811644657U, 756553699),
|
|
355564975));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("16,60,66,126,220,238,244,256,265,287", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(9); // num_probes = 6
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(2092755149, 661139132, 1182970461),
|
|
2137566013U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("156,367,791,872,945,1015,1139,1159,1265,1435", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(11); // num_probes = 7
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 7);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(3755609649U, 1812694762, 1449142939),
|
|
2561502687U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("34,74,130,236,643,882,962,1015,1035,1110", FirstFPs(10));
|
|
}
|
|
|
|
// This used to be 9 probes, but 8 is a better choice for speed,
|
|
// especially with SIMD groups of 8 probes, with essentially no
|
|
// change in FP rate.
|
|
// FP rate @ 9 probes, old Bloom: 0.4321%
|
|
// FP rate @ 9 probes, new Bloom: 0.1846%
|
|
// FP rate @ 8 probes, new Bloom: 0.1843%
|
|
ResetPolicy(14); // num_probes = 8 (new), 9 (old)
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(static_cast<uint32_t>(GetNumProbesFromFilterData()),
|
|
SelectByImpl(9, 8));
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(178861123, 379087593, 2574136516U),
|
|
3709876890U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("130,240,522,565,989,2002,2526,3147,3543", FirstFPs(9));
|
|
}
|
|
|
|
// This used to be 11 probes, but 9 is a better choice for speed
|
|
// AND accuracy.
|
|
// FP rate @ 11 probes, old Bloom: 0.3571%
|
|
// FP rate @ 11 probes, new Bloom: 0.0884%
|
|
// FP rate @ 9 probes, new Bloom: 0.0843%
|
|
ResetPolicy(16); // num_probes = 9 (new), 11 (old)
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(static_cast<uint32_t>(GetNumProbesFromFilterData()),
|
|
SelectByImpl(11, 9));
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(1129406313, 3049154394U, 1727750964),
|
|
1087138490));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("3299,3611,3916,6620,7822,8079,8482,8942,10167", FirstFPs(9));
|
|
}
|
|
|
|
ResetPolicy(10); // num_probes = 6, but different memory ratio vs. 9
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(1478976371, 2910591341U, 1182970461),
|
|
2498541272U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("16,126,133,422,466,472,813,1002,1035,1159", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(10);
|
|
for (int key = /*CHANGED*/ 1; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(4205696321U, 1132081253U, 2385981855U),
|
|
2058382345U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("16,126,133,422,466,472,813,1002,1035,1159", FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(10);
|
|
for (int key = 1; key < /*CHANGED*/ 2088; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ(
|
|
BloomHash(FilterData()),
|
|
SelectByImpl(SelectByCacheLineSize(2885052954U, 769447944, 4175124908U),
|
|
23699164));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ("16,126,133,422,466,472,813,1002,1035,1159", FirstFPs(10));
|
|
}
|
|
|
|
// With new fractional bits_per_key, check that we are rounding to
|
|
// whole bits per key for old Bloom filters but fractional for
|
|
// new Bloom filter.
|
|
ResetPolicy(9.5);
|
|
for (int key = 1; key < 2088; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ(BloomHash(FilterData()),
|
|
SelectByImpl(/*SAME*/ SelectByCacheLineSize(2885052954U, 769447944,
|
|
4175124908U),
|
|
/*CHANGED*/ 3166884174U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ(/*CHANGED*/ "126,156,367,444,458,791,813,976,1015,1035",
|
|
FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy(10.499);
|
|
for (int key = 1; key < 2088; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(static_cast<uint32_t>(GetNumProbesFromFilterData()),
|
|
SelectByImpl(6, 7));
|
|
EXPECT_EQ(BloomHash(FilterData()),
|
|
SelectByImpl(/*SAME*/ SelectByCacheLineSize(2885052954U, 769447944,
|
|
4175124908U),
|
|
/*CHANGED*/ 4098502778U));
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) {
|
|
EXPECT_EQ(/*CHANGED*/ "16,236,240,472,1015,1045,1111,1409,1465,1612",
|
|
FirstFPs(10));
|
|
}
|
|
|
|
ResetPolicy();
|
|
}
|
|
|
|
// A helper class for testing custom or corrupt filter bits as read by
|
|
// built-in FilterBitsReaders.
|
|
struct RawFilterTester {
|
|
// Buffer, from which we always return a tail Slice, so the
|
|
// last five bytes are always the metadata bytes.
|
|
std::array<char, 3000> data_;
|
|
// Points five bytes from the end
|
|
char* metadata_ptr_;
|
|
|
|
RawFilterTester() : metadata_ptr_(&*(data_.end() - 5)) {}
|
|
|
|
Slice ResetNoFill(uint32_t len_without_metadata, uint32_t num_lines,
|
|
uint32_t num_probes) {
|
|
metadata_ptr_[0] = static_cast<char>(num_probes);
|
|
EncodeFixed32(metadata_ptr_ + 1, num_lines);
|
|
uint32_t len = len_without_metadata + /*metadata*/ 5;
|
|
assert(len <= data_.size());
|
|
return Slice(metadata_ptr_ - len_without_metadata, len);
|
|
}
|
|
|
|
Slice Reset(uint32_t len_without_metadata, uint32_t num_lines,
|
|
uint32_t num_probes, bool fill_ones) {
|
|
data_.fill(fill_ones ? 0xff : 0);
|
|
return ResetNoFill(len_without_metadata, num_lines, num_probes);
|
|
}
|
|
|
|
Slice ResetWeirdFill(uint32_t len_without_metadata, uint32_t num_lines,
|
|
uint32_t num_probes) {
|
|
for (uint32_t i = 0; i < data_.size(); ++i) {
|
|
data_[i] = static_cast<char>(0x7b7b >> (i % 7));
|
|
}
|
|
return ResetNoFill(len_without_metadata, num_lines, num_probes);
|
|
}
|
|
};
|
|
|
|
TEST_P(FullBloomTest, RawSchema) {
|
|
RawFilterTester cft;
|
|
// Two probes, about 3/4 bits set: ~50% "FP" rate
|
|
// One 256-byte cache line.
|
|
OpenRaw(cft.ResetWeirdFill(256, 1, 2));
|
|
EXPECT_EQ(uint64_t{11384799501900898790U}, PackedMatches());
|
|
|
|
// Two 128-byte cache lines.
|
|
OpenRaw(cft.ResetWeirdFill(256, 2, 2));
|
|
EXPECT_EQ(uint64_t{10157853359773492589U}, PackedMatches());
|
|
|
|
// Four 64-byte cache lines.
|
|
OpenRaw(cft.ResetWeirdFill(256, 4, 2));
|
|
EXPECT_EQ(uint64_t{7123594913907464682U}, PackedMatches());
|
|
}
|
|
|
|
TEST_P(FullBloomTest, CorruptFilters) {
|
|
RawFilterTester cft;
|
|
|
|
for (bool fill : {false, true}) {
|
|
// Good filter bits - returns same as fill
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 6, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE * 3, 3, 6, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
// 256 is unusual but legal cache line size
|
|
OpenRaw(cft.Reset(256 * 3, 3, 6, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
// 30 should be max num_probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 30, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
// 1 should be min num_probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 1, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Type 1 trivial filter bits - returns true as if FP by zero probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 0, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Type 2 trivial filter bits - returns false as if built from zero keys
|
|
OpenRaw(cft.Reset(0, 0, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Type 2 trivial filter bits - returns false as if built from zero keys
|
|
OpenRaw(cft.Reset(0, 37, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Type 2 trivial filter bits - returns false as 0 size trumps 0 probes
|
|
OpenRaw(cft.Reset(0, 0, 0, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// No solution to 0 * x == CACHE_LINE_SIZE
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 0, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// Can't have 3 * x == 4 for integer x
|
|
OpenRaw(cft.Reset(4, 3, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// 97 bytes is not a power of two, so not a legal cache line size
|
|
OpenRaw(cft.Reset(97 * 3, 3, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// 65 bytes is not a power of two, so not a legal cache line size
|
|
OpenRaw(cft.Reset(65 * 3, 3, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns false as if built from zero keys
|
|
// < 5 bytes overall means missing even metadata
|
|
OpenRaw(cft.Reset(static_cast<uint32_t>(-1), 3, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(static_cast<uint32_t>(-5), 3, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Dubious filter bits - returns same as fill (for now)
|
|
// 31 is not a useful num_probes, nor generated by RocksDB unless directly
|
|
// using filter bits API without BloomFilterPolicy.
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 31, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Dubious filter bits - returns same as fill (for now)
|
|
// Similar, with 127, largest positive char
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 127, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Dubious filter bits - returns true (for now)
|
|
// num_probes set to 128 / -128, lowest negative char
|
|
// NB: Bug in implementation interprets this as negative and has same
|
|
// effect as zero probes, but effectively reserves negative char values
|
|
// for future use.
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 128, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Dubious filter bits - returns true (for now)
|
|
// Similar, with 255 / -1
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Full, FullBloomTest,
|
|
testing::Values(BloomFilterPolicy::kLegacyBloom,
|
|
BloomFilterPolicy::kFastLocalBloom));
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|
|
#endif // GFLAGS
|