rocksdb/env/env_encryption.cc
mrambacher b6640c3117 Remove FactoryFunc from LoadXXXObject (#11203)
Summary:
The primary purpose of the FactoryFunc was to support LITE mode where the ObjectRegistry was not available.  With the removal of LITE mode, the function was no longer required.

Note that the MergeOperator had some private classes defined in header files.  To gain access to their constructors (and name methods), the class definitions were moved into header files.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11203

Reviewed By: cbi42

Differential Revision: D43160255

Pulled By: pdillinger

fbshipit-source-id: f3a465fd5d1a7049b73ecf31e4b8c3762f6dae6c
2023-02-17 12:54:07 -08:00

1347 lines
50 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "rocksdb/env_encryption.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <iostream>
#include "env/composite_env_wrapper.h"
#include "env/env_encryption_ctr.h"
#include "monitoring/perf_context_imp.h"
#include "rocksdb/convenience.h"
#include "rocksdb/io_status.h"
#include "rocksdb/system_clock.h"
#include "rocksdb/utilities/customizable_util.h"
#include "rocksdb/utilities/options_type.h"
#include "util/aligned_buffer.h"
#include "util/coding.h"
#include "util/random.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
std::shared_ptr<EncryptionProvider> EncryptionProvider::NewCTRProvider(
const std::shared_ptr<BlockCipher>& cipher) {
return std::make_shared<CTREncryptionProvider>(cipher);
}
// Read up to "n" bytes from the file. "scratch[0..n-1]" may be
// written by this routine. Sets "*result" to the data that was
// read (including if fewer than "n" bytes were successfully read).
// May set "*result" to point at data in "scratch[0..n-1]", so
// "scratch[0..n-1]" must be live when "*result" is used.
// If an error was encountered, returns a non-OK status.
//
// REQUIRES: External synchronization
IOStatus EncryptedSequentialFile::Read(size_t n, const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) {
assert(scratch);
IOStatus io_s = file_->Read(n, options, result, scratch, dbg);
if (!io_s.ok()) {
return io_s;
}
{
PERF_TIMER_GUARD(decrypt_data_nanos);
io_s = status_to_io_status(
stream_->Decrypt(offset_, (char*)result->data(), result->size()));
}
if (io_s.ok()) {
offset_ += result->size(); // We've already ready data from disk, so update
// offset_ even if decryption fails.
}
return io_s;
}
// Skip "n" bytes from the file. This is guaranteed to be no
// slower that reading the same data, but may be faster.
//
// If end of file is reached, skipping will stop at the end of the
// file, and Skip will return OK.
//
// REQUIRES: External synchronization
IOStatus EncryptedSequentialFile::Skip(uint64_t n) {
auto status = file_->Skip(n);
if (!status.ok()) {
return status;
}
offset_ += n;
return status;
}
// Indicates the upper layers if the current SequentialFile implementation
// uses direct IO.
bool EncryptedSequentialFile::use_direct_io() const {
return file_->use_direct_io();
}
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
size_t EncryptedSequentialFile::GetRequiredBufferAlignment() const {
return file_->GetRequiredBufferAlignment();
}
// Remove any kind of caching of data from the offset to offset+length
// of this file. If the length is 0, then it refers to the end of file.
// If the system is not caching the file contents, then this is a noop.
IOStatus EncryptedSequentialFile::InvalidateCache(size_t offset,
size_t length) {
return file_->InvalidateCache(offset + prefixLength_, length);
}
// Positioned Read for direct I/O
// If Direct I/O enabled, offset, n, and scratch should be properly aligned
IOStatus EncryptedSequentialFile::PositionedRead(uint64_t offset, size_t n,
const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) {
assert(scratch);
offset += prefixLength_; // Skip prefix
auto io_s = file_->PositionedRead(offset, n, options, result, scratch, dbg);
if (!io_s.ok()) {
return io_s;
}
offset_ = offset + result->size();
{
PERF_TIMER_GUARD(decrypt_data_nanos);
io_s = status_to_io_status(
stream_->Decrypt(offset, (char*)result->data(), result->size()));
}
return io_s;
}
// Read up to "n" bytes from the file starting at "offset".
// "scratch[0..n-1]" may be written by this routine. Sets "*result"
// to the data that was read (including if fewer than "n" bytes were
// successfully read). May set "*result" to point at data in
// "scratch[0..n-1]", so "scratch[0..n-1]" must be live when
// "*result" is used. If an error was encountered, returns a non-OK
// status.
//
// Safe for concurrent use by multiple threads.
// If Direct I/O enabled, offset, n, and scratch should be aligned properly.
IOStatus EncryptedRandomAccessFile::Read(uint64_t offset, size_t n,
const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) const {
assert(scratch);
offset += prefixLength_;
auto io_s = file_->Read(offset, n, options, result, scratch, dbg);
if (!io_s.ok()) {
return io_s;
}
{
PERF_TIMER_GUARD(decrypt_data_nanos);
io_s = status_to_io_status(
stream_->Decrypt(offset, (char*)result->data(), result->size()));
}
return io_s;
}
// Readahead the file starting from offset by n bytes for caching.
IOStatus EncryptedRandomAccessFile::Prefetch(uint64_t offset, size_t n,
const IOOptions& options,
IODebugContext* dbg) {
// return Status::OK();
return file_->Prefetch(offset + prefixLength_, n, options, dbg);
}
// Tries to get an unique ID for this file that will be the same each time
// the file is opened (and will stay the same while the file is open).
// Furthermore, it tries to make this ID at most "max_size" bytes. If such an
// ID can be created this function returns the length of the ID and places it
// in "id"; otherwise, this function returns 0, in which case "id"
// may not have been modified.
//
// This function guarantees, for IDs from a given environment, two unique ids
// cannot be made equal to each other by adding arbitrary bytes to one of
// them. That is, no unique ID is the prefix of another.
//
// This function guarantees that the returned ID will not be interpretable as
// a single varint.
//
// Note: these IDs are only valid for the duration of the process.
size_t EncryptedRandomAccessFile::GetUniqueId(char* id, size_t max_size) const {
return file_->GetUniqueId(id, max_size);
};
void EncryptedRandomAccessFile::Hint(AccessPattern pattern) {
file_->Hint(pattern);
}
// Indicates the upper layers if the current RandomAccessFile implementation
// uses direct IO.
bool EncryptedRandomAccessFile::use_direct_io() const {
return file_->use_direct_io();
}
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
size_t EncryptedRandomAccessFile::GetRequiredBufferAlignment() const {
return file_->GetRequiredBufferAlignment();
}
// Remove any kind of caching of data from the offset to offset+length
// of this file. If the length is 0, then it refers to the end of file.
// If the system is not caching the file contents, then this is a noop.
IOStatus EncryptedRandomAccessFile::InvalidateCache(size_t offset,
size_t length) {
return file_->InvalidateCache(offset + prefixLength_, length);
}
// A file abstraction for sequential writing. The implementation
// must provide buffering since callers may append small fragments
// at a time to the file.
IOStatus EncryptedWritableFile::Append(const Slice& data,
const IOOptions& options,
IODebugContext* dbg) {
AlignedBuffer buf;
Slice dataToAppend(data);
if (data.size() > 0) {
auto offset = file_->GetFileSize(options, dbg); // size including prefix
// Encrypt in cloned buffer
buf.Alignment(GetRequiredBufferAlignment());
buf.AllocateNewBuffer(data.size());
// TODO (sagar0): Modify AlignedBuffer.Append to allow doing a memmove
// so that the next two lines can be replaced with buf.Append().
memmove(buf.BufferStart(), data.data(), data.size());
buf.Size(data.size());
IOStatus io_s;
{
PERF_TIMER_GUARD(encrypt_data_nanos);
io_s = status_to_io_status(
stream_->Encrypt(offset, buf.BufferStart(), buf.CurrentSize()));
}
if (!io_s.ok()) {
return io_s;
}
dataToAppend = Slice(buf.BufferStart(), buf.CurrentSize());
}
return file_->Append(dataToAppend, options, dbg);
}
IOStatus EncryptedWritableFile::PositionedAppend(const Slice& data,
uint64_t offset,
const IOOptions& options,
IODebugContext* dbg) {
AlignedBuffer buf;
Slice dataToAppend(data);
offset += prefixLength_;
if (data.size() > 0) {
// Encrypt in cloned buffer
buf.Alignment(GetRequiredBufferAlignment());
buf.AllocateNewBuffer(data.size());
memmove(buf.BufferStart(), data.data(), data.size());
buf.Size(data.size());
IOStatus io_s;
{
PERF_TIMER_GUARD(encrypt_data_nanos);
io_s = status_to_io_status(
stream_->Encrypt(offset, buf.BufferStart(), buf.CurrentSize()));
}
if (!io_s.ok()) {
return io_s;
}
dataToAppend = Slice(buf.BufferStart(), buf.CurrentSize());
}
return file_->PositionedAppend(dataToAppend, offset, options, dbg);
}
// Indicates the upper layers if the current WritableFile implementation
// uses direct IO.
bool EncryptedWritableFile::use_direct_io() const {
return file_->use_direct_io();
}
// true if Sync() and Fsync() are safe to call concurrently with Append()
// and Flush().
bool EncryptedWritableFile::IsSyncThreadSafe() const {
return file_->IsSyncThreadSafe();
}
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
size_t EncryptedWritableFile::GetRequiredBufferAlignment() const {
return file_->GetRequiredBufferAlignment();
}
/*
* Get the size of valid data in the file.
*/
uint64_t EncryptedWritableFile::GetFileSize(const IOOptions& options,
IODebugContext* dbg) {
return file_->GetFileSize(options, dbg) - prefixLength_;
}
// Truncate is necessary to trim the file to the correct size
// before closing. It is not always possible to keep track of the file
// size due to whole pages writes. The behavior is undefined if called
// with other writes to follow.
IOStatus EncryptedWritableFile::Truncate(uint64_t size,
const IOOptions& options,
IODebugContext* dbg) {
return file_->Truncate(size + prefixLength_, options, dbg);
}
// Remove any kind of caching of data from the offset to offset+length
// of this file. If the length is 0, then it refers to the end of file.
// If the system is not caching the file contents, then this is a noop.
// This call has no effect on dirty pages in the cache.
IOStatus EncryptedWritableFile::InvalidateCache(size_t offset, size_t length) {
return file_->InvalidateCache(offset + prefixLength_, length);
}
// Sync a file range with disk.
// offset is the starting byte of the file range to be synchronized.
// nbytes specifies the length of the range to be synchronized.
// This asks the OS to initiate flushing the cached data to disk,
// without waiting for completion.
// Default implementation does nothing.
IOStatus EncryptedWritableFile::RangeSync(uint64_t offset, uint64_t nbytes,
const IOOptions& options,
IODebugContext* dbg) {
return file_->RangeSync(offset + prefixLength_, nbytes, options, dbg);
}
// PrepareWrite performs any necessary preparation for a write
// before the write actually occurs. This allows for pre-allocation
// of space on devices where it can result in less file
// fragmentation and/or less waste from over-zealous filesystem
// pre-allocation.
void EncryptedWritableFile::PrepareWrite(size_t offset, size_t len,
const IOOptions& options,
IODebugContext* dbg) {
file_->PrepareWrite(offset + prefixLength_, len, options, dbg);
}
void EncryptedWritableFile::SetPreallocationBlockSize(size_t size) {
// the size here doesn't need to include prefixLength_, as it's a
// configuration will be use for `PrepareWrite()`.
file_->SetPreallocationBlockSize(size);
}
void EncryptedWritableFile::GetPreallocationStatus(
size_t* block_size, size_t* last_allocated_block) {
file_->GetPreallocationStatus(block_size, last_allocated_block);
}
// Pre-allocates space for a file.
IOStatus EncryptedWritableFile::Allocate(uint64_t offset, uint64_t len,
const IOOptions& options,
IODebugContext* dbg) {
return file_->Allocate(offset + prefixLength_, len, options, dbg);
}
IOStatus EncryptedWritableFile::Flush(const IOOptions& options,
IODebugContext* dbg) {
return file_->Flush(options, dbg);
}
IOStatus EncryptedWritableFile::Sync(const IOOptions& options,
IODebugContext* dbg) {
return file_->Sync(options, dbg);
}
IOStatus EncryptedWritableFile::Close(const IOOptions& options,
IODebugContext* dbg) {
return file_->Close(options, dbg);
}
// A file abstraction for random reading and writing.
// Indicates if the class makes use of direct I/O
// If false you must pass aligned buffer to Write()
bool EncryptedRandomRWFile::use_direct_io() const {
return file_->use_direct_io();
}
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
size_t EncryptedRandomRWFile::GetRequiredBufferAlignment() const {
return file_->GetRequiredBufferAlignment();
}
// Write bytes in `data` at offset `offset`, Returns Status::OK() on success.
// Pass aligned buffer when use_direct_io() returns true.
IOStatus EncryptedRandomRWFile::Write(uint64_t offset, const Slice& data,
const IOOptions& options,
IODebugContext* dbg) {
AlignedBuffer buf;
Slice dataToWrite(data);
offset += prefixLength_;
if (data.size() > 0) {
// Encrypt in cloned buffer
buf.Alignment(GetRequiredBufferAlignment());
buf.AllocateNewBuffer(data.size());
memmove(buf.BufferStart(), data.data(), data.size());
buf.Size(data.size());
IOStatus io_s;
{
PERF_TIMER_GUARD(encrypt_data_nanos);
io_s = status_to_io_status(
stream_->Encrypt(offset, buf.BufferStart(), buf.CurrentSize()));
}
if (!io_s.ok()) {
return io_s;
}
dataToWrite = Slice(buf.BufferStart(), buf.CurrentSize());
}
return file_->Write(offset, dataToWrite, options, dbg);
}
// Read up to `n` bytes starting from offset `offset` and store them in
// result, provided `scratch` size should be at least `n`.
// Returns Status::OK() on success.
IOStatus EncryptedRandomRWFile::Read(uint64_t offset, size_t n,
const IOOptions& options, Slice* result,
char* scratch, IODebugContext* dbg) const {
assert(scratch);
offset += prefixLength_;
auto status = file_->Read(offset, n, options, result, scratch, dbg);
if (!status.ok()) {
return status;
}
{
PERF_TIMER_GUARD(decrypt_data_nanos);
status = status_to_io_status(
stream_->Decrypt(offset, (char*)result->data(), result->size()));
}
return status;
}
IOStatus EncryptedRandomRWFile::Flush(const IOOptions& options,
IODebugContext* dbg) {
return file_->Flush(options, dbg);
}
IOStatus EncryptedRandomRWFile::Sync(const IOOptions& options,
IODebugContext* dbg) {
return file_->Sync(options, dbg);
}
IOStatus EncryptedRandomRWFile::Fsync(const IOOptions& options,
IODebugContext* dbg) {
return file_->Fsync(options, dbg);
}
IOStatus EncryptedRandomRWFile::Close(const IOOptions& options,
IODebugContext* dbg) {
return file_->Close(options, dbg);
}
namespace {
static std::unordered_map<std::string, OptionTypeInfo> encrypted_fs_type_info =
{
{"provider",
OptionTypeInfo::AsCustomSharedPtr<EncryptionProvider>(
0 /* No offset, whole struct*/, OptionVerificationType::kByName,
OptionTypeFlags::kNone)},
};
// EncryptedFileSystemImpl implements an FileSystemWrapper that adds encryption
// to files stored on disk.
class EncryptedFileSystemImpl : public EncryptedFileSystem {
public:
const char* Name() const override {
return EncryptedFileSystem::kClassName();
}
// Returns the raw encryption provider that should be used to write the input
// encrypted file. If there is no such provider, NotFound is returned.
IOStatus GetWritableProvider(const std::string& /*fname*/,
EncryptionProvider** result) {
if (provider_) {
*result = provider_.get();
return IOStatus::OK();
} else {
*result = nullptr;
return IOStatus::NotFound("No WriteProvider specified");
}
}
// Returns the raw encryption provider that should be used to read the input
// encrypted file. If there is no such provider, NotFound is returned.
IOStatus GetReadableProvider(const std::string& /*fname*/,
EncryptionProvider** result) {
if (provider_) {
*result = provider_.get();
return IOStatus::OK();
} else {
*result = nullptr;
return IOStatus::NotFound("No Provider specified");
}
}
// Creates a CipherStream for the underlying file/name using the options
// If a writable provider is found and encryption is enabled, uses
// this provider to create a cipher stream.
// @param fname Name of the writable file
// @param underlying The underlying "raw" file
// @param options Options for creating the file/cipher
// @param prefix_length Returns the length of the encryption prefix used for
// this file
// @param stream Returns the cipher stream to use for this file if it
// should be encrypted
// @return OK on success, non-OK on failure.
template <class TypeFile>
IOStatus CreateWritableCipherStream(
const std::string& fname, const std::unique_ptr<TypeFile>& underlying,
const FileOptions& options, size_t* prefix_length,
std::unique_ptr<BlockAccessCipherStream>* stream, IODebugContext* dbg) {
EncryptionProvider* provider = nullptr;
*prefix_length = 0;
IOStatus status = GetWritableProvider(fname, &provider);
if (!status.ok()) {
return status;
} else if (provider != nullptr) {
// Initialize & write prefix (if needed)
AlignedBuffer buffer;
Slice prefix;
*prefix_length = provider->GetPrefixLength();
if (*prefix_length > 0) {
// Initialize prefix
buffer.Alignment(underlying->GetRequiredBufferAlignment());
buffer.AllocateNewBuffer(*prefix_length);
status = status_to_io_status(provider->CreateNewPrefix(
fname, buffer.BufferStart(), *prefix_length));
if (status.ok()) {
buffer.Size(*prefix_length);
prefix = Slice(buffer.BufferStart(), buffer.CurrentSize());
// Write prefix
status = underlying->Append(prefix, options.io_options, dbg);
}
if (!status.ok()) {
return status;
}
}
// Create cipher stream
status = status_to_io_status(
provider->CreateCipherStream(fname, options, prefix, stream));
}
return status;
}
template <class TypeFile>
IOStatus CreateWritableEncryptedFile(const std::string& fname,
std::unique_ptr<TypeFile>& underlying,
const FileOptions& options,
std::unique_ptr<TypeFile>* result,
IODebugContext* dbg) {
// Create cipher stream
std::unique_ptr<BlockAccessCipherStream> stream;
size_t prefix_length;
IOStatus status = CreateWritableCipherStream(fname, underlying, options,
&prefix_length, &stream, dbg);
if (status.ok()) {
if (stream) {
result->reset(new EncryptedWritableFile(
std::move(underlying), std::move(stream), prefix_length));
} else {
result->reset(underlying.release());
}
}
return status;
}
// Creates a CipherStream for the underlying file/name using the options
// If a writable provider is found and encryption is enabled, uses
// this provider to create a cipher stream.
// @param fname Name of the writable file
// @param underlying The underlying "raw" file
// @param options Options for creating the file/cipher
// @param prefix_length Returns the length of the encryption prefix used for
// this file
// @param stream Returns the cipher stream to use for this file if it
// should be encrypted
// @return OK on success, non-OK on failure.
template <class TypeFile>
IOStatus CreateRandomWriteCipherStream(
const std::string& fname, const std::unique_ptr<TypeFile>& underlying,
const FileOptions& options, size_t* prefix_length,
std::unique_ptr<BlockAccessCipherStream>* stream, IODebugContext* dbg) {
EncryptionProvider* provider = nullptr;
*prefix_length = 0;
IOStatus io_s = GetWritableProvider(fname, &provider);
if (!io_s.ok()) {
return io_s;
} else if (provider != nullptr) {
// Initialize & write prefix (if needed)
AlignedBuffer buffer;
Slice prefix;
*prefix_length = provider->GetPrefixLength();
if (*prefix_length > 0) {
// Initialize prefix
buffer.Alignment(underlying->GetRequiredBufferAlignment());
buffer.AllocateNewBuffer(*prefix_length);
io_s = status_to_io_status(provider->CreateNewPrefix(
fname, buffer.BufferStart(), *prefix_length));
if (io_s.ok()) {
buffer.Size(*prefix_length);
prefix = Slice(buffer.BufferStart(), buffer.CurrentSize());
// Write prefix
io_s = underlying->Write(0, prefix, options.io_options, dbg);
}
if (!io_s.ok()) {
return io_s;
}
}
// Create cipher stream
io_s = status_to_io_status(
provider->CreateCipherStream(fname, options, prefix, stream));
}
return io_s;
}
// Creates a CipherStream for the underlying file/name using the options
// If a readable provider is found and the file is encrypted, uses
// this provider to create a cipher stream.
// @param fname Name of the writable file
// @param underlying The underlying "raw" file
// @param options Options for creating the file/cipher
// @param prefix_length Returns the length of the encryption prefix used for
// this file
// @param stream Returns the cipher stream to use for this file if it
// is encrypted
// @return OK on success, non-OK on failure.
template <class TypeFile>
IOStatus CreateSequentialCipherStream(
const std::string& fname, const std::unique_ptr<TypeFile>& underlying,
const FileOptions& options, size_t* prefix_length,
std::unique_ptr<BlockAccessCipherStream>* stream, IODebugContext* dbg) {
// Read prefix (if needed)
AlignedBuffer buffer;
Slice prefix;
*prefix_length = provider_->GetPrefixLength();
if (*prefix_length > 0) {
// Read prefix
buffer.Alignment(underlying->GetRequiredBufferAlignment());
buffer.AllocateNewBuffer(*prefix_length);
IOStatus status = underlying->Read(*prefix_length, options.io_options,
&prefix, buffer.BufferStart(), dbg);
if (!status.ok()) {
return status;
}
buffer.Size(*prefix_length);
}
return status_to_io_status(
provider_->CreateCipherStream(fname, options, prefix, stream));
}
// Creates a CipherStream for the underlying file/name using the options
// If a readable provider is found and the file is encrypted, uses
// this provider to create a cipher stream.
// @param fname Name of the writable file
// @param underlying The underlying "raw" file
// @param options Options for creating the file/cipher
// @param prefix_length Returns the length of the encryption prefix used for
// this file
// @param stream Returns the cipher stream to use for this file if it
// is encrypted
// @return OK on success, non-OK on failure.
template <class TypeFile>
IOStatus CreateRandomReadCipherStream(
const std::string& fname, const std::unique_ptr<TypeFile>& underlying,
const FileOptions& options, size_t* prefix_length,
std::unique_ptr<BlockAccessCipherStream>* stream, IODebugContext* dbg) {
// Read prefix (if needed)
AlignedBuffer buffer;
Slice prefix;
*prefix_length = provider_->GetPrefixLength();
if (*prefix_length > 0) {
// Read prefix
buffer.Alignment(underlying->GetRequiredBufferAlignment());
buffer.AllocateNewBuffer(*prefix_length);
IOStatus status = underlying->Read(0, *prefix_length, options.io_options,
&prefix, buffer.BufferStart(), dbg);
if (!status.ok()) {
return status;
}
buffer.Size(*prefix_length);
}
return status_to_io_status(
provider_->CreateCipherStream(fname, options, prefix, stream));
}
public:
EncryptedFileSystemImpl(const std::shared_ptr<FileSystem>& base,
const std::shared_ptr<EncryptionProvider>& provider)
: EncryptedFileSystem(base) {
provider_ = provider;
RegisterOptions("EncryptionProvider", &provider_, &encrypted_fs_type_info);
}
Status AddCipher(const std::string& descriptor, const char* cipher,
size_t len, bool for_write) override {
return provider_->AddCipher(descriptor, cipher, len, for_write);
}
// NewSequentialFile opens a file for sequential reading.
IOStatus NewSequentialFile(const std::string& fname,
const FileOptions& options,
std::unique_ptr<FSSequentialFile>* result,
IODebugContext* dbg) override {
result->reset();
if (options.use_mmap_reads) {
return IOStatus::InvalidArgument();
}
// Open file using underlying Env implementation
std::unique_ptr<FSSequentialFile> underlying;
auto status =
FileSystemWrapper::NewSequentialFile(fname, options, &underlying, dbg);
if (!status.ok()) {
return status;
}
uint64_t file_size;
status = FileSystemWrapper::GetFileSize(fname, options.io_options,
&file_size, dbg);
if (!status.ok()) {
return status;
}
if (!file_size) {
*result = std::move(underlying);
return status;
}
// Create cipher stream
std::unique_ptr<BlockAccessCipherStream> stream;
size_t prefix_length;
status = CreateSequentialCipherStream(fname, underlying, options,
&prefix_length, &stream, dbg);
if (status.ok()) {
result->reset(new EncryptedSequentialFile(
std::move(underlying), std::move(stream), prefix_length));
}
return status;
}
// NewRandomAccessFile opens a file for random read access.
IOStatus NewRandomAccessFile(const std::string& fname,
const FileOptions& options,
std::unique_ptr<FSRandomAccessFile>* result,
IODebugContext* dbg) override {
result->reset();
if (options.use_mmap_reads) {
return IOStatus::InvalidArgument();
}
// Open file using underlying Env implementation
std::unique_ptr<FSRandomAccessFile> underlying;
auto status = FileSystemWrapper::NewRandomAccessFile(fname, options,
&underlying, dbg);
if (!status.ok()) {
return status;
}
std::unique_ptr<BlockAccessCipherStream> stream;
size_t prefix_length;
status = CreateRandomReadCipherStream(fname, underlying, options,
&prefix_length, &stream, dbg);
if (status.ok()) {
if (stream) {
result->reset(new EncryptedRandomAccessFile(
std::move(underlying), std::move(stream), prefix_length));
} else {
result->reset(underlying.release());
}
}
return status;
}
// NewWritableFile opens a file for sequential writing.
IOStatus NewWritableFile(const std::string& fname, const FileOptions& options,
std::unique_ptr<FSWritableFile>* result,
IODebugContext* dbg) override {
result->reset();
if (options.use_mmap_writes) {
return IOStatus::InvalidArgument();
}
// Open file using underlying Env implementation
std::unique_ptr<FSWritableFile> underlying;
IOStatus status =
FileSystemWrapper::NewWritableFile(fname, options, &underlying, dbg);
if (!status.ok()) {
return status;
}
return CreateWritableEncryptedFile(fname, underlying, options, result, dbg);
}
// Create an object that writes to a new file with the specified
// name. Deletes any existing file with the same name and creates a
// new file. On success, stores a pointer to the new file in
// *result and returns OK. On failure stores nullptr in *result and
// returns non-OK.
//
// The returned file will only be accessed by one thread at a time.
IOStatus ReopenWritableFile(const std::string& fname,
const FileOptions& options,
std::unique_ptr<FSWritableFile>* result,
IODebugContext* dbg) override {
result->reset();
if (options.use_mmap_writes) {
return IOStatus::InvalidArgument();
}
// Open file using underlying Env implementation
std::unique_ptr<FSWritableFile> underlying;
IOStatus status =
FileSystemWrapper::ReopenWritableFile(fname, options, &underlying, dbg);
if (!status.ok()) {
return status;
}
return CreateWritableEncryptedFile(fname, underlying, options, result, dbg);
}
// Reuse an existing file by renaming it and opening it as writable.
IOStatus ReuseWritableFile(const std::string& fname,
const std::string& old_fname,
const FileOptions& options,
std::unique_ptr<FSWritableFile>* result,
IODebugContext* dbg) override {
result->reset();
if (options.use_mmap_writes) {
return IOStatus::InvalidArgument();
}
// Open file using underlying Env implementation
std::unique_ptr<FSWritableFile> underlying;
auto status = FileSystemWrapper::ReuseWritableFile(
fname, old_fname, options, &underlying, dbg);
if (!status.ok()) {
return status;
}
return CreateWritableEncryptedFile(fname, underlying, options, result, dbg);
}
// Open `fname` for random read and write, if file doesn't exist the file
// will be created. On success, stores a pointer to the new file in
// *result and returns OK. On failure returns non-OK.
//
// The returned file will only be accessed by one thread at a time.
IOStatus NewRandomRWFile(const std::string& fname, const FileOptions& options,
std::unique_ptr<FSRandomRWFile>* result,
IODebugContext* dbg) override {
result->reset();
if (options.use_mmap_reads || options.use_mmap_writes) {
return IOStatus::InvalidArgument();
}
// Check file exists
bool isNewFile = !FileExists(fname, options.io_options, dbg).ok();
// Open file using underlying Env implementation
std::unique_ptr<FSRandomRWFile> underlying;
auto status =
FileSystemWrapper::NewRandomRWFile(fname, options, &underlying, dbg);
if (!status.ok()) {
return status;
}
// Create cipher stream
std::unique_ptr<BlockAccessCipherStream> stream;
size_t prefix_length = 0;
if (!isNewFile) {
// File already exists, read prefix
status = CreateRandomReadCipherStream(fname, underlying, options,
&prefix_length, &stream, dbg);
} else {
status = CreateRandomWriteCipherStream(fname, underlying, options,
&prefix_length, &stream, dbg);
}
if (status.ok()) {
if (stream) {
result->reset(new EncryptedRandomRWFile(
std::move(underlying), std::move(stream), prefix_length));
} else {
result->reset(underlying.release());
}
}
return status;
}
// Store in *result the attributes of the children of the specified
// directory.
// In case the implementation lists the directory prior to iterating the
// files
// and files are concurrently deleted, the deleted files will be omitted
// from
// result.
// The name attributes are relative to "dir".
// Original contents of *results are dropped.
// Returns OK if "dir" exists and "*result" contains its children.
// NotFound if "dir" does not exist, the calling process does not
// have
// permission to access "dir", or if "dir" is invalid.
// IOError if an IO Error was encountered
IOStatus GetChildrenFileAttributes(const std::string& dir,
const IOOptions& options,
std::vector<FileAttributes>* result,
IODebugContext* dbg) override {
auto status =
FileSystemWrapper::GetChildrenFileAttributes(dir, options, result, dbg);
if (!status.ok()) {
return status;
}
for (auto it = std::begin(*result); it != std::end(*result); ++it) {
// assert(it->size_bytes >= prefixLength);
// breaks env_basic_test when called on directory containing
// directories
// which makes subtraction of prefixLength worrisome since
// FileAttributes does not identify directories
EncryptionProvider* provider;
status = GetReadableProvider(it->name, &provider);
if (!status.ok()) {
return status;
} else if (provider != nullptr) {
it->size_bytes -= provider->GetPrefixLength();
}
}
return IOStatus::OK();
}
// Store the size of fname in *file_size.
IOStatus GetFileSize(const std::string& fname, const IOOptions& options,
uint64_t* file_size, IODebugContext* dbg) override {
auto status =
FileSystemWrapper::GetFileSize(fname, options, file_size, dbg);
if (!status.ok() || !(*file_size)) {
return status;
}
EncryptionProvider* provider;
status = GetReadableProvider(fname, &provider);
if (provider != nullptr && status.ok()) {
size_t prefixLength = provider->GetPrefixLength();
assert(*file_size >= prefixLength);
*file_size -= prefixLength;
}
return status;
}
private:
std::shared_ptr<EncryptionProvider> provider_;
};
} // namespace
Status NewEncryptedFileSystemImpl(
const std::shared_ptr<FileSystem>& base,
const std::shared_ptr<EncryptionProvider>& provider,
std::unique_ptr<FileSystem>* result) {
result->reset(new EncryptedFileSystemImpl(base, provider));
return Status::OK();
}
std::shared_ptr<FileSystem> NewEncryptedFS(
const std::shared_ptr<FileSystem>& base,
const std::shared_ptr<EncryptionProvider>& provider) {
std::unique_ptr<FileSystem> efs;
Status s = NewEncryptedFileSystemImpl(base, provider, &efs);
if (s.ok()) {
s = efs->PrepareOptions(ConfigOptions());
}
if (s.ok()) {
std::shared_ptr<FileSystem> result(efs.release());
return result;
} else {
return nullptr;
}
}
// Returns an Env that encrypts data when stored on disk and decrypts data when
// read from disk.
Env* NewEncryptedEnv(Env* base_env,
const std::shared_ptr<EncryptionProvider>& provider) {
return new CompositeEnvWrapper(
base_env, NewEncryptedFS(base_env->GetFileSystem(), provider));
}
// Encrypt one or more (partial) blocks of data at the file offset.
// Length of data is given in dataSize.
Status BlockAccessCipherStream::Encrypt(uint64_t fileOffset, char* data,
size_t dataSize) {
// Calculate block index
auto blockSize = BlockSize();
uint64_t blockIndex = fileOffset / blockSize;
size_t blockOffset = fileOffset % blockSize;
std::unique_ptr<char[]> blockBuffer;
std::string scratch;
AllocateScratch(scratch);
// Encrypt individual blocks.
while (1) {
char* block = data;
size_t n = std::min(dataSize, blockSize - blockOffset);
if (n != blockSize) {
// We're not encrypting a full block.
// Copy data to blockBuffer
if (!blockBuffer.get()) {
// Allocate buffer
blockBuffer = std::unique_ptr<char[]>(new char[blockSize]);
}
block = blockBuffer.get();
// Copy plain data to block buffer
memmove(block + blockOffset, data, n);
}
auto status = EncryptBlock(blockIndex, block, (char*)scratch.data());
if (!status.ok()) {
return status;
}
if (block != data) {
// Copy encrypted data back to `data`.
memmove(data, block + blockOffset, n);
}
dataSize -= n;
if (dataSize == 0) {
return Status::OK();
}
data += n;
blockOffset = 0;
blockIndex++;
}
}
// Decrypt one or more (partial) blocks of data at the file offset.
// Length of data is given in dataSize.
Status BlockAccessCipherStream::Decrypt(uint64_t fileOffset, char* data,
size_t dataSize) {
// Calculate block index
auto blockSize = BlockSize();
uint64_t blockIndex = fileOffset / blockSize;
size_t blockOffset = fileOffset % blockSize;
std::unique_ptr<char[]> blockBuffer;
std::string scratch;
AllocateScratch(scratch);
// Decrypt individual blocks.
while (1) {
char* block = data;
size_t n = std::min(dataSize, blockSize - blockOffset);
if (n != blockSize) {
// We're not decrypting a full block.
// Copy data to blockBuffer
if (!blockBuffer.get()) {
// Allocate buffer
blockBuffer = std::unique_ptr<char[]>(new char[blockSize]);
}
block = blockBuffer.get();
// Copy encrypted data to block buffer
memmove(block + blockOffset, data, n);
}
auto status = DecryptBlock(blockIndex, block, (char*)scratch.data());
if (!status.ok()) {
return status;
}
if (block != data) {
// Copy decrypted data back to `data`.
memmove(data, block + blockOffset, n);
}
// Simply decrementing dataSize by n could cause it to underflow,
// which will very likely make it read over the original bounds later
assert(dataSize >= n);
if (dataSize < n) {
return Status::Corruption("Cannot decrypt data at given offset");
}
dataSize -= n;
if (dataSize == 0) {
return Status::OK();
}
data += n;
blockOffset = 0;
blockIndex++;
}
}
namespace {
static std::unordered_map<std::string, OptionTypeInfo>
rot13_block_cipher_type_info = {
{"block_size",
{0 /* No offset, whole struct*/, OptionType::kInt,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
};
// Implements a BlockCipher using ROT13.
//
// Note: This is a sample implementation of BlockCipher,
// it is NOT considered safe and should NOT be used in production.
class ROT13BlockCipher : public BlockCipher {
private:
size_t blockSize_;
public:
explicit ROT13BlockCipher(size_t blockSize) : blockSize_(blockSize) {
RegisterOptions("ROT13BlockCipherOptions", &blockSize_,
&rot13_block_cipher_type_info);
}
static const char* kClassName() { return "ROT13"; }
const char* Name() const override { return kClassName(); }
// BlockSize returns the size of each block supported by this cipher stream.
size_t BlockSize() override { return blockSize_; }
// Encrypt a block of data.
// Length of data is equal to BlockSize().
Status Encrypt(char* data) override {
for (size_t i = 0; i < blockSize_; ++i) {
data[i] += 13;
}
return Status::OK();
}
// Decrypt a block of data.
// Length of data is equal to BlockSize().
Status Decrypt(char* data) override { return Encrypt(data); }
};
static const std::unordered_map<std::string, OptionTypeInfo>
ctr_encryption_provider_type_info = {
{"cipher",
OptionTypeInfo::AsCustomSharedPtr<BlockCipher>(
0 /* No offset, whole struct*/, OptionVerificationType::kByName,
OptionTypeFlags::kNone)},
};
} // anonymous namespace
// Allocate scratch space which is passed to EncryptBlock/DecryptBlock.
void CTRCipherStream::AllocateScratch(std::string& scratch) {
auto blockSize = cipher_->BlockSize();
scratch.reserve(blockSize);
}
// Encrypt a block of data at the given block index.
// Length of data is equal to BlockSize();
Status CTRCipherStream::EncryptBlock(uint64_t blockIndex, char* data,
char* scratch) {
// Create nonce + counter
auto blockSize = cipher_->BlockSize();
memmove(scratch, iv_.data(), blockSize);
EncodeFixed64(scratch, blockIndex + initialCounter_);
// Encrypt nonce+counter
auto status = cipher_->Encrypt(scratch);
if (!status.ok()) {
return status;
}
// XOR data with ciphertext.
for (size_t i = 0; i < blockSize; i++) {
data[i] = data[i] ^ scratch[i];
}
return Status::OK();
}
// Decrypt a block of data at the given block index.
// Length of data is equal to BlockSize();
Status CTRCipherStream::DecryptBlock(uint64_t blockIndex, char* data,
char* scratch) {
// For CTR decryption & encryption are the same
return EncryptBlock(blockIndex, data, scratch);
}
CTREncryptionProvider::CTREncryptionProvider(
const std::shared_ptr<BlockCipher>& c)
: cipher_(c) {
RegisterOptions("Cipher", &cipher_, &ctr_encryption_provider_type_info);
}
bool CTREncryptionProvider::IsInstanceOf(const std::string& name) const {
// Special case for test purposes.
if (name == "1://test" && cipher_ != nullptr) {
return cipher_->IsInstanceOf(ROT13BlockCipher::kClassName());
} else {
return EncryptionProvider::IsInstanceOf(name);
}
}
// GetPrefixLength returns the length of the prefix that is added to every file
// and used for storing encryption options.
// For optimal performance, the prefix length should be a multiple of
// the page size.
size_t CTREncryptionProvider::GetPrefixLength() const {
return defaultPrefixLength;
}
Status CTREncryptionProvider::AddCipher(const std::string& /*descriptor*/,
const char* cipher, size_t len,
bool /*for_write*/) {
if (cipher_) {
return Status::NotSupported("Cannot add keys to CTREncryptionProvider");
} else if (strcmp(ROT13BlockCipher::kClassName(), cipher) == 0) {
cipher_.reset(new ROT13BlockCipher(len));
return Status::OK();
} else {
return BlockCipher::CreateFromString(ConfigOptions(), std::string(cipher),
&cipher_);
}
}
// decodeCTRParameters decodes the initial counter & IV from the given
// (plain text) prefix.
static void decodeCTRParameters(const char* prefix, size_t blockSize,
uint64_t& initialCounter, Slice& iv) {
// First block contains 64-bit initial counter
initialCounter = DecodeFixed64(prefix);
// Second block contains IV
iv = Slice(prefix + blockSize, blockSize);
}
// CreateNewPrefix initialized an allocated block of prefix memory
// for a new file.
Status CTREncryptionProvider::CreateNewPrefix(const std::string& /*fname*/,
char* prefix,
size_t prefixLength) const {
if (!cipher_) {
return Status::InvalidArgument("Encryption Cipher is missing");
}
// Create & seed rnd.
Random rnd((uint32_t)SystemClock::Default()->NowMicros());
// Fill entire prefix block with random values.
for (size_t i = 0; i < prefixLength; i++) {
prefix[i] = rnd.Uniform(256) & 0xFF;
}
// Take random data to extract initial counter & IV
auto blockSize = cipher_->BlockSize();
uint64_t initialCounter;
Slice prefixIV;
decodeCTRParameters(prefix, blockSize, initialCounter, prefixIV);
// Now populate the rest of the prefix, starting from the third block.
PopulateSecretPrefixPart(prefix + (2 * blockSize),
prefixLength - (2 * blockSize), blockSize);
// Encrypt the prefix, starting from block 2 (leave block 0, 1 with initial
// counter & IV unencrypted)
CTRCipherStream cipherStream(cipher_, prefixIV.data(), initialCounter);
Status status;
{
PERF_TIMER_GUARD(encrypt_data_nanos);
status = cipherStream.Encrypt(0, prefix + (2 * blockSize),
prefixLength - (2 * blockSize));
}
if (!status.ok()) {
return status;
}
return Status::OK();
}
// PopulateSecretPrefixPart initializes the data into a new prefix block
// in plain text.
// Returns the amount of space (starting from the start of the prefix)
// that has been initialized.
size_t CTREncryptionProvider::PopulateSecretPrefixPart(
char* /*prefix*/, size_t /*prefixLength*/, size_t /*blockSize*/) const {
// Nothing to do here, put in custom data in override when needed.
return 0;
}
Status CTREncryptionProvider::CreateCipherStream(
const std::string& fname, const EnvOptions& options, Slice& prefix,
std::unique_ptr<BlockAccessCipherStream>* result) {
if (!cipher_) {
return Status::InvalidArgument("Encryption Cipher is missing");
}
// Read plain text part of prefix.
auto blockSize = cipher_->BlockSize();
uint64_t initialCounter;
Slice iv;
decodeCTRParameters(prefix.data(), blockSize, initialCounter, iv);
// If the prefix is smaller than twice the block size, we would below read a
// very large chunk of the file (and very likely read over the bounds)
assert(prefix.size() >= 2 * blockSize);
if (prefix.size() < 2 * blockSize) {
return Status::Corruption("Unable to read from file " + fname +
": read attempt would read beyond file bounds");
}
// Decrypt the encrypted part of the prefix, starting from block 2 (block 0, 1
// with initial counter & IV are unencrypted)
CTRCipherStream cipherStream(cipher_, iv.data(), initialCounter);
Status status;
{
PERF_TIMER_GUARD(decrypt_data_nanos);
status = cipherStream.Decrypt(0, (char*)prefix.data() + (2 * blockSize),
prefix.size() - (2 * blockSize));
}
if (!status.ok()) {
return status;
}
// Create cipher stream
return CreateCipherStreamFromPrefix(fname, options, initialCounter, iv,
prefix, result);
}
// CreateCipherStreamFromPrefix creates a block access cipher stream for a file
// given given name and options. The given prefix is already decrypted.
Status CTREncryptionProvider::CreateCipherStreamFromPrefix(
const std::string& /*fname*/, const EnvOptions& /*options*/,
uint64_t initialCounter, const Slice& iv, const Slice& /*prefix*/,
std::unique_ptr<BlockAccessCipherStream>* result) {
(*result) = std::unique_ptr<BlockAccessCipherStream>(
new CTRCipherStream(cipher_, iv.data(), initialCounter));
return Status::OK();
}
namespace {
static void RegisterEncryptionBuiltins() {
static std::once_flag once;
std::call_once(once, [&]() {
auto lib = ObjectRegistry::Default()->AddLibrary("encryption");
// Match "CTR" or "CTR://test"
lib->AddFactory<EncryptionProvider>(
ObjectLibrary::PatternEntry(CTREncryptionProvider::kClassName(), true)
.AddSuffix("://test"),
[](const std::string& uri, std::unique_ptr<EncryptionProvider>* guard,
std::string* /*errmsg*/) {
if (EndsWith(uri, "://test")) {
std::shared_ptr<BlockCipher> cipher =
std::make_shared<ROT13BlockCipher>(32);
guard->reset(new CTREncryptionProvider(cipher));
} else {
guard->reset(new CTREncryptionProvider());
}
return guard->get();
});
lib->AddFactory<EncryptionProvider>(
"1://test", [](const std::string& /*uri*/,
std::unique_ptr<EncryptionProvider>* guard,
std::string* /*errmsg*/) {
std::shared_ptr<BlockCipher> cipher =
std::make_shared<ROT13BlockCipher>(32);
guard->reset(new CTREncryptionProvider(cipher));
return guard->get();
});
// Match "ROT13" or "ROT13:[0-9]+"
lib->AddFactory<BlockCipher>(
ObjectLibrary::PatternEntry(ROT13BlockCipher::kClassName(), true)
.AddNumber(":"),
[](const std::string& uri, std::unique_ptr<BlockCipher>* guard,
std::string* /* errmsg */) {
size_t colon = uri.find(':');
if (colon != std::string::npos) {
size_t block_size = ParseSizeT(uri.substr(colon + 1));
guard->reset(new ROT13BlockCipher(block_size));
} else {
guard->reset(new ROT13BlockCipher(32));
}
return guard->get();
});
});
}
} // namespace
Status BlockCipher::CreateFromString(const ConfigOptions& config_options,
const std::string& value,
std::shared_ptr<BlockCipher>* result) {
RegisterEncryptionBuiltins();
return LoadSharedObject<BlockCipher>(config_options, value, result);
}
Status EncryptionProvider::CreateFromString(
const ConfigOptions& config_options, const std::string& value,
std::shared_ptr<EncryptionProvider>* result) {
RegisterEncryptionBuiltins();
return LoadSharedObject<EncryptionProvider>(config_options, value, result);
}
} // namespace ROCKSDB_NAMESPACE