rocksdb/db/db_impl/db_impl.cc
Andrew Kryczka 941543721d Bytes read stat for VerifyChecksum() and VerifyFileChecksums() APIs (#8741)
Summary:
- Clarified some comments on compatibility for adding new ticker stats
- Added read I/O stats for `VerifyChecksum()` and `VerifyFileChecksums()` APIs

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8741

Test Plan: new unit test

Reviewed By: zhichao-cao

Differential Revision: D30708578

Pulled By: ajkr

fbshipit-source-id: d06b961f7e199ae92c266b683e39870aa8f63449
2021-09-07 13:28:29 -07:00

5236 lines
185 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl/db_impl.h"
#include <stdint.h>
#ifdef OS_SOLARIS
#include <alloca.h>
#endif
#include <algorithm>
#include <cinttypes>
#include <cstdio>
#include <map>
#include <set>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "db/arena_wrapped_db_iter.h"
#include "db/builder.h"
#include "db/compaction/compaction_job.h"
#include "db/db_info_dumper.h"
#include "db/db_iter.h"
#include "db/dbformat.h"
#include "db/error_handler.h"
#include "db/event_helpers.h"
#include "db/external_sst_file_ingestion_job.h"
#include "db/flush_job.h"
#include "db/forward_iterator.h"
#include "db/import_column_family_job.h"
#include "db/job_context.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/malloc_stats.h"
#include "db/memtable.h"
#include "db/memtable_list.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "db/periodic_work_scheduler.h"
#include "db/range_tombstone_fragmenter.h"
#include "db/table_cache.h"
#include "db/table_properties_collector.h"
#include "db/transaction_log_impl.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "db/write_callback.h"
#include "env/unique_id.h"
#include "file/file_util.h"
#include "file/filename.h"
#include "file/random_access_file_reader.h"
#include "file/sst_file_manager_impl.h"
#include "logging/auto_roll_logger.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "memtable/hash_linklist_rep.h"
#include "memtable/hash_skiplist_rep.h"
#include "monitoring/in_memory_stats_history.h"
#include "monitoring/instrumented_mutex.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/persistent_stats_history.h"
#include "monitoring/thread_status_updater.h"
#include "monitoring/thread_status_util.h"
#include "options/cf_options.h"
#include "options/options_helper.h"
#include "options/options_parser.h"
#include "port/port.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/statistics.h"
#include "rocksdb/stats_history.h"
#include "rocksdb/status.h"
#include "rocksdb/table.h"
#include "rocksdb/version.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/block_based/block.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/get_context.h"
#include "table/merging_iterator.h"
#include "table/multiget_context.h"
#include "table/sst_file_dumper.h"
#include "table/table_builder.h"
#include "table/two_level_iterator.h"
#include "test_util/sync_point.h"
#include "trace_replay/trace_replay.h"
#include "util/autovector.h"
#include "util/cast_util.h"
#include "util/coding.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/defer.h"
#include "util/mutexlock.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "utilities/trace/replayer_impl.h"
namespace ROCKSDB_NAMESPACE {
const std::string kDefaultColumnFamilyName("default");
const std::string kPersistentStatsColumnFamilyName(
"___rocksdb_stats_history___");
void DumpRocksDBBuildVersion(Logger* log);
CompressionType GetCompressionFlush(
const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options) {
// Compressing memtable flushes might not help unless the sequential load
// optimization is used for leveled compaction. Otherwise the CPU and
// latency overhead is not offset by saving much space.
if (ioptions.compaction_style == kCompactionStyleUniversal) {
if (mutable_cf_options.compaction_options_universal
.compression_size_percent < 0) {
return mutable_cf_options.compression;
} else {
return kNoCompression;
}
} else if (!ioptions.compression_per_level.empty()) {
// For leveled compress when min_level_to_compress != 0.
return ioptions.compression_per_level[0];
} else {
return mutable_cf_options.compression;
}
}
namespace {
void DumpSupportInfo(Logger* logger) {
ROCKS_LOG_HEADER(logger, "Compression algorithms supported:");
for (auto& compression : OptionsHelper::compression_type_string_map) {
if (compression.second != kNoCompression &&
compression.second != kDisableCompressionOption) {
ROCKS_LOG_HEADER(logger, "\t%s supported: %d", compression.first.c_str(),
CompressionTypeSupported(compression.second));
}
}
ROCKS_LOG_HEADER(logger, "Fast CRC32 supported: %s",
crc32c::IsFastCrc32Supported().c_str());
}
} // namespace
DBImpl::DBImpl(const DBOptions& options, const std::string& dbname,
const bool seq_per_batch, const bool batch_per_txn,
bool read_only)
: dbname_(dbname),
own_info_log_(options.info_log == nullptr),
initial_db_options_(SanitizeOptions(dbname, options, read_only)),
env_(initial_db_options_.env),
io_tracer_(std::make_shared<IOTracer>()),
immutable_db_options_(initial_db_options_),
fs_(immutable_db_options_.fs, io_tracer_),
mutable_db_options_(initial_db_options_),
stats_(immutable_db_options_.stats),
mutex_(stats_, immutable_db_options_.clock, DB_MUTEX_WAIT_MICROS,
immutable_db_options_.use_adaptive_mutex),
default_cf_handle_(nullptr),
error_handler_(this, immutable_db_options_, &mutex_),
event_logger_(immutable_db_options_.info_log.get()),
max_total_in_memory_state_(0),
file_options_(BuildDBOptions(immutable_db_options_, mutable_db_options_)),
file_options_for_compaction_(fs_->OptimizeForCompactionTableWrite(
file_options_, immutable_db_options_)),
seq_per_batch_(seq_per_batch),
batch_per_txn_(batch_per_txn),
next_job_id_(1),
shutting_down_(false),
db_lock_(nullptr),
manual_compaction_paused_(false),
bg_cv_(&mutex_),
logfile_number_(0),
log_dir_synced_(false),
log_empty_(true),
persist_stats_cf_handle_(nullptr),
log_sync_cv_(&mutex_),
total_log_size_(0),
is_snapshot_supported_(true),
write_buffer_manager_(immutable_db_options_.write_buffer_manager.get()),
write_thread_(immutable_db_options_),
nonmem_write_thread_(immutable_db_options_),
write_controller_(mutable_db_options_.delayed_write_rate),
last_batch_group_size_(0),
unscheduled_flushes_(0),
unscheduled_compactions_(0),
bg_bottom_compaction_scheduled_(0),
bg_compaction_scheduled_(0),
num_running_compactions_(0),
bg_flush_scheduled_(0),
num_running_flushes_(0),
bg_purge_scheduled_(0),
disable_delete_obsolete_files_(0),
pending_purge_obsolete_files_(0),
delete_obsolete_files_last_run_(immutable_db_options_.clock->NowMicros()),
last_stats_dump_time_microsec_(0),
has_unpersisted_data_(false),
unable_to_release_oldest_log_(false),
num_running_ingest_file_(0),
#ifndef ROCKSDB_LITE
wal_manager_(immutable_db_options_, file_options_, io_tracer_,
seq_per_batch),
#endif // ROCKSDB_LITE
bg_work_paused_(0),
bg_compaction_paused_(0),
refitting_level_(false),
opened_successfully_(false),
#ifndef ROCKSDB_LITE
periodic_work_scheduler_(nullptr),
#endif // ROCKSDB_LITE
two_write_queues_(options.two_write_queues),
manual_wal_flush_(options.manual_wal_flush),
// last_sequencee_ is always maintained by the main queue that also writes
// to the memtable. When two_write_queues_ is disabled last seq in
// memtable is the same as last seq published to the readers. When it is
// enabled but seq_per_batch_ is disabled, last seq in memtable still
// indicates last published seq since wal-only writes that go to the 2nd
// queue do not consume a sequence number. Otherwise writes performed by
// the 2nd queue could change what is visible to the readers. In this
// cases, last_seq_same_as_publish_seq_==false, the 2nd queue maintains a
// separate variable to indicate the last published sequence.
last_seq_same_as_publish_seq_(
!(seq_per_batch && options.two_write_queues)),
// Since seq_per_batch_ is currently set only by WritePreparedTxn which
// requires a custom gc for compaction, we use that to set use_custom_gc_
// as well.
use_custom_gc_(seq_per_batch),
shutdown_initiated_(false),
own_sfm_(options.sst_file_manager == nullptr),
preserve_deletes_(options.preserve_deletes),
closed_(false),
atomic_flush_install_cv_(&mutex_),
blob_callback_(immutable_db_options_.sst_file_manager.get(), &mutex_,
&error_handler_) {
// !batch_per_trx_ implies seq_per_batch_ because it is only unset for
// WriteUnprepared, which should use seq_per_batch_.
assert(batch_per_txn_ || seq_per_batch_);
// TODO: Check for an error here
env_->GetAbsolutePath(dbname, &db_absolute_path_).PermitUncheckedError();
// Reserve ten files or so for other uses and give the rest to TableCache.
// Give a large number for setting of "infinite" open files.
const int table_cache_size = (mutable_db_options_.max_open_files == -1)
? TableCache::kInfiniteCapacity
: mutable_db_options_.max_open_files - 10;
LRUCacheOptions co;
co.capacity = table_cache_size;
co.num_shard_bits = immutable_db_options_.table_cache_numshardbits;
co.metadata_charge_policy = kDontChargeCacheMetadata;
table_cache_ = NewLRUCache(co);
SetDbSessionId();
assert(!db_session_id_.empty());
versions_.reset(new VersionSet(dbname_, &immutable_db_options_, file_options_,
table_cache_.get(), write_buffer_manager_,
&write_controller_, &block_cache_tracer_,
io_tracer_, db_session_id_));
column_family_memtables_.reset(
new ColumnFamilyMemTablesImpl(versions_->GetColumnFamilySet()));
DumpRocksDBBuildVersion(immutable_db_options_.info_log.get());
DumpDBFileSummary(immutable_db_options_, dbname_, db_session_id_);
immutable_db_options_.Dump(immutable_db_options_.info_log.get());
mutable_db_options_.Dump(immutable_db_options_.info_log.get());
DumpSupportInfo(immutable_db_options_.info_log.get());
// always open the DB with 0 here, which means if preserve_deletes_==true
// we won't drop any deletion markers until SetPreserveDeletesSequenceNumber()
// is called by client and this seqnum is advanced.
preserve_deletes_seqnum_.store(0);
if (write_buffer_manager_) {
wbm_stall_.reset(new WBMStallInterface());
}
}
Status DBImpl::Resume() {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "Resuming DB");
InstrumentedMutexLock db_mutex(&mutex_);
if (!error_handler_.IsDBStopped() && !error_handler_.IsBGWorkStopped()) {
// Nothing to do
return Status::OK();
}
if (error_handler_.IsRecoveryInProgress()) {
// Don't allow a mix of manual and automatic recovery
return Status::Busy();
}
mutex_.Unlock();
Status s = error_handler_.RecoverFromBGError(true);
mutex_.Lock();
return s;
}
// This function implements the guts of recovery from a background error. It
// is eventually called for both manual as well as automatic recovery. It does
// the following -
// 1. Wait for currently scheduled background flush/compaction to exit, in
// order to inadvertently causing an error and thinking recovery failed
// 2. Flush memtables if there's any data for all the CFs. This may result
// another error, which will be saved by error_handler_ and reported later
// as the recovery status
// 3. Find and delete any obsolete files
// 4. Schedule compactions if needed for all the CFs. This is needed as the
// flush in the prior step might have been a no-op for some CFs, which
// means a new super version wouldn't have been installed
Status DBImpl::ResumeImpl(DBRecoverContext context) {
mutex_.AssertHeld();
WaitForBackgroundWork();
Status s;
if (shutdown_initiated_) {
// Returning shutdown status to SFM during auto recovery will cause it
// to abort the recovery and allow the shutdown to progress
s = Status::ShutdownInProgress();
}
if (s.ok()) {
Status bg_error = error_handler_.GetBGError();
if (bg_error.severity() > Status::Severity::kHardError) {
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"DB resume requested but failed due to Fatal/Unrecoverable error");
s = bg_error;
}
}
// Make sure the IO Status stored in version set is set to OK.
bool file_deletion_disabled = !IsFileDeletionsEnabled();
if (s.ok()) {
IOStatus io_s = versions_->io_status();
if (io_s.IsIOError()) {
// If resuming from IOError resulted from MANIFEST write, then assert
// that we must have already set the MANIFEST writer to nullptr during
// clean-up phase MANIFEST writing. We must have also disabled file
// deletions.
assert(!versions_->descriptor_log_);
assert(file_deletion_disabled);
// Since we are trying to recover from MANIFEST write error, we need to
// switch to a new MANIFEST anyway. The old MANIFEST can be corrupted.
// Therefore, force writing a dummy version edit because we do not know
// whether there are flush jobs with non-empty data to flush, triggering
// appends to MANIFEST.
VersionEdit edit;
auto cfh =
static_cast_with_check<ColumnFamilyHandleImpl>(default_cf_handle_);
assert(cfh);
ColumnFamilyData* cfd = cfh->cfd();
const MutableCFOptions& cf_opts = *cfd->GetLatestMutableCFOptions();
s = versions_->LogAndApply(cfd, cf_opts, &edit, &mutex_,
directories_.GetDbDir());
if (!s.ok()) {
io_s = versions_->io_status();
if (!io_s.ok()) {
s = error_handler_.SetBGError(io_s,
BackgroundErrorReason::kManifestWrite);
}
}
}
}
// We cannot guarantee consistency of the WAL. So force flush Memtables of
// all the column families
if (s.ok()) {
FlushOptions flush_opts;
// We allow flush to stall write since we are trying to resume from error.
flush_opts.allow_write_stall = true;
if (immutable_db_options_.atomic_flush) {
autovector<ColumnFamilyData*> cfds;
SelectColumnFamiliesForAtomicFlush(&cfds);
mutex_.Unlock();
s = AtomicFlushMemTables(cfds, flush_opts, context.flush_reason);
mutex_.Lock();
} else {
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
cfd->Ref();
mutex_.Unlock();
s = FlushMemTable(cfd, flush_opts, context.flush_reason);
mutex_.Lock();
cfd->UnrefAndTryDelete();
if (!s.ok()) {
break;
}
}
}
if (!s.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"DB resume requested but failed due to Flush failure [%s]",
s.ToString().c_str());
}
}
JobContext job_context(0);
FindObsoleteFiles(&job_context, true);
if (s.ok()) {
s = error_handler_.ClearBGError();
} else {
// NOTE: this is needed to pass ASSERT_STATUS_CHECKED
// in the DBSSTTest.DBWithMaxSpaceAllowedRandomized test.
// See https://github.com/facebook/rocksdb/pull/7715#issuecomment-754947952
error_handler_.GetRecoveryError().PermitUncheckedError();
}
mutex_.Unlock();
job_context.manifest_file_number = 1;
if (job_context.HaveSomethingToDelete()) {
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
if (s.ok()) {
assert(versions_->io_status().ok());
// If we reach here, we should re-enable file deletions if it was disabled
// during previous error handling.
if (file_deletion_disabled) {
// Always return ok
s = EnableFileDeletions(/*force=*/true);
if (!s.ok()) {
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"DB resume requested but could not enable file deletions [%s]",
s.ToString().c_str());
}
}
ROCKS_LOG_INFO(immutable_db_options_.info_log, "Successfully resumed DB");
}
mutex_.Lock();
// Check for shutdown again before scheduling further compactions,
// since we released and re-acquired the lock above
if (shutdown_initiated_) {
s = Status::ShutdownInProgress();
}
if (s.ok()) {
for (auto cfd : *versions_->GetColumnFamilySet()) {
SchedulePendingCompaction(cfd);
}
MaybeScheduleFlushOrCompaction();
}
// Wake up any waiters - in this case, it could be the shutdown thread
bg_cv_.SignalAll();
// No need to check BGError again. If something happened, event listener would
// be notified and the operation causing it would have failed
return s;
}
void DBImpl::WaitForBackgroundWork() {
// Wait for background work to finish
while (bg_bottom_compaction_scheduled_ || bg_compaction_scheduled_ ||
bg_flush_scheduled_) {
bg_cv_.Wait();
}
}
// Will lock the mutex_, will wait for completion if wait is true
void DBImpl::CancelAllBackgroundWork(bool wait) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Shutdown: canceling all background work");
#ifndef ROCKSDB_LITE
if (periodic_work_scheduler_ != nullptr) {
periodic_work_scheduler_->Unregister(this);
}
#endif // !ROCKSDB_LITE
InstrumentedMutexLock l(&mutex_);
if (!shutting_down_.load(std::memory_order_acquire) &&
has_unpersisted_data_.load(std::memory_order_relaxed) &&
!mutable_db_options_.avoid_flush_during_shutdown) {
if (immutable_db_options_.atomic_flush) {
autovector<ColumnFamilyData*> cfds;
SelectColumnFamiliesForAtomicFlush(&cfds);
mutex_.Unlock();
Status s =
AtomicFlushMemTables(cfds, FlushOptions(), FlushReason::kShutDown);
s.PermitUncheckedError(); //**TODO: What to do on error?
mutex_.Lock();
} else {
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->IsDropped() && cfd->initialized() && !cfd->mem()->IsEmpty()) {
cfd->Ref();
mutex_.Unlock();
Status s = FlushMemTable(cfd, FlushOptions(), FlushReason::kShutDown);
s.PermitUncheckedError(); //**TODO: What to do on error?
mutex_.Lock();
cfd->UnrefAndTryDelete();
}
}
}
versions_->GetColumnFamilySet()->FreeDeadColumnFamilies();
}
shutting_down_.store(true, std::memory_order_release);
bg_cv_.SignalAll();
if (!wait) {
return;
}
WaitForBackgroundWork();
}
Status DBImpl::CloseHelper() {
// Guarantee that there is no background error recovery in progress before
// continuing with the shutdown
mutex_.Lock();
shutdown_initiated_ = true;
error_handler_.CancelErrorRecovery();
while (error_handler_.IsRecoveryInProgress()) {
bg_cv_.Wait();
}
mutex_.Unlock();
// Below check is added as recovery_error_ is not checked and it causes crash
// in DBSSTTest.DBWithMaxSpaceAllowedWithBlobFiles when space limit is
// reached.
error_handler_.GetRecoveryError().PermitUncheckedError();
// CancelAllBackgroundWork called with false means we just set the shutdown
// marker. After this we do a variant of the waiting and unschedule work
// (to consider: moving all the waiting into CancelAllBackgroundWork(true))
CancelAllBackgroundWork(false);
mutex_.Lock();
env_->UnSchedule(this, Env::Priority::BOTTOM);
env_->UnSchedule(this, Env::Priority::LOW);
env_->UnSchedule(this, Env::Priority::HIGH);
Status ret = Status::OK();
// Wait for background work to finish
while (bg_bottom_compaction_scheduled_ || bg_compaction_scheduled_ ||
bg_flush_scheduled_ || bg_purge_scheduled_ ||
pending_purge_obsolete_files_ ||
error_handler_.IsRecoveryInProgress()) {
TEST_SYNC_POINT("DBImpl::~DBImpl:WaitJob");
bg_cv_.Wait();
}
TEST_SYNC_POINT_CALLBACK("DBImpl::CloseHelper:PendingPurgeFinished",
&files_grabbed_for_purge_);
EraseThreadStatusDbInfo();
flush_scheduler_.Clear();
trim_history_scheduler_.Clear();
// For now, simply trigger a manual flush at close time
// on all the column families.
// TODO(bjlemaire): Check if this is needed. Also, in the
// future we can contemplate doing a more fine-grained
// flushing by first checking if there is a need for
// flushing (but need to implement something
// else than imm()->IsFlushPending() because the output
// memtables added to imm() dont trigger flushes).
if (immutable_db_options_.experimental_mempurge_threshold > 0.0) {
Status flush_ret;
mutex_.Unlock();
for (ColumnFamilyData* cf : *versions_->GetColumnFamilySet()) {
if (immutable_db_options_.atomic_flush) {
flush_ret = AtomicFlushMemTables({cf}, FlushOptions(),
FlushReason::kManualFlush);
if (!flush_ret.ok()) {
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Atomic flush memtables failed upon closing (mempurge).");
}
} else {
flush_ret =
FlushMemTable(cf, FlushOptions(), FlushReason::kManualFlush);
if (!flush_ret.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Flush memtables failed upon closing (mempurge).");
}
}
}
mutex_.Lock();
}
while (!flush_queue_.empty()) {
const FlushRequest& flush_req = PopFirstFromFlushQueue();
for (const auto& iter : flush_req) {
iter.first->UnrefAndTryDelete();
}
}
while (!compaction_queue_.empty()) {
auto cfd = PopFirstFromCompactionQueue();
cfd->UnrefAndTryDelete();
}
if (default_cf_handle_ != nullptr || persist_stats_cf_handle_ != nullptr) {
// we need to delete handle outside of lock because it does its own locking
mutex_.Unlock();
if (default_cf_handle_) {
delete default_cf_handle_;
default_cf_handle_ = nullptr;
}
if (persist_stats_cf_handle_) {
delete persist_stats_cf_handle_;
persist_stats_cf_handle_ = nullptr;
}
mutex_.Lock();
}
// Clean up obsolete files due to SuperVersion release.
// (1) Need to delete to obsolete files before closing because RepairDB()
// scans all existing files in the file system and builds manifest file.
// Keeping obsolete files confuses the repair process.
// (2) Need to check if we Open()/Recover() the DB successfully before
// deleting because if VersionSet recover fails (may be due to corrupted
// manifest file), it is not able to identify live files correctly. As a
// result, all "live" files can get deleted by accident. However, corrupted
// manifest is recoverable by RepairDB().
if (opened_successfully_) {
JobContext job_context(next_job_id_.fetch_add(1));
FindObsoleteFiles(&job_context, true);
mutex_.Unlock();
// manifest number starting from 2
job_context.manifest_file_number = 1;
if (job_context.HaveSomethingToDelete()) {
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
mutex_.Lock();
}
for (auto l : logs_to_free_) {
delete l;
}
for (auto& log : logs_) {
uint64_t log_number = log.writer->get_log_number();
Status s = log.ClearWriter();
if (!s.ok()) {
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"Unable to Sync WAL file %s with error -- %s",
LogFileName(immutable_db_options_.GetWalDir(), log_number).c_str(),
s.ToString().c_str());
// Retain the first error
if (ret.ok()) {
ret = s;
}
}
}
logs_.clear();
// Table cache may have table handles holding blocks from the block cache.
// We need to release them before the block cache is destroyed. The block
// cache may be destroyed inside versions_.reset(), when column family data
// list is destroyed, so leaving handles in table cache after
// versions_.reset() may cause issues.
// Here we clean all unreferenced handles in table cache.
// Now we assume all user queries have finished, so only version set itself
// can possibly hold the blocks from block cache. After releasing unreferenced
// handles here, only handles held by version set left and inside
// versions_.reset(), we will release them. There, we need to make sure every
// time a handle is released, we erase it from the cache too. By doing that,
// we can guarantee that after versions_.reset(), table cache is empty
// so the cache can be safely destroyed.
table_cache_->EraseUnRefEntries();
for (auto& txn_entry : recovered_transactions_) {
delete txn_entry.second;
}
// versions need to be destroyed before table_cache since it can hold
// references to table_cache.
versions_.reset();
mutex_.Unlock();
if (db_lock_ != nullptr) {
// TODO: Check for unlock error
env_->UnlockFile(db_lock_).PermitUncheckedError();
}
ROCKS_LOG_INFO(immutable_db_options_.info_log, "Shutdown complete");
LogFlush(immutable_db_options_.info_log);
#ifndef ROCKSDB_LITE
// If the sst_file_manager was allocated by us during DB::Open(), ccall
// Close() on it before closing the info_log. Otherwise, background thread
// in SstFileManagerImpl might try to log something
if (immutable_db_options_.sst_file_manager && own_sfm_) {
auto sfm = static_cast<SstFileManagerImpl*>(
immutable_db_options_.sst_file_manager.get());
sfm->Close();
}
#endif // ROCKSDB_LITE
if (immutable_db_options_.info_log && own_info_log_) {
Status s = immutable_db_options_.info_log->Close();
if (!s.ok() && !s.IsNotSupported() && ret.ok()) {
ret = s;
}
}
if (write_buffer_manager_ && wbm_stall_) {
write_buffer_manager_->RemoveDBFromQueue(wbm_stall_.get());
}
if (ret.IsAborted()) {
// Reserve IsAborted() error for those where users didn't release
// certain resource and they can release them and come back and
// retry. In this case, we wrap this exception to something else.
return Status::Incomplete(ret.ToString());
}
return ret;
}
Status DBImpl::CloseImpl() { return CloseHelper(); }
DBImpl::~DBImpl() {
if (!closed_) {
closed_ = true;
CloseHelper().PermitUncheckedError();
}
}
void DBImpl::MaybeIgnoreError(Status* s) const {
if (s->ok() || immutable_db_options_.paranoid_checks) {
// No change needed
} else {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "Ignoring error %s",
s->ToString().c_str());
*s = Status::OK();
}
}
const Status DBImpl::CreateArchivalDirectory() {
if (immutable_db_options_.WAL_ttl_seconds > 0 ||
immutable_db_options_.WAL_size_limit_MB > 0) {
std::string archivalPath =
ArchivalDirectory(immutable_db_options_.GetWalDir());
return env_->CreateDirIfMissing(archivalPath);
}
return Status::OK();
}
void DBImpl::PrintStatistics() {
auto dbstats = immutable_db_options_.stats;
if (dbstats) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "STATISTICS:\n %s",
dbstats->ToString().c_str());
}
}
void DBImpl::StartPeriodicWorkScheduler() {
#ifndef ROCKSDB_LITE
#ifndef NDEBUG
// It only used by test to disable scheduler
bool disable_scheduler = false;
TEST_SYNC_POINT_CALLBACK(
"DBImpl::StartPeriodicWorkScheduler:DisableScheduler",
&disable_scheduler);
if (disable_scheduler) {
return;
}
#endif // !NDEBUG
{
InstrumentedMutexLock l(&mutex_);
periodic_work_scheduler_ = PeriodicWorkScheduler::Default();
TEST_SYNC_POINT_CALLBACK("DBImpl::StartPeriodicWorkScheduler:Init",
&periodic_work_scheduler_);
}
periodic_work_scheduler_->Register(
this, mutable_db_options_.stats_dump_period_sec,
mutable_db_options_.stats_persist_period_sec);
#endif // !ROCKSDB_LITE
}
// esitmate the total size of stats_history_
size_t DBImpl::EstimateInMemoryStatsHistorySize() const {
size_t size_total =
sizeof(std::map<uint64_t, std::map<std::string, uint64_t>>);
if (stats_history_.size() == 0) return size_total;
size_t size_per_slice =
sizeof(uint64_t) + sizeof(std::map<std::string, uint64_t>);
// non-empty map, stats_history_.begin() guaranteed to exist
std::map<std::string, uint64_t> sample_slice(stats_history_.begin()->second);
for (const auto& pairs : sample_slice) {
size_per_slice +=
pairs.first.capacity() + sizeof(pairs.first) + sizeof(pairs.second);
}
size_total = size_per_slice * stats_history_.size();
return size_total;
}
void DBImpl::PersistStats() {
TEST_SYNC_POINT("DBImpl::PersistStats:Entry");
#ifndef ROCKSDB_LITE
if (shutdown_initiated_) {
return;
}
TEST_SYNC_POINT("DBImpl::PersistStats:StartRunning");
uint64_t now_seconds =
immutable_db_options_.clock->NowMicros() / kMicrosInSecond;
Statistics* statistics = immutable_db_options_.stats;
if (!statistics) {
return;
}
size_t stats_history_size_limit = 0;
{
InstrumentedMutexLock l(&mutex_);
stats_history_size_limit = mutable_db_options_.stats_history_buffer_size;
}
std::map<std::string, uint64_t> stats_map;
if (!statistics->getTickerMap(&stats_map)) {
return;
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"------- PERSISTING STATS -------");
if (immutable_db_options_.persist_stats_to_disk) {
WriteBatch batch;
Status s = Status::OK();
if (stats_slice_initialized_) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Reading %" ROCKSDB_PRIszt " stats from statistics\n",
stats_slice_.size());
for (const auto& stat : stats_map) {
if (s.ok()) {
char key[100];
int length =
EncodePersistentStatsKey(now_seconds, stat.first, 100, key);
// calculate the delta from last time
if (stats_slice_.find(stat.first) != stats_slice_.end()) {
uint64_t delta = stat.second - stats_slice_[stat.first];
s = batch.Put(persist_stats_cf_handle_,
Slice(key, std::min(100, length)), ToString(delta));
}
}
}
}
stats_slice_initialized_ = true;
std::swap(stats_slice_, stats_map);
if (s.ok()) {
WriteOptions wo;
wo.low_pri = true;
wo.no_slowdown = true;
wo.sync = false;
s = Write(wo, &batch);
}
if (!s.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Writing to persistent stats CF failed -- %s",
s.ToString().c_str());
} else {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Writing %" ROCKSDB_PRIszt " stats with timestamp %" PRIu64
" to persistent stats CF succeeded",
stats_slice_.size(), now_seconds);
}
// TODO(Zhongyi): add purging for persisted data
} else {
InstrumentedMutexLock l(&stats_history_mutex_);
// calculate the delta from last time
if (stats_slice_initialized_) {
std::map<std::string, uint64_t> stats_delta;
for (const auto& stat : stats_map) {
if (stats_slice_.find(stat.first) != stats_slice_.end()) {
stats_delta[stat.first] = stat.second - stats_slice_[stat.first];
}
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Storing %" ROCKSDB_PRIszt " stats with timestamp %" PRIu64
" to in-memory stats history",
stats_slice_.size(), now_seconds);
stats_history_[now_seconds] = stats_delta;
}
stats_slice_initialized_ = true;
std::swap(stats_slice_, stats_map);
TEST_SYNC_POINT("DBImpl::PersistStats:StatsCopied");
// delete older stats snapshots to control memory consumption
size_t stats_history_size = EstimateInMemoryStatsHistorySize();
bool purge_needed = stats_history_size > stats_history_size_limit;
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[Pre-GC] In-memory stats history size: %" ROCKSDB_PRIszt
" bytes, slice count: %" ROCKSDB_PRIszt,
stats_history_size, stats_history_.size());
while (purge_needed && !stats_history_.empty()) {
stats_history_.erase(stats_history_.begin());
purge_needed =
EstimateInMemoryStatsHistorySize() > stats_history_size_limit;
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[Post-GC] In-memory stats history size: %" ROCKSDB_PRIszt
" bytes, slice count: %" ROCKSDB_PRIszt,
stats_history_size, stats_history_.size());
}
TEST_SYNC_POINT("DBImpl::PersistStats:End");
#endif // !ROCKSDB_LITE
}
bool DBImpl::FindStatsByTime(uint64_t start_time, uint64_t end_time,
uint64_t* new_time,
std::map<std::string, uint64_t>* stats_map) {
assert(new_time);
assert(stats_map);
if (!new_time || !stats_map) return false;
// lock when search for start_time
{
InstrumentedMutexLock l(&stats_history_mutex_);
auto it = stats_history_.lower_bound(start_time);
if (it != stats_history_.end() && it->first < end_time) {
// make a copy for timestamp and stats_map
*new_time = it->first;
*stats_map = it->second;
return true;
} else {
return false;
}
}
}
Status DBImpl::GetStatsHistory(
uint64_t start_time, uint64_t end_time,
std::unique_ptr<StatsHistoryIterator>* stats_iterator) {
if (!stats_iterator) {
return Status::InvalidArgument("stats_iterator not preallocated.");
}
if (immutable_db_options_.persist_stats_to_disk) {
stats_iterator->reset(
new PersistentStatsHistoryIterator(start_time, end_time, this));
} else {
stats_iterator->reset(
new InMemoryStatsHistoryIterator(start_time, end_time, this));
}
return (*stats_iterator)->status();
}
void DBImpl::DumpStats() {
TEST_SYNC_POINT("DBImpl::DumpStats:1");
#ifndef ROCKSDB_LITE
std::string stats;
if (shutdown_initiated_) {
return;
}
TEST_SYNC_POINT("DBImpl::DumpStats:StartRunning");
{
InstrumentedMutexLock l(&mutex_);
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
// Release DB mutex for gathering cache entry stats. Pass over all
// column families for this first so that other stats are dumped
// near-atomically.
// Get a ref before unlocking
cfd->Ref();
{
InstrumentedMutexUnlock u(&mutex_);
cfd->internal_stats()->CollectCacheEntryStats(/*foreground=*/false);
}
cfd->UnrefAndTryDelete();
}
}
const std::string* property = &DB::Properties::kDBStats;
const DBPropertyInfo* property_info = GetPropertyInfo(*property);
assert(property_info != nullptr);
assert(!property_info->need_out_of_mutex);
default_cf_internal_stats_->GetStringProperty(*property_info, *property,
&stats);
property = &DB::Properties::kCFStatsNoFileHistogram;
property_info = GetPropertyInfo(*property);
assert(property_info != nullptr);
assert(!property_info->need_out_of_mutex);
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
cfd->internal_stats()->GetStringProperty(*property_info, *property,
&stats);
}
}
property = &DB::Properties::kCFFileHistogram;
property_info = GetPropertyInfo(*property);
assert(property_info != nullptr);
assert(!property_info->need_out_of_mutex);
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
cfd->internal_stats()->GetStringProperty(*property_info, *property,
&stats);
}
}
}
TEST_SYNC_POINT("DBImpl::DumpStats:2");
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"------- DUMPING STATS -------");
ROCKS_LOG_INFO(immutable_db_options_.info_log, "%s", stats.c_str());
if (immutable_db_options_.dump_malloc_stats) {
stats.clear();
DumpMallocStats(&stats);
if (!stats.empty()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"------- Malloc STATS -------");
ROCKS_LOG_INFO(immutable_db_options_.info_log, "%s", stats.c_str());
}
}
#endif // !ROCKSDB_LITE
PrintStatistics();
}
void DBImpl::FlushInfoLog() {
if (shutdown_initiated_) {
return;
}
TEST_SYNC_POINT("DBImpl::FlushInfoLog:StartRunning");
LogFlush(immutable_db_options_.info_log);
}
Status DBImpl::TablesRangeTombstoneSummary(ColumnFamilyHandle* column_family,
int max_entries_to_print,
std::string* out_str) {
auto* cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
ColumnFamilyData* cfd = cfh->cfd();
SuperVersion* super_version = cfd->GetReferencedSuperVersion(this);
Version* version = super_version->current;
Status s =
version->TablesRangeTombstoneSummary(max_entries_to_print, out_str);
CleanupSuperVersion(super_version);
return s;
}
void DBImpl::ScheduleBgLogWriterClose(JobContext* job_context) {
if (!job_context->logs_to_free.empty()) {
for (auto l : job_context->logs_to_free) {
AddToLogsToFreeQueue(l);
}
job_context->logs_to_free.clear();
}
}
FSDirectory* DBImpl::GetDataDir(ColumnFamilyData* cfd, size_t path_id) const {
assert(cfd);
FSDirectory* ret_dir = cfd->GetDataDir(path_id);
if (ret_dir == nullptr) {
return directories_.GetDataDir(path_id);
}
return ret_dir;
}
Status DBImpl::SetOptions(
ColumnFamilyHandle* column_family,
const std::unordered_map<std::string, std::string>& options_map) {
#ifdef ROCKSDB_LITE
(void)column_family;
(void)options_map;
return Status::NotSupported("Not supported in ROCKSDB LITE");
#else
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
if (options_map.empty()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"SetOptions() on column family [%s], empty input",
cfd->GetName().c_str());
return Status::InvalidArgument("empty input");
}
MutableCFOptions new_options;
Status s;
Status persist_options_status;
persist_options_status.PermitUncheckedError(); // Allow uninitialized access
SuperVersionContext sv_context(/* create_superversion */ true);
{
auto db_options = GetDBOptions();
InstrumentedMutexLock l(&mutex_);
s = cfd->SetOptions(db_options, options_map);
if (s.ok()) {
new_options = *cfd->GetLatestMutableCFOptions();
// Append new version to recompute compaction score.
VersionEdit dummy_edit;
s = versions_->LogAndApply(cfd, new_options, &dummy_edit, &mutex_,
directories_.GetDbDir());
// Trigger possible flush/compactions. This has to be before we persist
// options to file, otherwise there will be a deadlock with writer
// thread.
InstallSuperVersionAndScheduleWork(cfd, &sv_context, new_options);
persist_options_status = WriteOptionsFile(
false /*need_mutex_lock*/, true /*need_enter_write_thread*/);
bg_cv_.SignalAll();
}
}
sv_context.Clean();
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"SetOptions() on column family [%s], inputs:", cfd->GetName().c_str());
for (const auto& o : options_map) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "%s: %s\n", o.first.c_str(),
o.second.c_str());
}
if (s.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[%s] SetOptions() succeeded", cfd->GetName().c_str());
new_options.Dump(immutable_db_options_.info_log.get());
if (!persist_options_status.ok()) {
s = persist_options_status;
}
} else {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "[%s] SetOptions() failed",
cfd->GetName().c_str());
}
LogFlush(immutable_db_options_.info_log);
return s;
#endif // ROCKSDB_LITE
}
Status DBImpl::SetDBOptions(
const std::unordered_map<std::string, std::string>& options_map) {
#ifdef ROCKSDB_LITE
(void)options_map;
return Status::NotSupported("Not supported in ROCKSDB LITE");
#else
if (options_map.empty()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"SetDBOptions(), empty input.");
return Status::InvalidArgument("empty input");
}
MutableDBOptions new_options;
Status s;
Status persist_options_status = Status::OK();
bool wal_changed = false;
WriteContext write_context;
{
InstrumentedMutexLock l(&mutex_);
s = GetMutableDBOptionsFromStrings(mutable_db_options_, options_map,
&new_options);
if (new_options.bytes_per_sync == 0) {
new_options.bytes_per_sync = 1024 * 1024;
}
if (MutableDBOptionsAreEqual(mutable_db_options_, new_options)) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"SetDBOptions(), input option value is not changed, "
"skipping updating.");
persist_options_status.PermitUncheckedError();
return s;
}
DBOptions new_db_options =
BuildDBOptions(immutable_db_options_, new_options);
if (s.ok()) {
s = ValidateOptions(new_db_options);
}
if (s.ok()) {
for (auto c : *versions_->GetColumnFamilySet()) {
if (!c->IsDropped()) {
auto cf_options = c->GetLatestCFOptions();
s = ColumnFamilyData::ValidateOptions(new_db_options, cf_options);
if (!s.ok()) {
break;
}
}
}
}
if (s.ok()) {
const BGJobLimits current_bg_job_limits =
GetBGJobLimits(mutable_db_options_.max_background_flushes,
mutable_db_options_.max_background_compactions,
mutable_db_options_.max_background_jobs,
/* parallelize_compactions */ true);
const BGJobLimits new_bg_job_limits = GetBGJobLimits(
new_options.max_background_flushes,
new_options.max_background_compactions,
new_options.max_background_jobs, /* parallelize_compactions */ true);
const bool max_flushes_increased =
new_bg_job_limits.max_flushes > current_bg_job_limits.max_flushes;
const bool max_compactions_increased =
new_bg_job_limits.max_compactions >
current_bg_job_limits.max_compactions;
if (max_flushes_increased || max_compactions_increased) {
if (max_flushes_increased) {
env_->IncBackgroundThreadsIfNeeded(new_bg_job_limits.max_flushes,
Env::Priority::HIGH);
}
if (max_compactions_increased) {
env_->IncBackgroundThreadsIfNeeded(new_bg_job_limits.max_compactions,
Env::Priority::LOW);
}
MaybeScheduleFlushOrCompaction();
}
if (new_options.stats_dump_period_sec !=
mutable_db_options_.stats_dump_period_sec ||
new_options.stats_persist_period_sec !=
mutable_db_options_.stats_persist_period_sec) {
mutex_.Unlock();
periodic_work_scheduler_->Unregister(this);
periodic_work_scheduler_->Register(
this, new_options.stats_dump_period_sec,
new_options.stats_persist_period_sec);
mutex_.Lock();
}
write_controller_.set_max_delayed_write_rate(
new_options.delayed_write_rate);
table_cache_.get()->SetCapacity(new_options.max_open_files == -1
? TableCache::kInfiniteCapacity
: new_options.max_open_files - 10);
wal_changed = mutable_db_options_.wal_bytes_per_sync !=
new_options.wal_bytes_per_sync;
mutable_db_options_ = new_options;
file_options_for_compaction_ = FileOptions(new_db_options);
file_options_for_compaction_ = fs_->OptimizeForCompactionTableWrite(
file_options_for_compaction_, immutable_db_options_);
versions_->ChangeFileOptions(mutable_db_options_);
//TODO(xiez): clarify why apply optimize for read to write options
file_options_for_compaction_ = fs_->OptimizeForCompactionTableRead(
file_options_for_compaction_, immutable_db_options_);
file_options_for_compaction_.compaction_readahead_size =
mutable_db_options_.compaction_readahead_size;
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
if (total_log_size_ > GetMaxTotalWalSize() || wal_changed) {
Status purge_wal_status = SwitchWAL(&write_context);
if (!purge_wal_status.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Unable to purge WAL files in SetDBOptions() -- %s",
purge_wal_status.ToString().c_str());
}
}
persist_options_status = WriteOptionsFile(
false /*need_mutex_lock*/, false /*need_enter_write_thread*/);
write_thread_.ExitUnbatched(&w);
} else {
// To get here, we must have had invalid options and will not attempt to
// persist the options, which means the status is "OK/Uninitialized.
persist_options_status.PermitUncheckedError();
}
}
ROCKS_LOG_INFO(immutable_db_options_.info_log, "SetDBOptions(), inputs:");
for (const auto& o : options_map) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "%s: %s\n", o.first.c_str(),
o.second.c_str());
}
if (s.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "SetDBOptions() succeeded");
new_options.Dump(immutable_db_options_.info_log.get());
if (!persist_options_status.ok()) {
if (immutable_db_options_.fail_if_options_file_error) {
s = Status::IOError(
"SetDBOptions() succeeded, but unable to persist options",
persist_options_status.ToString());
}
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Unable to persist options in SetDBOptions() -- %s",
persist_options_status.ToString().c_str());
}
} else {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "SetDBOptions failed");
}
LogFlush(immutable_db_options_.info_log);
return s;
#endif // ROCKSDB_LITE
}
// return the same level if it cannot be moved
int DBImpl::FindMinimumEmptyLevelFitting(
ColumnFamilyData* cfd, const MutableCFOptions& /*mutable_cf_options*/,
int level) {
mutex_.AssertHeld();
const auto* vstorage = cfd->current()->storage_info();
int minimum_level = level;
for (int i = level - 1; i > 0; --i) {
// stop if level i is not empty
if (vstorage->NumLevelFiles(i) > 0) break;
// stop if level i is too small (cannot fit the level files)
if (vstorage->MaxBytesForLevel(i) < vstorage->NumLevelBytes(level)) {
break;
}
minimum_level = i;
}
return minimum_level;
}
Status DBImpl::FlushWAL(bool sync) {
if (manual_wal_flush_) {
IOStatus io_s;
{
// We need to lock log_write_mutex_ since logs_ might change concurrently
InstrumentedMutexLock wl(&log_write_mutex_);
log::Writer* cur_log_writer = logs_.back().writer;
io_s = cur_log_writer->WriteBuffer();
}
if (!io_s.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log, "WAL flush error %s",
io_s.ToString().c_str());
// In case there is a fs error we should set it globally to prevent the
// future writes
IOStatusCheck(io_s);
// whether sync or not, we should abort the rest of function upon error
return std::move(io_s);
}
if (!sync) {
ROCKS_LOG_DEBUG(immutable_db_options_.info_log, "FlushWAL sync=false");
return std::move(io_s);
}
}
if (!sync) {
return Status::OK();
}
// sync = true
ROCKS_LOG_DEBUG(immutable_db_options_.info_log, "FlushWAL sync=true");
return SyncWAL();
}
Status DBImpl::SyncWAL() {
autovector<log::Writer*, 1> logs_to_sync;
bool need_log_dir_sync;
uint64_t current_log_number;
{
InstrumentedMutexLock l(&mutex_);
assert(!logs_.empty());
// This SyncWAL() call only cares about logs up to this number.
current_log_number = logfile_number_;
while (logs_.front().number <= current_log_number &&
logs_.front().getting_synced) {
log_sync_cv_.Wait();
}
// First check that logs are safe to sync in background.
for (auto it = logs_.begin();
it != logs_.end() && it->number <= current_log_number; ++it) {
if (!it->writer->file()->writable_file()->IsSyncThreadSafe()) {
return Status::NotSupported(
"SyncWAL() is not supported for this implementation of WAL file",
immutable_db_options_.allow_mmap_writes
? "try setting Options::allow_mmap_writes to false"
: Slice());
}
}
for (auto it = logs_.begin();
it != logs_.end() && it->number <= current_log_number; ++it) {
auto& log = *it;
assert(!log.getting_synced);
log.getting_synced = true;
logs_to_sync.push_back(log.writer);
}
need_log_dir_sync = !log_dir_synced_;
}
TEST_SYNC_POINT("DBWALTest::SyncWALNotWaitWrite:1");
RecordTick(stats_, WAL_FILE_SYNCED);
Status status;
IOStatus io_s;
for (log::Writer* log : logs_to_sync) {
io_s = log->file()->SyncWithoutFlush(immutable_db_options_.use_fsync);
if (!io_s.ok()) {
status = io_s;
break;
}
}
if (!io_s.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log, "WAL Sync error %s",
io_s.ToString().c_str());
// In case there is a fs error we should set it globally to prevent the
// future writes
IOStatusCheck(io_s);
}
if (status.ok() && need_log_dir_sync) {
status = directories_.GetWalDir()->Fsync(IOOptions(), nullptr);
}
TEST_SYNC_POINT("DBWALTest::SyncWALNotWaitWrite:2");
TEST_SYNC_POINT("DBImpl::SyncWAL:BeforeMarkLogsSynced:1");
{
InstrumentedMutexLock l(&mutex_);
if (status.ok()) {
status = MarkLogsSynced(current_log_number, need_log_dir_sync);
} else {
MarkLogsNotSynced(current_log_number);
}
}
TEST_SYNC_POINT("DBImpl::SyncWAL:BeforeMarkLogsSynced:2");
return status;
}
Status DBImpl::LockWAL() {
log_write_mutex_.Lock();
auto cur_log_writer = logs_.back().writer;
auto status = cur_log_writer->WriteBuffer();
if (!status.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log, "WAL flush error %s",
status.ToString().c_str());
// In case there is a fs error we should set it globally to prevent the
// future writes
WriteStatusCheck(status);
}
return std::move(status);
}
Status DBImpl::UnlockWAL() {
log_write_mutex_.Unlock();
return Status::OK();
}
Status DBImpl::MarkLogsSynced(uint64_t up_to, bool synced_dir) {
mutex_.AssertHeld();
if (synced_dir && logfile_number_ == up_to) {
log_dir_synced_ = true;
}
VersionEdit synced_wals;
for (auto it = logs_.begin(); it != logs_.end() && it->number <= up_to;) {
auto& wal = *it;
assert(wal.getting_synced);
if (logs_.size() > 1) {
if (immutable_db_options_.track_and_verify_wals_in_manifest &&
wal.writer->file()->GetFileSize() > 0) {
synced_wals.AddWal(wal.number,
WalMetadata(wal.writer->file()->GetFileSize()));
}
logs_to_free_.push_back(wal.ReleaseWriter());
// To modify logs_ both mutex_ and log_write_mutex_ must be held
InstrumentedMutexLock l(&log_write_mutex_);
it = logs_.erase(it);
} else {
wal.getting_synced = false;
++it;
}
}
assert(logs_.empty() || logs_[0].number > up_to ||
(logs_.size() == 1 && !logs_[0].getting_synced));
Status s;
if (synced_wals.IsWalAddition()) {
// not empty, write to MANIFEST.
s = versions_->LogAndApplyToDefaultColumnFamily(&synced_wals, &mutex_);
if (!s.ok() && versions_->io_status().IsIOError()) {
s = error_handler_.SetBGError(versions_->io_status(),
BackgroundErrorReason::kManifestWrite);
}
}
log_sync_cv_.SignalAll();
return s;
}
void DBImpl::MarkLogsNotSynced(uint64_t up_to) {
mutex_.AssertHeld();
for (auto it = logs_.begin(); it != logs_.end() && it->number <= up_to;
++it) {
auto& wal = *it;
assert(wal.getting_synced);
wal.getting_synced = false;
}
log_sync_cv_.SignalAll();
}
SequenceNumber DBImpl::GetLatestSequenceNumber() const {
return versions_->LastSequence();
}
void DBImpl::SetLastPublishedSequence(SequenceNumber seq) {
versions_->SetLastPublishedSequence(seq);
}
bool DBImpl::SetPreserveDeletesSequenceNumber(SequenceNumber seqnum) {
if (seqnum > preserve_deletes_seqnum_.load()) {
preserve_deletes_seqnum_.store(seqnum);
return true;
} else {
return false;
}
}
InternalIterator* DBImpl::NewInternalIterator(const ReadOptions& read_options,
Arena* arena,
RangeDelAggregator* range_del_agg,
SequenceNumber sequence,
ColumnFamilyHandle* column_family,
bool allow_unprepared_value) {
ColumnFamilyData* cfd;
if (column_family == nullptr) {
cfd = default_cf_handle_->cfd();
} else {
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
cfd = cfh->cfd();
}
mutex_.Lock();
SuperVersion* super_version = cfd->GetSuperVersion()->Ref();
mutex_.Unlock();
return NewInternalIterator(read_options, cfd, super_version, arena,
range_del_agg, sequence, allow_unprepared_value);
}
void DBImpl::SchedulePurge() {
mutex_.AssertHeld();
assert(opened_successfully_);
// Purge operations are put into High priority queue
bg_purge_scheduled_++;
env_->Schedule(&DBImpl::BGWorkPurge, this, Env::Priority::HIGH, nullptr);
}
void DBImpl::BackgroundCallPurge() {
mutex_.Lock();
while (!logs_to_free_queue_.empty()) {
assert(!logs_to_free_queue_.empty());
log::Writer* log_writer = *(logs_to_free_queue_.begin());
logs_to_free_queue_.pop_front();
mutex_.Unlock();
delete log_writer;
mutex_.Lock();
}
while (!superversions_to_free_queue_.empty()) {
assert(!superversions_to_free_queue_.empty());
SuperVersion* sv = superversions_to_free_queue_.front();
superversions_to_free_queue_.pop_front();
mutex_.Unlock();
delete sv;
mutex_.Lock();
}
// Can't use iterator to go over purge_files_ because inside the loop we're
// unlocking the mutex that protects purge_files_.
while (!purge_files_.empty()) {
auto it = purge_files_.begin();
// Need to make a copy of the PurgeFilesInfo before unlocking the mutex.
PurgeFileInfo purge_file = it->second;
const std::string& fname = purge_file.fname;
const std::string& dir_to_sync = purge_file.dir_to_sync;
FileType type = purge_file.type;
uint64_t number = purge_file.number;
int job_id = purge_file.job_id;
purge_files_.erase(it);
mutex_.Unlock();
DeleteObsoleteFileImpl(job_id, fname, dir_to_sync, type, number);
mutex_.Lock();
}
bg_purge_scheduled_--;
bg_cv_.SignalAll();
// IMPORTANT:there should be no code after calling SignalAll. This call may
// signal the DB destructor that it's OK to proceed with destruction. In
// that case, all DB variables will be dealloacated and referencing them
// will cause trouble.
mutex_.Unlock();
}
namespace {
struct IterState {
IterState(DBImpl* _db, InstrumentedMutex* _mu, SuperVersion* _super_version,
bool _background_purge)
: db(_db),
mu(_mu),
super_version(_super_version),
background_purge(_background_purge) {}
DBImpl* db;
InstrumentedMutex* mu;
SuperVersion* super_version;
bool background_purge;
};
static void CleanupIteratorState(void* arg1, void* /*arg2*/) {
IterState* state = reinterpret_cast<IterState*>(arg1);
if (state->super_version->Unref()) {
// Job id == 0 means that this is not our background process, but rather
// user thread
JobContext job_context(0);
state->mu->Lock();
state->super_version->Cleanup();
state->db->FindObsoleteFiles(&job_context, false, true);
if (state->background_purge) {
state->db->ScheduleBgLogWriterClose(&job_context);
state->db->AddSuperVersionsToFreeQueue(state->super_version);
state->db->SchedulePurge();
}
state->mu->Unlock();
if (!state->background_purge) {
delete state->super_version;
}
if (job_context.HaveSomethingToDelete()) {
if (state->background_purge) {
// PurgeObsoleteFiles here does not delete files. Instead, it adds the
// files to be deleted to a job queue, and deletes it in a separate
// background thread.
state->db->PurgeObsoleteFiles(job_context, true /* schedule only */);
state->mu->Lock();
state->db->SchedulePurge();
state->mu->Unlock();
} else {
state->db->PurgeObsoleteFiles(job_context);
}
}
job_context.Clean();
}
delete state;
}
} // namespace
InternalIterator* DBImpl::NewInternalIterator(const ReadOptions& read_options,
ColumnFamilyData* cfd,
SuperVersion* super_version,
Arena* arena,
RangeDelAggregator* range_del_agg,
SequenceNumber sequence,
bool allow_unprepared_value) {
InternalIterator* internal_iter;
assert(arena != nullptr);
assert(range_del_agg != nullptr);
// Need to create internal iterator from the arena.
MergeIteratorBuilder merge_iter_builder(
&cfd->internal_comparator(), arena,
!read_options.total_order_seek &&
super_version->mutable_cf_options.prefix_extractor != nullptr);
// Collect iterator for mutable mem
merge_iter_builder.AddIterator(
super_version->mem->NewIterator(read_options, arena));
std::unique_ptr<FragmentedRangeTombstoneIterator> range_del_iter;
Status s;
if (!read_options.ignore_range_deletions) {
range_del_iter.reset(
super_version->mem->NewRangeTombstoneIterator(read_options, sequence));
range_del_agg->AddTombstones(std::move(range_del_iter));
}
// Collect all needed child iterators for immutable memtables
if (s.ok()) {
super_version->imm->AddIterators(read_options, &merge_iter_builder);
if (!read_options.ignore_range_deletions) {
s = super_version->imm->AddRangeTombstoneIterators(read_options, arena,
range_del_agg);
}
}
TEST_SYNC_POINT_CALLBACK("DBImpl::NewInternalIterator:StatusCallback", &s);
if (s.ok()) {
// Collect iterators for files in L0 - Ln
if (read_options.read_tier != kMemtableTier) {
super_version->current->AddIterators(read_options, file_options_,
&merge_iter_builder, range_del_agg,
allow_unprepared_value);
}
internal_iter = merge_iter_builder.Finish();
IterState* cleanup =
new IterState(this, &mutex_, super_version,
read_options.background_purge_on_iterator_cleanup ||
immutable_db_options_.avoid_unnecessary_blocking_io);
internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, nullptr);
return internal_iter;
} else {
CleanupSuperVersion(super_version);
}
return NewErrorInternalIterator<Slice>(s, arena);
}
ColumnFamilyHandle* DBImpl::DefaultColumnFamily() const {
return default_cf_handle_;
}
ColumnFamilyHandle* DBImpl::PersistentStatsColumnFamily() const {
return persist_stats_cf_handle_;
}
Status DBImpl::Get(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
PinnableSlice* value) {
return Get(read_options, column_family, key, value, /*timestamp=*/nullptr);
}
Status DBImpl::Get(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
PinnableSlice* value, std::string* timestamp) {
GetImplOptions get_impl_options;
get_impl_options.column_family = column_family;
get_impl_options.value = value;
get_impl_options.timestamp = timestamp;
Status s = GetImpl(read_options, key, get_impl_options);
return s;
}
namespace {
class GetWithTimestampReadCallback : public ReadCallback {
public:
explicit GetWithTimestampReadCallback(SequenceNumber seq)
: ReadCallback(seq) {}
bool IsVisibleFullCheck(SequenceNumber seq) override {
return seq <= max_visible_seq_;
}
};
} // namespace
Status DBImpl::GetImpl(const ReadOptions& read_options, const Slice& key,
GetImplOptions& get_impl_options) {
assert(get_impl_options.value != nullptr ||
get_impl_options.merge_operands != nullptr);
assert(get_impl_options.column_family);
const Comparator* ucmp = get_impl_options.column_family->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
GetWithTimestampReadCallback read_cb(0); // Will call Refresh
#ifndef NDEBUG
if (ts_sz > 0) {
assert(read_options.timestamp);
assert(read_options.timestamp->size() == ts_sz);
} else {
assert(!read_options.timestamp);
}
#endif // NDEBUG
PERF_CPU_TIMER_GUARD(get_cpu_nanos, immutable_db_options_.clock);
StopWatch sw(immutable_db_options_.clock, stats_, DB_GET);
PERF_TIMER_GUARD(get_snapshot_time);
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(
get_impl_options.column_family);
auto cfd = cfh->cfd();
if (tracer_) {
// TODO: This mutex should be removed later, to improve performance when
// tracing is enabled.
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_) {
// TODO: maybe handle the tracing status?
tracer_->Get(get_impl_options.column_family, key).PermitUncheckedError();
}
}
// Acquire SuperVersion
SuperVersion* sv = GetAndRefSuperVersion(cfd);
TEST_SYNC_POINT("DBImpl::GetImpl:1");
TEST_SYNC_POINT("DBImpl::GetImpl:2");
SequenceNumber snapshot;
if (read_options.snapshot != nullptr) {
if (get_impl_options.callback) {
// Already calculated based on read_options.snapshot
snapshot = get_impl_options.callback->max_visible_seq();
} else {
snapshot =
reinterpret_cast<const SnapshotImpl*>(read_options.snapshot)->number_;
}
} else {
// Note that the snapshot is assigned AFTER referencing the super
// version because otherwise a flush happening in between may compact away
// data for the snapshot, so the reader would see neither data that was be
// visible to the snapshot before compaction nor the newer data inserted
// afterwards.
if (last_seq_same_as_publish_seq_) {
snapshot = versions_->LastSequence();
} else {
snapshot = versions_->LastPublishedSequence();
}
if (get_impl_options.callback) {
// The unprep_seqs are not published for write unprepared, so it could be
// that max_visible_seq is larger. Seek to the std::max of the two.
// However, we still want our callback to contain the actual snapshot so
// that it can do the correct visibility filtering.
get_impl_options.callback->Refresh(snapshot);
// Internally, WriteUnpreparedTxnReadCallback::Refresh would set
// max_visible_seq = max(max_visible_seq, snapshot)
//
// Currently, the commented out assert is broken by
// InvalidSnapshotReadCallback, but if write unprepared recovery followed
// the regular transaction flow, then this special read callback would not
// be needed.
//
// assert(callback->max_visible_seq() >= snapshot);
snapshot = get_impl_options.callback->max_visible_seq();
}
}
// If timestamp is used, we use read callback to ensure <key,t,s> is returned
// only if t <= read_opts.timestamp and s <= snapshot.
// HACK: temporarily overwrite input struct field but restore
SaveAndRestore<ReadCallback*> restore_callback(&get_impl_options.callback);
if (ts_sz > 0) {
assert(!get_impl_options
.callback); // timestamp with callback is not supported
read_cb.Refresh(snapshot);
get_impl_options.callback = &read_cb;
}
TEST_SYNC_POINT("DBImpl::GetImpl:3");
TEST_SYNC_POINT("DBImpl::GetImpl:4");
// Prepare to store a list of merge operations if merge occurs.
MergeContext merge_context;
SequenceNumber max_covering_tombstone_seq = 0;
Status s;
// First look in the memtable, then in the immutable memtable (if any).
// s is both in/out. When in, s could either be OK or MergeInProgress.
// merge_operands will contain the sequence of merges in the latter case.
LookupKey lkey(key, snapshot, read_options.timestamp);
PERF_TIMER_STOP(get_snapshot_time);
bool skip_memtable = (read_options.read_tier == kPersistedTier &&
has_unpersisted_data_.load(std::memory_order_relaxed));
bool done = false;
std::string* timestamp = ts_sz > 0 ? get_impl_options.timestamp : nullptr;
if (!skip_memtable) {
// Get value associated with key
if (get_impl_options.get_value) {
if (sv->mem->Get(lkey, get_impl_options.value->GetSelf(), timestamp, &s,
&merge_context, &max_covering_tombstone_seq,
read_options, get_impl_options.callback,
get_impl_options.is_blob_index)) {
done = true;
get_impl_options.value->PinSelf();
RecordTick(stats_, MEMTABLE_HIT);
} else if ((s.ok() || s.IsMergeInProgress()) &&
sv->imm->Get(lkey, get_impl_options.value->GetSelf(),
timestamp, &s, &merge_context,
&max_covering_tombstone_seq, read_options,
get_impl_options.callback,
get_impl_options.is_blob_index)) {
done = true;
get_impl_options.value->PinSelf();
RecordTick(stats_, MEMTABLE_HIT);
}
} else {
// Get Merge Operands associated with key, Merge Operands should not be
// merged and raw values should be returned to the user.
if (sv->mem->Get(lkey, /*value*/ nullptr, /*timestamp=*/nullptr, &s,
&merge_context, &max_covering_tombstone_seq,
read_options, nullptr, nullptr, false)) {
done = true;
RecordTick(stats_, MEMTABLE_HIT);
} else if ((s.ok() || s.IsMergeInProgress()) &&
sv->imm->GetMergeOperands(lkey, &s, &merge_context,
&max_covering_tombstone_seq,
read_options)) {
done = true;
RecordTick(stats_, MEMTABLE_HIT);
}
}
if (!done && !s.ok() && !s.IsMergeInProgress()) {
ReturnAndCleanupSuperVersion(cfd, sv);
return s;
}
}
if (!done) {
PERF_TIMER_GUARD(get_from_output_files_time);
sv->current->Get(
read_options, lkey, get_impl_options.value, timestamp, &s,
&merge_context, &max_covering_tombstone_seq,
get_impl_options.get_value ? get_impl_options.value_found : nullptr,
nullptr, nullptr,
get_impl_options.get_value ? get_impl_options.callback : nullptr,
get_impl_options.get_value ? get_impl_options.is_blob_index : nullptr,
get_impl_options.get_value);
RecordTick(stats_, MEMTABLE_MISS);
}
{
PERF_TIMER_GUARD(get_post_process_time);
ReturnAndCleanupSuperVersion(cfd, sv);
RecordTick(stats_, NUMBER_KEYS_READ);
size_t size = 0;
if (s.ok()) {
if (get_impl_options.get_value) {
size = get_impl_options.value->size();
} else {
// Return all merge operands for get_impl_options.key
*get_impl_options.number_of_operands =
static_cast<int>(merge_context.GetNumOperands());
if (*get_impl_options.number_of_operands >
get_impl_options.get_merge_operands_options
->expected_max_number_of_operands) {
s = Status::Incomplete(
Status::SubCode::KMergeOperandsInsufficientCapacity);
} else {
for (const Slice& sl : merge_context.GetOperands()) {
size += sl.size();
get_impl_options.merge_operands->PinSelf(sl);
get_impl_options.merge_operands++;
}
}
}
RecordTick(stats_, BYTES_READ, size);
PERF_COUNTER_ADD(get_read_bytes, size);
}
RecordInHistogram(stats_, BYTES_PER_READ, size);
}
return s;
}
std::vector<Status> DBImpl::MultiGet(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values) {
return MultiGet(read_options, column_family, keys, values,
/*timestamps=*/nullptr);
}
std::vector<Status> DBImpl::MultiGet(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values,
std::vector<std::string>* timestamps) {
PERF_CPU_TIMER_GUARD(get_cpu_nanos, immutable_db_options_.clock);
StopWatch sw(immutable_db_options_.clock, stats_, DB_MULTIGET);
PERF_TIMER_GUARD(get_snapshot_time);
#ifndef NDEBUG
for (const auto* cfh : column_family) {
assert(cfh);
const Comparator* const ucmp = cfh->GetComparator();
assert(ucmp);
if (ucmp->timestamp_size() > 0) {
assert(read_options.timestamp);
assert(ucmp->timestamp_size() == read_options.timestamp->size());
} else {
assert(!read_options.timestamp);
}
}
#endif // NDEBUG
if (tracer_) {
// TODO: This mutex should be removed later, to improve performance when
// tracing is enabled.
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_) {
// TODO: maybe handle the tracing status?
tracer_->MultiGet(column_family, keys).PermitUncheckedError();
}
}
SequenceNumber consistent_seqnum;
std::unordered_map<uint32_t, MultiGetColumnFamilyData> multiget_cf_data(
column_family.size());
for (auto cf : column_family) {
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(cf);
auto cfd = cfh->cfd();
if (multiget_cf_data.find(cfd->GetID()) == multiget_cf_data.end()) {
multiget_cf_data.emplace(cfd->GetID(),
MultiGetColumnFamilyData(cfh, nullptr));
}
}
std::function<MultiGetColumnFamilyData*(
std::unordered_map<uint32_t, MultiGetColumnFamilyData>::iterator&)>
iter_deref_lambda =
[](std::unordered_map<uint32_t, MultiGetColumnFamilyData>::iterator&
cf_iter) { return &cf_iter->second; };
bool unref_only =
MultiCFSnapshot<std::unordered_map<uint32_t, MultiGetColumnFamilyData>>(
read_options, nullptr, iter_deref_lambda, &multiget_cf_data,
&consistent_seqnum);
TEST_SYNC_POINT("DBImpl::MultiGet:AfterGetSeqNum1");
TEST_SYNC_POINT("DBImpl::MultiGet:AfterGetSeqNum2");
// Contain a list of merge operations if merge occurs.
MergeContext merge_context;
// Note: this always resizes the values array
size_t num_keys = keys.size();
std::vector<Status> stat_list(num_keys);
values->resize(num_keys);
if (timestamps) {
timestamps->resize(num_keys);
}
// Keep track of bytes that we read for statistics-recording later
uint64_t bytes_read = 0;
PERF_TIMER_STOP(get_snapshot_time);
// For each of the given keys, apply the entire "get" process as follows:
// First look in the memtable, then in the immutable memtable (if any).
// s is both in/out. When in, s could either be OK or MergeInProgress.
// merge_operands will contain the sequence of merges in the latter case.
size_t num_found = 0;
size_t keys_read;
uint64_t curr_value_size = 0;
GetWithTimestampReadCallback timestamp_read_callback(0);
ReadCallback* read_callback = nullptr;
if (read_options.timestamp && read_options.timestamp->size() > 0) {
timestamp_read_callback.Refresh(consistent_seqnum);
read_callback = &timestamp_read_callback;
}
for (keys_read = 0; keys_read < num_keys; ++keys_read) {
merge_context.Clear();
Status& s = stat_list[keys_read];
std::string* value = &(*values)[keys_read];
std::string* timestamp = timestamps ? &(*timestamps)[keys_read] : nullptr;
LookupKey lkey(keys[keys_read], consistent_seqnum, read_options.timestamp);
auto cfh =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family[keys_read]);
SequenceNumber max_covering_tombstone_seq = 0;
auto mgd_iter = multiget_cf_data.find(cfh->cfd()->GetID());
assert(mgd_iter != multiget_cf_data.end());
auto mgd = mgd_iter->second;
auto super_version = mgd.super_version;
bool skip_memtable =
(read_options.read_tier == kPersistedTier &&
has_unpersisted_data_.load(std::memory_order_relaxed));
bool done = false;
if (!skip_memtable) {
if (super_version->mem->Get(lkey, value, timestamp, &s, &merge_context,
&max_covering_tombstone_seq, read_options,
read_callback)) {
done = true;
RecordTick(stats_, MEMTABLE_HIT);
} else if (super_version->imm->Get(lkey, value, timestamp, &s,
&merge_context,
&max_covering_tombstone_seq,
read_options, read_callback)) {
done = true;
RecordTick(stats_, MEMTABLE_HIT);
}
}
if (!done) {
PinnableSlice pinnable_val;
PERF_TIMER_GUARD(get_from_output_files_time);
super_version->current->Get(
read_options, lkey, &pinnable_val, timestamp, &s, &merge_context,
&max_covering_tombstone_seq, /*value_found=*/nullptr,
/*key_exists=*/nullptr,
/*seq=*/nullptr, read_callback);
value->assign(pinnable_val.data(), pinnable_val.size());
RecordTick(stats_, MEMTABLE_MISS);
}
if (s.ok()) {
bytes_read += value->size();
num_found++;
curr_value_size += value->size();
if (curr_value_size > read_options.value_size_soft_limit) {
while (++keys_read < num_keys) {
stat_list[keys_read] = Status::Aborted();
}
break;
}
}
if (read_options.deadline.count() &&
immutable_db_options_.clock->NowMicros() >
static_cast<uint64_t>(read_options.deadline.count())) {
break;
}
}
if (keys_read < num_keys) {
// The only reason to break out of the loop is when the deadline is
// exceeded
assert(immutable_db_options_.clock->NowMicros() >
static_cast<uint64_t>(read_options.deadline.count()));
for (++keys_read; keys_read < num_keys; ++keys_read) {
stat_list[keys_read] = Status::TimedOut();
}
}
// Post processing (decrement reference counts and record statistics)
PERF_TIMER_GUARD(get_post_process_time);
autovector<SuperVersion*> superversions_to_delete;
for (auto mgd_iter : multiget_cf_data) {
auto mgd = mgd_iter.second;
if (!unref_only) {
ReturnAndCleanupSuperVersion(mgd.cfd, mgd.super_version);
} else {
mgd.cfd->GetSuperVersion()->Unref();
}
}
RecordTick(stats_, NUMBER_MULTIGET_CALLS);
RecordTick(stats_, NUMBER_MULTIGET_KEYS_READ, num_keys);
RecordTick(stats_, NUMBER_MULTIGET_KEYS_FOUND, num_found);
RecordTick(stats_, NUMBER_MULTIGET_BYTES_READ, bytes_read);
RecordInHistogram(stats_, BYTES_PER_MULTIGET, bytes_read);
PERF_COUNTER_ADD(multiget_read_bytes, bytes_read);
PERF_TIMER_STOP(get_post_process_time);
return stat_list;
}
template <class T>
bool DBImpl::MultiCFSnapshot(
const ReadOptions& read_options, ReadCallback* callback,
std::function<MultiGetColumnFamilyData*(typename T::iterator&)>&
iter_deref_func,
T* cf_list, SequenceNumber* snapshot) {
PERF_TIMER_GUARD(get_snapshot_time);
bool last_try = false;
if (cf_list->size() == 1) {
// Fast path for a single column family. We can simply get the thread loca
// super version
auto cf_iter = cf_list->begin();
auto node = iter_deref_func(cf_iter);
node->super_version = GetAndRefSuperVersion(node->cfd);
if (read_options.snapshot != nullptr) {
// Note: In WritePrepared txns this is not necessary but not harmful
// either. Because prep_seq > snapshot => commit_seq > snapshot so if
// a snapshot is specified we should be fine with skipping seq numbers
// that are greater than that.
//
// In WriteUnprepared, we cannot set snapshot in the lookup key because we
// may skip uncommitted data that should be visible to the transaction for
// reading own writes.
*snapshot =
static_cast<const SnapshotImpl*>(read_options.snapshot)->number_;
if (callback) {
*snapshot = std::max(*snapshot, callback->max_visible_seq());
}
} else {
// Since we get and reference the super version before getting
// the snapshot number, without a mutex protection, it is possible
// that a memtable switch happened in the middle and not all the
// data for this snapshot is available. But it will contain all
// the data available in the super version we have, which is also
// a valid snapshot to read from.
// We shouldn't get snapshot before finding and referencing the super
// version because a flush happening in between may compact away data for
// the snapshot, but the snapshot is earlier than the data overwriting it,
// so users may see wrong results.
if (last_seq_same_as_publish_seq_) {
*snapshot = versions_->LastSequence();
} else {
*snapshot = versions_->LastPublishedSequence();
}
}
} else {
// If we end up with the same issue of memtable geting sealed during 2
// consecutive retries, it means the write rate is very high. In that case
// its probably ok to take the mutex on the 3rd try so we can succeed for
// sure
static const int num_retries = 3;
for (int i = 0; i < num_retries; ++i) {
last_try = (i == num_retries - 1);
bool retry = false;
if (i > 0) {
for (auto cf_iter = cf_list->begin(); cf_iter != cf_list->end();
++cf_iter) {
auto node = iter_deref_func(cf_iter);
SuperVersion* super_version = node->super_version;
ColumnFamilyData* cfd = node->cfd;
if (super_version != nullptr) {
ReturnAndCleanupSuperVersion(cfd, super_version);
}
node->super_version = nullptr;
}
}
if (read_options.snapshot == nullptr) {
if (last_try) {
TEST_SYNC_POINT("DBImpl::MultiGet::LastTry");
// We're close to max number of retries. For the last retry,
// acquire the lock so we're sure to succeed
mutex_.Lock();
}
if (last_seq_same_as_publish_seq_) {
*snapshot = versions_->LastSequence();
} else {
*snapshot = versions_->LastPublishedSequence();
}
} else {
*snapshot = reinterpret_cast<const SnapshotImpl*>(read_options.snapshot)
->number_;
}
for (auto cf_iter = cf_list->begin(); cf_iter != cf_list->end();
++cf_iter) {
auto node = iter_deref_func(cf_iter);
if (!last_try) {
node->super_version = GetAndRefSuperVersion(node->cfd);
} else {
node->super_version = node->cfd->GetSuperVersion()->Ref();
}
TEST_SYNC_POINT("DBImpl::MultiGet::AfterRefSV");
if (read_options.snapshot != nullptr || last_try) {
// If user passed a snapshot, then we don't care if a memtable is
// sealed or compaction happens because the snapshot would ensure
// that older key versions are kept around. If this is the last
// retry, then we have the lock so nothing bad can happen
continue;
}
// We could get the earliest sequence number for the whole list of
// memtables, which will include immutable memtables as well, but that
// might be tricky to maintain in case we decide, in future, to do
// memtable compaction.
if (!last_try) {
SequenceNumber seq =
node->super_version->mem->GetEarliestSequenceNumber();
if (seq > *snapshot) {
retry = true;
break;
}
}
}
if (!retry) {
if (last_try) {
mutex_.Unlock();
}
break;
}
}
}
// Keep track of bytes that we read for statistics-recording later
PERF_TIMER_STOP(get_snapshot_time);
return last_try;
}
void DBImpl::MultiGet(const ReadOptions& read_options, const size_t num_keys,
ColumnFamilyHandle** column_families, const Slice* keys,
PinnableSlice* values, Status* statuses,
const bool sorted_input) {
return MultiGet(read_options, num_keys, column_families, keys, values,
/*timestamps=*/nullptr, statuses, sorted_input);
}
void DBImpl::MultiGet(const ReadOptions& read_options, const size_t num_keys,
ColumnFamilyHandle** column_families, const Slice* keys,
PinnableSlice* values, std::string* timestamps,
Status* statuses, const bool sorted_input) {
if (num_keys == 0) {
return;
}
#ifndef NDEBUG
for (size_t i = 0; i < num_keys; ++i) {
ColumnFamilyHandle* cfh = column_families[i];
assert(cfh);
const Comparator* const ucmp = cfh->GetComparator();
assert(ucmp);
if (ucmp->timestamp_size() > 0) {
assert(read_options.timestamp);
assert(read_options.timestamp->size() == ucmp->timestamp_size());
} else {
assert(!read_options.timestamp);
}
}
#endif // NDEBUG
if (tracer_) {
// TODO: This mutex should be removed later, to improve performance when
// tracing is enabled.
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_) {
// TODO: maybe handle the tracing status?
tracer_->MultiGet(num_keys, column_families, keys).PermitUncheckedError();
}
}
autovector<KeyContext, MultiGetContext::MAX_BATCH_SIZE> key_context;
autovector<KeyContext*, MultiGetContext::MAX_BATCH_SIZE> sorted_keys;
sorted_keys.resize(num_keys);
for (size_t i = 0; i < num_keys; ++i) {
key_context.emplace_back(column_families[i], keys[i], &values[i],
timestamps ? &timestamps[i] : nullptr,
&statuses[i]);
}
for (size_t i = 0; i < num_keys; ++i) {
sorted_keys[i] = &key_context[i];
}
PrepareMultiGetKeys(num_keys, sorted_input, &sorted_keys);
autovector<MultiGetColumnFamilyData, MultiGetContext::MAX_BATCH_SIZE>
multiget_cf_data;
size_t cf_start = 0;
ColumnFamilyHandle* cf = sorted_keys[0]->column_family;
for (size_t i = 0; i < num_keys; ++i) {
KeyContext* key_ctx = sorted_keys[i];
if (key_ctx->column_family != cf) {
multiget_cf_data.emplace_back(cf, cf_start, i - cf_start, nullptr);
cf_start = i;
cf = key_ctx->column_family;
}
}
multiget_cf_data.emplace_back(cf, cf_start, num_keys - cf_start, nullptr);
std::function<MultiGetColumnFamilyData*(
autovector<MultiGetColumnFamilyData,
MultiGetContext::MAX_BATCH_SIZE>::iterator&)>
iter_deref_lambda =
[](autovector<MultiGetColumnFamilyData,
MultiGetContext::MAX_BATCH_SIZE>::iterator& cf_iter) {
return &(*cf_iter);
};
SequenceNumber consistent_seqnum;
bool unref_only = MultiCFSnapshot<
autovector<MultiGetColumnFamilyData, MultiGetContext::MAX_BATCH_SIZE>>(
read_options, nullptr, iter_deref_lambda, &multiget_cf_data,
&consistent_seqnum);
GetWithTimestampReadCallback timestamp_read_callback(0);
ReadCallback* read_callback = nullptr;
if (read_options.timestamp && read_options.timestamp->size() > 0) {
timestamp_read_callback.Refresh(consistent_seqnum);
read_callback = &timestamp_read_callback;
}
Status s;
auto cf_iter = multiget_cf_data.begin();
for (; cf_iter != multiget_cf_data.end(); ++cf_iter) {
s = MultiGetImpl(read_options, cf_iter->start, cf_iter->num_keys,
&sorted_keys, cf_iter->super_version, consistent_seqnum,
read_callback);
if (!s.ok()) {
break;
}
}
if (!s.ok()) {
assert(s.IsTimedOut() || s.IsAborted());
for (++cf_iter; cf_iter != multiget_cf_data.end(); ++cf_iter) {
for (size_t i = cf_iter->start; i < cf_iter->start + cf_iter->num_keys;
++i) {
*sorted_keys[i]->s = s;
}
}
}
for (const auto& iter : multiget_cf_data) {
if (!unref_only) {
ReturnAndCleanupSuperVersion(iter.cfd, iter.super_version);
} else {
iter.cfd->GetSuperVersion()->Unref();
}
}
}
namespace {
// Order keys by CF ID, followed by key contents
struct CompareKeyContext {
inline bool operator()(const KeyContext* lhs, const KeyContext* rhs) {
ColumnFamilyHandleImpl* cfh =
static_cast<ColumnFamilyHandleImpl*>(lhs->column_family);
uint32_t cfd_id1 = cfh->cfd()->GetID();
const Comparator* comparator = cfh->cfd()->user_comparator();
cfh = static_cast<ColumnFamilyHandleImpl*>(rhs->column_family);
uint32_t cfd_id2 = cfh->cfd()->GetID();
if (cfd_id1 < cfd_id2) {
return true;
} else if (cfd_id1 > cfd_id2) {
return false;
}
// Both keys are from the same column family
int cmp = comparator->CompareWithoutTimestamp(
*(lhs->key), /*a_has_ts=*/false, *(rhs->key), /*b_has_ts=*/false);
if (cmp < 0) {
return true;
}
return false;
}
};
} // anonymous namespace
void DBImpl::PrepareMultiGetKeys(
size_t num_keys, bool sorted_input,
autovector<KeyContext*, MultiGetContext::MAX_BATCH_SIZE>* sorted_keys) {
if (sorted_input) {
#ifndef NDEBUG
CompareKeyContext key_context_less;
for (size_t index = 1; index < sorted_keys->size(); ++index) {
const KeyContext* const lhs = (*sorted_keys)[index - 1];
const KeyContext* const rhs = (*sorted_keys)[index];
// lhs should be <= rhs, or in other words, rhs should NOT be < lhs
assert(!key_context_less(rhs, lhs));
}
#endif
return;
}
std::sort(sorted_keys->begin(), sorted_keys->begin() + num_keys,
CompareKeyContext());
}
void DBImpl::MultiGet(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const size_t num_keys,
const Slice* keys, PinnableSlice* values,
Status* statuses, const bool sorted_input) {
return MultiGet(read_options, column_family, num_keys, keys, values,
/*timestamp=*/nullptr, statuses, sorted_input);
}
void DBImpl::MultiGet(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const size_t num_keys,
const Slice* keys, PinnableSlice* values,
std::string* timestamps, Status* statuses,
const bool sorted_input) {
if (tracer_) {
// TODO: This mutex should be removed later, to improve performance when
// tracing is enabled.
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_) {
// TODO: maybe handle the tracing status?
tracer_->MultiGet(num_keys, column_family, keys).PermitUncheckedError();
}
}
autovector<KeyContext, MultiGetContext::MAX_BATCH_SIZE> key_context;
autovector<KeyContext*, MultiGetContext::MAX_BATCH_SIZE> sorted_keys;
sorted_keys.resize(num_keys);
for (size_t i = 0; i < num_keys; ++i) {
key_context.emplace_back(column_family, keys[i], &values[i],
timestamps ? &timestamps[i] : nullptr,
&statuses[i]);
}
for (size_t i = 0; i < num_keys; ++i) {
sorted_keys[i] = &key_context[i];
}
PrepareMultiGetKeys(num_keys, sorted_input, &sorted_keys);
MultiGetWithCallback(read_options, column_family, nullptr, &sorted_keys);
}
void DBImpl::MultiGetWithCallback(
const ReadOptions& read_options, ColumnFamilyHandle* column_family,
ReadCallback* callback,
autovector<KeyContext*, MultiGetContext::MAX_BATCH_SIZE>* sorted_keys) {
std::array<MultiGetColumnFamilyData, 1> multiget_cf_data;
multiget_cf_data[0] = MultiGetColumnFamilyData(column_family, nullptr);
std::function<MultiGetColumnFamilyData*(
std::array<MultiGetColumnFamilyData, 1>::iterator&)>
iter_deref_lambda =
[](std::array<MultiGetColumnFamilyData, 1>::iterator& cf_iter) {
return &(*cf_iter);
};
size_t num_keys = sorted_keys->size();
SequenceNumber consistent_seqnum;
bool unref_only = MultiCFSnapshot<std::array<MultiGetColumnFamilyData, 1>>(
read_options, callback, iter_deref_lambda, &multiget_cf_data,
&consistent_seqnum);
#ifndef NDEBUG
assert(!unref_only);
#else
// Silence unused variable warning
(void)unref_only;
#endif // NDEBUG
if (callback && read_options.snapshot == nullptr) {
// The unprep_seqs are not published for write unprepared, so it could be
// that max_visible_seq is larger. Seek to the std::max of the two.
// However, we still want our callback to contain the actual snapshot so
// that it can do the correct visibility filtering.
callback->Refresh(consistent_seqnum);
// Internally, WriteUnpreparedTxnReadCallback::Refresh would set
// max_visible_seq = max(max_visible_seq, snapshot)
//
// Currently, the commented out assert is broken by
// InvalidSnapshotReadCallback, but if write unprepared recovery followed
// the regular transaction flow, then this special read callback would not
// be needed.
//
// assert(callback->max_visible_seq() >= snapshot);
consistent_seqnum = callback->max_visible_seq();
}
GetWithTimestampReadCallback timestamp_read_callback(0);
ReadCallback* read_callback = callback;
if (read_options.timestamp && read_options.timestamp->size() > 0) {
assert(!read_callback); // timestamp with callback is not supported
timestamp_read_callback.Refresh(consistent_seqnum);
read_callback = &timestamp_read_callback;
}
Status s = MultiGetImpl(read_options, 0, num_keys, sorted_keys,
multiget_cf_data[0].super_version, consistent_seqnum,
read_callback);
assert(s.ok() || s.IsTimedOut() || s.IsAborted());
ReturnAndCleanupSuperVersion(multiget_cf_data[0].cfd,
multiget_cf_data[0].super_version);
}
// The actual implementation of batched MultiGet. Parameters -
// start_key - Index in the sorted_keys vector to start processing from
// num_keys - Number of keys to lookup, starting with sorted_keys[start_key]
// sorted_keys - The entire batch of sorted keys for this CF
//
// The per key status is returned in the KeyContext structures pointed to by
// sorted_keys. An overall Status is also returned, with the only possible
// values being Status::OK() and Status::TimedOut(). The latter indicates
// that the call exceeded read_options.deadline
Status DBImpl::MultiGetImpl(
const ReadOptions& read_options, size_t start_key, size_t num_keys,
autovector<KeyContext*, MultiGetContext::MAX_BATCH_SIZE>* sorted_keys,
SuperVersion* super_version, SequenceNumber snapshot,
ReadCallback* callback) {
PERF_CPU_TIMER_GUARD(get_cpu_nanos, immutable_db_options_.clock);
StopWatch sw(immutable_db_options_.clock, stats_, DB_MULTIGET);
// For each of the given keys, apply the entire "get" process as follows:
// First look in the memtable, then in the immutable memtable (if any).
// s is both in/out. When in, s could either be OK or MergeInProgress.
// merge_operands will contain the sequence of merges in the latter case.
size_t keys_left = num_keys;
Status s;
uint64_t curr_value_size = 0;
while (keys_left) {
if (read_options.deadline.count() &&
immutable_db_options_.clock->NowMicros() >
static_cast<uint64_t>(read_options.deadline.count())) {
s = Status::TimedOut();
break;
}
size_t batch_size = (keys_left > MultiGetContext::MAX_BATCH_SIZE)
? MultiGetContext::MAX_BATCH_SIZE
: keys_left;
MultiGetContext ctx(sorted_keys, start_key + num_keys - keys_left,
batch_size, snapshot, read_options);
MultiGetRange range = ctx.GetMultiGetRange();
range.AddValueSize(curr_value_size);
bool lookup_current = false;
keys_left -= batch_size;
for (auto mget_iter = range.begin(); mget_iter != range.end();
++mget_iter) {
mget_iter->merge_context.Clear();
*mget_iter->s = Status::OK();
}
bool skip_memtable =
(read_options.read_tier == kPersistedTier &&
has_unpersisted_data_.load(std::memory_order_relaxed));
if (!skip_memtable) {
super_version->mem->MultiGet(read_options, &range, callback);
if (!range.empty()) {
super_version->imm->MultiGet(read_options, &range, callback);
}
if (!range.empty()) {
lookup_current = true;
uint64_t left = range.KeysLeft();
RecordTick(stats_, MEMTABLE_MISS, left);
}
}
if (lookup_current) {
PERF_TIMER_GUARD(get_from_output_files_time);
super_version->current->MultiGet(read_options, &range, callback);
}
curr_value_size = range.GetValueSize();
if (curr_value_size > read_options.value_size_soft_limit) {
s = Status::Aborted();
break;
}
}
// Post processing (decrement reference counts and record statistics)
PERF_TIMER_GUARD(get_post_process_time);
size_t num_found = 0;
uint64_t bytes_read = 0;
for (size_t i = start_key; i < start_key + num_keys - keys_left; ++i) {
KeyContext* key = (*sorted_keys)[i];
if (key->s->ok()) {
bytes_read += key->value->size();
num_found++;
}
}
if (keys_left) {
assert(s.IsTimedOut() || s.IsAborted());
for (size_t i = start_key + num_keys - keys_left; i < start_key + num_keys;
++i) {
KeyContext* key = (*sorted_keys)[i];
*key->s = s;
}
}
RecordTick(stats_, NUMBER_MULTIGET_CALLS);
RecordTick(stats_, NUMBER_MULTIGET_KEYS_READ, num_keys);
RecordTick(stats_, NUMBER_MULTIGET_KEYS_FOUND, num_found);
RecordTick(stats_, NUMBER_MULTIGET_BYTES_READ, bytes_read);
RecordInHistogram(stats_, BYTES_PER_MULTIGET, bytes_read);
PERF_COUNTER_ADD(multiget_read_bytes, bytes_read);
PERF_TIMER_STOP(get_post_process_time);
return s;
}
Status DBImpl::CreateColumnFamily(const ColumnFamilyOptions& cf_options,
const std::string& column_family,
ColumnFamilyHandle** handle) {
assert(handle != nullptr);
Status s = CreateColumnFamilyImpl(cf_options, column_family, handle);
if (s.ok()) {
s = WriteOptionsFile(true /*need_mutex_lock*/,
true /*need_enter_write_thread*/);
}
return s;
}
Status DBImpl::CreateColumnFamilies(
const ColumnFamilyOptions& cf_options,
const std::vector<std::string>& column_family_names,
std::vector<ColumnFamilyHandle*>* handles) {
assert(handles != nullptr);
handles->clear();
size_t num_cf = column_family_names.size();
Status s;
bool success_once = false;
for (size_t i = 0; i < num_cf; i++) {
ColumnFamilyHandle* handle;
s = CreateColumnFamilyImpl(cf_options, column_family_names[i], &handle);
if (!s.ok()) {
break;
}
handles->push_back(handle);
success_once = true;
}
if (success_once) {
Status persist_options_status = WriteOptionsFile(
true /*need_mutex_lock*/, true /*need_enter_write_thread*/);
if (s.ok() && !persist_options_status.ok()) {
s = persist_options_status;
}
}
return s;
}
Status DBImpl::CreateColumnFamilies(
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles) {
assert(handles != nullptr);
handles->clear();
size_t num_cf = column_families.size();
Status s;
bool success_once = false;
for (size_t i = 0; i < num_cf; i++) {
ColumnFamilyHandle* handle;
s = CreateColumnFamilyImpl(column_families[i].options,
column_families[i].name, &handle);
if (!s.ok()) {
break;
}
handles->push_back(handle);
success_once = true;
}
if (success_once) {
Status persist_options_status = WriteOptionsFile(
true /*need_mutex_lock*/, true /*need_enter_write_thread*/);
if (s.ok() && !persist_options_status.ok()) {
s = persist_options_status;
}
}
return s;
}
Status DBImpl::CreateColumnFamilyImpl(const ColumnFamilyOptions& cf_options,
const std::string& column_family_name,
ColumnFamilyHandle** handle) {
Status s;
*handle = nullptr;
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
s = ColumnFamilyData::ValidateOptions(db_options, cf_options);
if (s.ok()) {
for (auto& cf_path : cf_options.cf_paths) {
s = env_->CreateDirIfMissing(cf_path.path);
if (!s.ok()) {
break;
}
}
}
if (!s.ok()) {
return s;
}
SuperVersionContext sv_context(/* create_superversion */ true);
{
InstrumentedMutexLock l(&mutex_);
if (versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name) !=
nullptr) {
return Status::InvalidArgument("Column family already exists");
}
VersionEdit edit;
edit.AddColumnFamily(column_family_name);
uint32_t new_id = versions_->GetColumnFamilySet()->GetNextColumnFamilyID();
edit.SetColumnFamily(new_id);
edit.SetLogNumber(logfile_number_);
edit.SetComparatorName(cf_options.comparator->Name());
// LogAndApply will both write the creation in MANIFEST and create
// ColumnFamilyData object
{ // write thread
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
// LogAndApply will both write the creation in MANIFEST and create
// ColumnFamilyData object
s = versions_->LogAndApply(nullptr, MutableCFOptions(cf_options), &edit,
&mutex_, directories_.GetDbDir(), false,
&cf_options);
write_thread_.ExitUnbatched(&w);
}
if (s.ok()) {
auto* cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name);
assert(cfd != nullptr);
std::map<std::string, std::shared_ptr<FSDirectory>> dummy_created_dirs;
s = cfd->AddDirectories(&dummy_created_dirs);
}
if (s.ok()) {
single_column_family_mode_ = false;
auto* cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name);
assert(cfd != nullptr);
InstallSuperVersionAndScheduleWork(cfd, &sv_context,
*cfd->GetLatestMutableCFOptions());
if (!cfd->mem()->IsSnapshotSupported()) {
is_snapshot_supported_ = false;
}
cfd->set_initialized();
*handle = new ColumnFamilyHandleImpl(cfd, this, &mutex_);
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Created column family [%s] (ID %u)",
column_family_name.c_str(), (unsigned)cfd->GetID());
} else {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Creating column family [%s] FAILED -- %s",
column_family_name.c_str(), s.ToString().c_str());
}
} // InstrumentedMutexLock l(&mutex_)
sv_context.Clean();
// this is outside the mutex
if (s.ok()) {
NewThreadStatusCfInfo(
static_cast_with_check<ColumnFamilyHandleImpl>(*handle)->cfd());
}
return s;
}
Status DBImpl::DropColumnFamily(ColumnFamilyHandle* column_family) {
assert(column_family != nullptr);
Status s = DropColumnFamilyImpl(column_family);
if (s.ok()) {
s = WriteOptionsFile(true /*need_mutex_lock*/,
true /*need_enter_write_thread*/);
}
return s;
}
Status DBImpl::DropColumnFamilies(
const std::vector<ColumnFamilyHandle*>& column_families) {
Status s;
bool success_once = false;
for (auto* handle : column_families) {
s = DropColumnFamilyImpl(handle);
if (!s.ok()) {
break;
}
success_once = true;
}
if (success_once) {
Status persist_options_status = WriteOptionsFile(
true /*need_mutex_lock*/, true /*need_enter_write_thread*/);
if (s.ok() && !persist_options_status.ok()) {
s = persist_options_status;
}
}
return s;
}
Status DBImpl::DropColumnFamilyImpl(ColumnFamilyHandle* column_family) {
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
auto cfd = cfh->cfd();
if (cfd->GetID() == 0) {
return Status::InvalidArgument("Can't drop default column family");
}
bool cf_support_snapshot = cfd->mem()->IsSnapshotSupported();
VersionEdit edit;
edit.DropColumnFamily();
edit.SetColumnFamily(cfd->GetID());
Status s;
{
InstrumentedMutexLock l(&mutex_);
if (cfd->IsDropped()) {
s = Status::InvalidArgument("Column family already dropped!\n");
}
if (s.ok()) {
// we drop column family from a single write thread
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
s = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(), &edit,
&mutex_);
write_thread_.ExitUnbatched(&w);
}
if (s.ok()) {
auto* mutable_cf_options = cfd->GetLatestMutableCFOptions();
max_total_in_memory_state_ -= mutable_cf_options->write_buffer_size *
mutable_cf_options->max_write_buffer_number;
}
if (!cf_support_snapshot) {
// Dropped Column Family doesn't support snapshot. Need to recalculate
// is_snapshot_supported_.
bool new_is_snapshot_supported = true;
for (auto c : *versions_->GetColumnFamilySet()) {
if (!c->IsDropped() && !c->mem()->IsSnapshotSupported()) {
new_is_snapshot_supported = false;
break;
}
}
is_snapshot_supported_ = new_is_snapshot_supported;
}
bg_cv_.SignalAll();
}
if (s.ok()) {
// Note that here we erase the associated cf_info of the to-be-dropped
// cfd before its ref-count goes to zero to avoid having to erase cf_info
// later inside db_mutex.
EraseThreadStatusCfInfo(cfd);
assert(cfd->IsDropped());
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Dropped column family with id %u\n", cfd->GetID());
} else {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Dropping column family with id %u FAILED -- %s\n",
cfd->GetID(), s.ToString().c_str());
}
return s;
}
bool DBImpl::KeyMayExist(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
std::string* value, std::string* timestamp,
bool* value_found) {
assert(value != nullptr);
if (value_found != nullptr) {
// falsify later if key-may-exist but can't fetch value
*value_found = true;
}
ReadOptions roptions = read_options;
roptions.read_tier = kBlockCacheTier; // read from block cache only
PinnableSlice pinnable_val;
GetImplOptions get_impl_options;
get_impl_options.column_family = column_family;
get_impl_options.value = &pinnable_val;
get_impl_options.value_found = value_found;
get_impl_options.timestamp = timestamp;
auto s = GetImpl(roptions, key, get_impl_options);
value->assign(pinnable_val.data(), pinnable_val.size());
// If block_cache is enabled and the index block of the table didn't
// not present in block_cache, the return value will be Status::Incomplete.
// In this case, key may still exist in the table.
return s.ok() || s.IsIncomplete();
}
Iterator* DBImpl::NewIterator(const ReadOptions& read_options,
ColumnFamilyHandle* column_family) {
if (read_options.managed) {
return NewErrorIterator(
Status::NotSupported("Managed iterator is not supported anymore."));
}
Iterator* result = nullptr;
if (read_options.read_tier == kPersistedTier) {
return NewErrorIterator(Status::NotSupported(
"ReadTier::kPersistedData is not yet supported in iterators."));
}
// if iterator wants internal keys, we can only proceed if
// we can guarantee the deletes haven't been processed yet
if (immutable_db_options_.preserve_deletes &&
read_options.iter_start_seqnum > 0 &&
read_options.iter_start_seqnum < preserve_deletes_seqnum_.load()) {
return NewErrorIterator(Status::InvalidArgument(
"Iterator requested internal keys which are too old and are not"
" guaranteed to be preserved, try larger iter_start_seqnum opt."));
}
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
ColumnFamilyData* cfd = cfh->cfd();
assert(cfd != nullptr);
ReadCallback* read_callback = nullptr; // No read callback provided.
if (read_options.tailing) {
#ifdef ROCKSDB_LITE
// not supported in lite version
result = nullptr;
#else
SuperVersion* sv = cfd->GetReferencedSuperVersion(this);
auto iter = new ForwardIterator(this, read_options, cfd, sv,
/* allow_unprepared_value */ true);
result = NewDBIterator(
env_, read_options, *cfd->ioptions(), sv->mutable_cf_options,
cfd->user_comparator(), iter, sv->current, kMaxSequenceNumber,
sv->mutable_cf_options.max_sequential_skip_in_iterations, read_callback,
this, cfd);
#endif
} else {
// Note: no need to consider the special case of
// last_seq_same_as_publish_seq_==false since NewIterator is overridden in
// WritePreparedTxnDB
result = NewIteratorImpl(read_options, cfd,
(read_options.snapshot != nullptr)
? read_options.snapshot->GetSequenceNumber()
: kMaxSequenceNumber,
read_callback);
}
return result;
}
ArenaWrappedDBIter* DBImpl::NewIteratorImpl(const ReadOptions& read_options,
ColumnFamilyData* cfd,
SequenceNumber snapshot,
ReadCallback* read_callback,
bool expose_blob_index,
bool allow_refresh) {
SuperVersion* sv = cfd->GetReferencedSuperVersion(this);
TEST_SYNC_POINT("DBImpl::NewIterator:1");
TEST_SYNC_POINT("DBImpl::NewIterator:2");
if (snapshot == kMaxSequenceNumber) {
// Note that the snapshot is assigned AFTER referencing the super
// version because otherwise a flush happening in between may compact away
// data for the snapshot, so the reader would see neither data that was be
// visible to the snapshot before compaction nor the newer data inserted
// afterwards.
// Note that the super version might not contain all the data available
// to this snapshot, but in that case it can see all the data in the
// super version, which is a valid consistent state after the user
// calls NewIterator().
snapshot = versions_->LastSequence();
TEST_SYNC_POINT("DBImpl::NewIterator:3");
TEST_SYNC_POINT("DBImpl::NewIterator:4");
}
// Try to generate a DB iterator tree in continuous memory area to be
// cache friendly. Here is an example of result:
// +-------------------------------+
// | |
// | ArenaWrappedDBIter |
// | + |
// | +---> Inner Iterator ------------+
// | | | |
// | | +-- -- -- -- -- -- -- --+ |
// | +--- | Arena | |
// | | | |
// | Allocated Memory: | |
// | | +-------------------+ |
// | | | DBIter | <---+
// | | + |
// | | | +-> iter_ ------------+
// | | | | |
// | | +-------------------+ |
// | | | MergingIterator | <---+
// | | + |
// | | | +->child iter1 ------------+
// | | | | | |
// | | +->child iter2 ----------+ |
// | | | | | | |
// | | | +->child iter3 --------+ | |
// | | | | | |
// | | +-------------------+ | | |
// | | | Iterator1 | <--------+
// | | +-------------------+ | |
// | | | Iterator2 | <------+
// | | +-------------------+ |
// | | | Iterator3 | <----+
// | | +-------------------+
// | | |
// +-------+-----------------------+
//
// ArenaWrappedDBIter inlines an arena area where all the iterators in
// the iterator tree are allocated in the order of being accessed when
// querying.
// Laying out the iterators in the order of being accessed makes it more
// likely that any iterator pointer is close to the iterator it points to so
// that they are likely to be in the same cache line and/or page.
ArenaWrappedDBIter* db_iter = NewArenaWrappedDbIterator(
env_, read_options, *cfd->ioptions(), sv->mutable_cf_options, sv->current,
snapshot, sv->mutable_cf_options.max_sequential_skip_in_iterations,
sv->version_number, read_callback, this, cfd, expose_blob_index,
read_options.snapshot != nullptr ? false : allow_refresh);
InternalIterator* internal_iter = NewInternalIterator(
db_iter->GetReadOptions(), cfd, sv, db_iter->GetArena(),
db_iter->GetRangeDelAggregator(), snapshot,
/* allow_unprepared_value */ true);
db_iter->SetIterUnderDBIter(internal_iter);
return db_iter;
}
Status DBImpl::NewIterators(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) {
if (read_options.managed) {
return Status::NotSupported("Managed iterator is not supported anymore.");
}
if (read_options.read_tier == kPersistedTier) {
return Status::NotSupported(
"ReadTier::kPersistedData is not yet supported in iterators.");
}
ReadCallback* read_callback = nullptr; // No read callback provided.
iterators->clear();
iterators->reserve(column_families.size());
if (read_options.tailing) {
#ifdef ROCKSDB_LITE
return Status::InvalidArgument(
"Tailing iterator not supported in RocksDB lite");
#else
for (auto cfh : column_families) {
auto cfd = static_cast_with_check<ColumnFamilyHandleImpl>(cfh)->cfd();
SuperVersion* sv = cfd->GetReferencedSuperVersion(this);
auto iter = new ForwardIterator(this, read_options, cfd, sv,
/* allow_unprepared_value */ true);
iterators->push_back(NewDBIterator(
env_, read_options, *cfd->ioptions(), sv->mutable_cf_options,
cfd->user_comparator(), iter, sv->current, kMaxSequenceNumber,
sv->mutable_cf_options.max_sequential_skip_in_iterations,
read_callback, this, cfd));
}
#endif
} else {
// Note: no need to consider the special case of
// last_seq_same_as_publish_seq_==false since NewIterators is overridden in
// WritePreparedTxnDB
auto snapshot = read_options.snapshot != nullptr
? read_options.snapshot->GetSequenceNumber()
: versions_->LastSequence();
for (size_t i = 0; i < column_families.size(); ++i) {
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_families[i])
->cfd();
iterators->push_back(
NewIteratorImpl(read_options, cfd, snapshot, read_callback));
}
}
return Status::OK();
}
const Snapshot* DBImpl::GetSnapshot() { return GetSnapshotImpl(false); }
#ifndef ROCKSDB_LITE
const Snapshot* DBImpl::GetSnapshotForWriteConflictBoundary() {
return GetSnapshotImpl(true);
}
#endif // ROCKSDB_LITE
SnapshotImpl* DBImpl::GetSnapshotImpl(bool is_write_conflict_boundary,
bool lock) {
int64_t unix_time = 0;
immutable_db_options_.clock->GetCurrentTime(&unix_time)
.PermitUncheckedError(); // Ignore error
SnapshotImpl* s = new SnapshotImpl;
if (lock) {
mutex_.Lock();
}
// returns null if the underlying memtable does not support snapshot.
if (!is_snapshot_supported_) {
if (lock) {
mutex_.Unlock();
}
delete s;
return nullptr;
}
auto snapshot_seq = last_seq_same_as_publish_seq_
? versions_->LastSequence()
: versions_->LastPublishedSequence();
SnapshotImpl* snapshot =
snapshots_.New(s, snapshot_seq, unix_time, is_write_conflict_boundary);
if (lock) {
mutex_.Unlock();
}
return snapshot;
}
namespace {
using CfdList = autovector<ColumnFamilyData*, 2>;
bool CfdListContains(const CfdList& list, ColumnFamilyData* cfd) {
for (const ColumnFamilyData* t : list) {
if (t == cfd) {
return true;
}
}
return false;
}
} // namespace
void DBImpl::ReleaseSnapshot(const Snapshot* s) {
const SnapshotImpl* casted_s = reinterpret_cast<const SnapshotImpl*>(s);
{
InstrumentedMutexLock l(&mutex_);
snapshots_.Delete(casted_s);
uint64_t oldest_snapshot;
if (snapshots_.empty()) {
if (last_seq_same_as_publish_seq_) {
oldest_snapshot = versions_->LastSequence();
} else {
oldest_snapshot = versions_->LastPublishedSequence();
}
} else {
oldest_snapshot = snapshots_.oldest()->number_;
}
// Avoid to go through every column family by checking a global threshold
// first.
if (oldest_snapshot > bottommost_files_mark_threshold_) {
CfdList cf_scheduled;
for (auto* cfd : *versions_->GetColumnFamilySet()) {
cfd->current()->storage_info()->UpdateOldestSnapshot(oldest_snapshot);
if (!cfd->current()
->storage_info()
->BottommostFilesMarkedForCompaction()
.empty()) {
SchedulePendingCompaction(cfd);
MaybeScheduleFlushOrCompaction();
cf_scheduled.push_back(cfd);
}
}
// Calculate a new threshold, skipping those CFs where compactions are
// scheduled. We do not do the same pass as the previous loop because
// mutex might be unlocked during the loop, making the result inaccurate.
SequenceNumber new_bottommost_files_mark_threshold = kMaxSequenceNumber;
for (auto* cfd : *versions_->GetColumnFamilySet()) {
if (CfdListContains(cf_scheduled, cfd)) {
continue;
}
new_bottommost_files_mark_threshold = std::min(
new_bottommost_files_mark_threshold,
cfd->current()->storage_info()->bottommost_files_mark_threshold());
}
bottommost_files_mark_threshold_ = new_bottommost_files_mark_threshold;
}
}
delete casted_s;
}
#ifndef ROCKSDB_LITE
Status DBImpl::GetPropertiesOfAllTables(ColumnFamilyHandle* column_family,
TablePropertiesCollection* props) {
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
auto cfd = cfh->cfd();
// Increment the ref count
mutex_.Lock();
auto version = cfd->current();
version->Ref();
mutex_.Unlock();
auto s = version->GetPropertiesOfAllTables(props);
// Decrement the ref count
mutex_.Lock();
version->Unref();
mutex_.Unlock();
return s;
}
Status DBImpl::GetPropertiesOfTablesInRange(ColumnFamilyHandle* column_family,
const Range* range, std::size_t n,
TablePropertiesCollection* props) {
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
auto cfd = cfh->cfd();
// Increment the ref count
mutex_.Lock();
auto version = cfd->current();
version->Ref();
mutex_.Unlock();
auto s = version->GetPropertiesOfTablesInRange(range, n, props);
// Decrement the ref count
mutex_.Lock();
version->Unref();
mutex_.Unlock();
return s;
}
#endif // ROCKSDB_LITE
const std::string& DBImpl::GetName() const { return dbname_; }
Env* DBImpl::GetEnv() const { return env_; }
FileSystem* DB::GetFileSystem() const {
const auto& fs = GetEnv()->GetFileSystem();
return fs.get();
}
FileSystem* DBImpl::GetFileSystem() const {
return immutable_db_options_.fs.get();
}
SystemClock* DBImpl::GetSystemClock() const {
return immutable_db_options_.clock;
}
#ifndef ROCKSDB_LITE
Status DBImpl::StartIOTrace(const TraceOptions& trace_options,
std::unique_ptr<TraceWriter>&& trace_writer) {
assert(trace_writer != nullptr);
return io_tracer_->StartIOTrace(GetSystemClock(), trace_options,
std::move(trace_writer));
}
Status DBImpl::EndIOTrace() {
io_tracer_->EndIOTrace();
return Status::OK();
}
#endif // ROCKSDB_LITE
Options DBImpl::GetOptions(ColumnFamilyHandle* column_family) const {
InstrumentedMutexLock l(&mutex_);
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
return Options(BuildDBOptions(immutable_db_options_, mutable_db_options_),
cfh->cfd()->GetLatestCFOptions());
}
DBOptions DBImpl::GetDBOptions() const {
InstrumentedMutexLock l(&mutex_);
return BuildDBOptions(immutable_db_options_, mutable_db_options_);
}
bool DBImpl::GetProperty(ColumnFamilyHandle* column_family,
const Slice& property, std::string* value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
value->clear();
auto cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
if (property_info == nullptr) {
return false;
} else if (property_info->handle_int) {
uint64_t int_value;
bool ret_value =
GetIntPropertyInternal(cfd, *property_info, false, &int_value);
if (ret_value) {
*value = ToString(int_value);
}
return ret_value;
} else if (property_info->handle_string) {
if (property_info->need_out_of_mutex) {
return cfd->internal_stats()->GetStringProperty(*property_info, property,
value);
} else {
InstrumentedMutexLock l(&mutex_);
return cfd->internal_stats()->GetStringProperty(*property_info, property,
value);
}
} else if (property_info->handle_string_dbimpl) {
if (property_info->need_out_of_mutex) {
return (this->*(property_info->handle_string_dbimpl))(value);
} else {
InstrumentedMutexLock l(&mutex_);
return (this->*(property_info->handle_string_dbimpl))(value);
}
}
// Shouldn't reach here since exactly one of handle_string and handle_int
// should be non-nullptr.
assert(false);
return false;
}
bool DBImpl::GetMapProperty(ColumnFamilyHandle* column_family,
const Slice& property,
std::map<std::string, std::string>* value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
value->clear();
auto cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
if (property_info == nullptr) {
return false;
} else if (property_info->handle_map) {
if (property_info->need_out_of_mutex) {
return cfd->internal_stats()->GetMapProperty(*property_info, property,
value);
} else {
InstrumentedMutexLock l(&mutex_);
return cfd->internal_stats()->GetMapProperty(*property_info, property,
value);
}
}
// If we reach this point it means that handle_map is not provided for the
// requested property
return false;
}
bool DBImpl::GetIntProperty(ColumnFamilyHandle* column_family,
const Slice& property, uint64_t* value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
if (property_info == nullptr || property_info->handle_int == nullptr) {
return false;
}
auto cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
return GetIntPropertyInternal(cfd, *property_info, false, value);
}
bool DBImpl::GetIntPropertyInternal(ColumnFamilyData* cfd,
const DBPropertyInfo& property_info,
bool is_locked, uint64_t* value) {
assert(property_info.handle_int != nullptr);
if (!property_info.need_out_of_mutex) {
if (is_locked) {
mutex_.AssertHeld();
return cfd->internal_stats()->GetIntProperty(property_info, value, this);
} else {
InstrumentedMutexLock l(&mutex_);
return cfd->internal_stats()->GetIntProperty(property_info, value, this);
}
} else {
SuperVersion* sv = nullptr;
if (is_locked) {
mutex_.Unlock();
}
sv = GetAndRefSuperVersion(cfd);
bool ret = cfd->internal_stats()->GetIntPropertyOutOfMutex(
property_info, sv->current, value);
ReturnAndCleanupSuperVersion(cfd, sv);
if (is_locked) {
mutex_.Lock();
}
return ret;
}
}
bool DBImpl::GetPropertyHandleOptionsStatistics(std::string* value) {
assert(value != nullptr);
Statistics* statistics = immutable_db_options_.stats;
if (!statistics) {
return false;
}
*value = statistics->ToString();
return true;
}
#ifndef ROCKSDB_LITE
Status DBImpl::ResetStats() {
InstrumentedMutexLock l(&mutex_);
for (auto* cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
cfd->internal_stats()->Clear();
}
}
return Status::OK();
}
#endif // ROCKSDB_LITE
bool DBImpl::GetAggregatedIntProperty(const Slice& property,
uint64_t* aggregated_value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
if (property_info == nullptr || property_info->handle_int == nullptr) {
return false;
}
uint64_t sum = 0;
bool ret = true;
{
// Needs mutex to protect the list of column families.
InstrumentedMutexLock l(&mutex_);
uint64_t value;
for (auto* cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->initialized()) {
continue;
}
cfd->Ref();
ret = GetIntPropertyInternal(cfd, *property_info, true, &value);
// GetIntPropertyInternal may release db mutex and re-acquire it.
mutex_.AssertHeld();
cfd->UnrefAndTryDelete();
if (ret) {
sum += value;
} else {
ret = false;
break;
}
}
}
*aggregated_value = sum;
return ret;
}
SuperVersion* DBImpl::GetAndRefSuperVersion(ColumnFamilyData* cfd) {
// TODO(ljin): consider using GetReferencedSuperVersion() directly
return cfd->GetThreadLocalSuperVersion(this);
}
// REQUIRED: this function should only be called on the write thread or if the
// mutex is held.
SuperVersion* DBImpl::GetAndRefSuperVersion(uint32_t column_family_id) {
auto column_family_set = versions_->GetColumnFamilySet();
auto cfd = column_family_set->GetColumnFamily(column_family_id);
if (!cfd) {
return nullptr;
}
return GetAndRefSuperVersion(cfd);
}
void DBImpl::CleanupSuperVersion(SuperVersion* sv) {
// Release SuperVersion
if (sv->Unref()) {
bool defer_purge =
immutable_db_options().avoid_unnecessary_blocking_io;
{
InstrumentedMutexLock l(&mutex_);
sv->Cleanup();
if (defer_purge) {
AddSuperVersionsToFreeQueue(sv);
SchedulePurge();
}
}
if (!defer_purge) {
delete sv;
}
RecordTick(stats_, NUMBER_SUPERVERSION_CLEANUPS);
}
RecordTick(stats_, NUMBER_SUPERVERSION_RELEASES);
}
void DBImpl::ReturnAndCleanupSuperVersion(ColumnFamilyData* cfd,
SuperVersion* sv) {
if (!cfd->ReturnThreadLocalSuperVersion(sv)) {
CleanupSuperVersion(sv);
}
}
// REQUIRED: this function should only be called on the write thread.
void DBImpl::ReturnAndCleanupSuperVersion(uint32_t column_family_id,
SuperVersion* sv) {
auto column_family_set = versions_->GetColumnFamilySet();
auto cfd = column_family_set->GetColumnFamily(column_family_id);
// If SuperVersion is held, and we successfully fetched a cfd using
// GetAndRefSuperVersion(), it must still exist.
assert(cfd != nullptr);
ReturnAndCleanupSuperVersion(cfd, sv);
}
// REQUIRED: this function should only be called on the write thread or if the
// mutex is held.
ColumnFamilyHandle* DBImpl::GetColumnFamilyHandle(uint32_t column_family_id) {
ColumnFamilyMemTables* cf_memtables = column_family_memtables_.get();
if (!cf_memtables->Seek(column_family_id)) {
return nullptr;
}
return cf_memtables->GetColumnFamilyHandle();
}
// REQUIRED: mutex is NOT held.
std::unique_ptr<ColumnFamilyHandle> DBImpl::GetColumnFamilyHandleUnlocked(
uint32_t column_family_id) {
InstrumentedMutexLock l(&mutex_);
auto* cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(column_family_id);
if (cfd == nullptr) {
return nullptr;
}
return std::unique_ptr<ColumnFamilyHandleImpl>(
new ColumnFamilyHandleImpl(cfd, this, &mutex_));
}
void DBImpl::GetApproximateMemTableStats(ColumnFamilyHandle* column_family,
const Range& range,
uint64_t* const count,
uint64_t* const size) {
ColumnFamilyHandleImpl* cfh =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
ColumnFamilyData* cfd = cfh->cfd();
SuperVersion* sv = GetAndRefSuperVersion(cfd);
// Convert user_key into a corresponding internal key.
InternalKey k1(range.start, kMaxSequenceNumber, kValueTypeForSeek);
InternalKey k2(range.limit, kMaxSequenceNumber, kValueTypeForSeek);
MemTable::MemTableStats memStats =
sv->mem->ApproximateStats(k1.Encode(), k2.Encode());
MemTable::MemTableStats immStats =
sv->imm->ApproximateStats(k1.Encode(), k2.Encode());
*count = memStats.count + immStats.count;
*size = memStats.size + immStats.size;
ReturnAndCleanupSuperVersion(cfd, sv);
}
Status DBImpl::GetApproximateSizes(const SizeApproximationOptions& options,
ColumnFamilyHandle* column_family,
const Range* range, int n, uint64_t* sizes) {
if (!options.include_memtabtles && !options.include_files) {
return Status::InvalidArgument("Invalid options");
}
const Comparator* const ucmp = column_family->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
Version* v;
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
auto cfd = cfh->cfd();
SuperVersion* sv = GetAndRefSuperVersion(cfd);
v = sv->current;
for (int i = 0; i < n; i++) {
Slice start = range[i].start;
Slice limit = range[i].limit;
// Add timestamp if needed
std::string start_with_ts, limit_with_ts;
if (ts_sz > 0) {
// Maximum timestamp means including all key with any timestamp
AppendKeyWithMaxTimestamp(&start_with_ts, start, ts_sz);
// Append a maximum timestamp as the range limit is exclusive:
// [start, limit)
AppendKeyWithMaxTimestamp(&limit_with_ts, limit, ts_sz);
start = start_with_ts;
limit = limit_with_ts;
}
// Convert user_key into a corresponding internal key.
InternalKey k1(start, kMaxSequenceNumber, kValueTypeForSeek);
InternalKey k2(limit, kMaxSequenceNumber, kValueTypeForSeek);
sizes[i] = 0;
if (options.include_files) {
sizes[i] += versions_->ApproximateSize(
options, v, k1.Encode(), k2.Encode(), /*start_level=*/0,
/*end_level=*/-1, TableReaderCaller::kUserApproximateSize);
}
if (options.include_memtabtles) {
sizes[i] += sv->mem->ApproximateStats(k1.Encode(), k2.Encode()).size;
sizes[i] += sv->imm->ApproximateStats(k1.Encode(), k2.Encode()).size;
}
}
ReturnAndCleanupSuperVersion(cfd, sv);
return Status::OK();
}
std::list<uint64_t>::iterator
DBImpl::CaptureCurrentFileNumberInPendingOutputs() {
// We need to remember the iterator of our insert, because after the
// background job is done, we need to remove that element from
// pending_outputs_.
pending_outputs_.push_back(versions_->current_next_file_number());
auto pending_outputs_inserted_elem = pending_outputs_.end();
--pending_outputs_inserted_elem;
return pending_outputs_inserted_elem;
}
void DBImpl::ReleaseFileNumberFromPendingOutputs(
std::unique_ptr<std::list<uint64_t>::iterator>& v) {
if (v.get() != nullptr) {
pending_outputs_.erase(*v.get());
v.reset();
}
}
#ifndef ROCKSDB_LITE
Status DBImpl::GetUpdatesSince(
SequenceNumber seq, std::unique_ptr<TransactionLogIterator>* iter,
const TransactionLogIterator::ReadOptions& read_options) {
RecordTick(stats_, GET_UPDATES_SINCE_CALLS);
if (seq > versions_->LastSequence()) {
return Status::NotFound("Requested sequence not yet written in the db");
}
return wal_manager_.GetUpdatesSince(seq, iter, read_options, versions_.get());
}
Status DBImpl::DeleteFile(std::string name) {
uint64_t number;
FileType type;
WalFileType log_type;
if (!ParseFileName(name, &number, &type, &log_type) ||
(type != kTableFile && type != kWalFile)) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log, "DeleteFile %s failed.\n",
name.c_str());
return Status::InvalidArgument("Invalid file name");
}
if (type == kWalFile) {
// Only allow deleting archived log files
if (log_type != kArchivedLogFile) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"DeleteFile %s failed - not archived log.\n",
name.c_str());
return Status::NotSupported("Delete only supported for archived logs");
}
Status status = wal_manager_.DeleteFile(name, number);
if (!status.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"DeleteFile %s failed -- %s.\n", name.c_str(),
status.ToString().c_str());
}
return status;
}
Status status;
int level;
FileMetaData* metadata;
ColumnFamilyData* cfd;
VersionEdit edit;
JobContext job_context(next_job_id_.fetch_add(1), true);
{
InstrumentedMutexLock l(&mutex_);
status = versions_->GetMetadataForFile(number, &level, &metadata, &cfd);
if (!status.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"DeleteFile %s failed. File not found\n", name.c_str());
job_context.Clean();
return Status::InvalidArgument("File not found");
}
assert(level < cfd->NumberLevels());
// If the file is being compacted no need to delete.
if (metadata->being_compacted) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"DeleteFile %s Skipped. File about to be compacted\n",
name.c_str());
job_context.Clean();
return Status::OK();
}
// Only the files in the last level can be deleted externally.
// This is to make sure that any deletion tombstones are not
// lost. Check that the level passed is the last level.
auto* vstoreage = cfd->current()->storage_info();
for (int i = level + 1; i < cfd->NumberLevels(); i++) {
if (vstoreage->NumLevelFiles(i) != 0) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"DeleteFile %s FAILED. File not in last level\n",
name.c_str());
job_context.Clean();
return Status::InvalidArgument("File not in last level");
}
}
// if level == 0, it has to be the oldest file
if (level == 0 &&
vstoreage->LevelFiles(0).back()->fd.GetNumber() != number) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"DeleteFile %s failed ---"
" target file in level 0 must be the oldest.",
name.c_str());
job_context.Clean();
return Status::InvalidArgument("File in level 0, but not oldest");
}
edit.SetColumnFamily(cfd->GetID());
edit.DeleteFile(level, number);
status = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(),
&edit, &mutex_, directories_.GetDbDir());
if (status.ok()) {
InstallSuperVersionAndScheduleWork(cfd,
&job_context.superversion_contexts[0],
*cfd->GetLatestMutableCFOptions());
}
FindObsoleteFiles(&job_context, false);
} // lock released here
LogFlush(immutable_db_options_.info_log);
// remove files outside the db-lock
if (job_context.HaveSomethingToDelete()) {
// Call PurgeObsoleteFiles() without holding mutex.
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
return status;
}
Status DBImpl::DeleteFilesInRanges(ColumnFamilyHandle* column_family,
const RangePtr* ranges, size_t n,
bool include_end) {
Status status = Status::OK();
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
ColumnFamilyData* cfd = cfh->cfd();
VersionEdit edit;
std::set<FileMetaData*> deleted_files;
JobContext job_context(next_job_id_.fetch_add(1), true);
{
InstrumentedMutexLock l(&mutex_);
Version* input_version = cfd->current();
auto* vstorage = input_version->storage_info();
for (size_t r = 0; r < n; r++) {
auto begin = ranges[r].start, end = ranges[r].limit;
for (int i = 1; i < cfd->NumberLevels(); i++) {
if (vstorage->LevelFiles(i).empty() ||
!vstorage->OverlapInLevel(i, begin, end)) {
continue;
}
std::vector<FileMetaData*> level_files;
InternalKey begin_storage, end_storage, *begin_key, *end_key;
if (begin == nullptr) {
begin_key = nullptr;
} else {
begin_storage.SetMinPossibleForUserKey(*begin);
begin_key = &begin_storage;
}
if (end == nullptr) {
end_key = nullptr;
} else {
end_storage.SetMaxPossibleForUserKey(*end);
end_key = &end_storage;
}
vstorage->GetCleanInputsWithinInterval(
i, begin_key, end_key, &level_files, -1 /* hint_index */,
nullptr /* file_index */);
FileMetaData* level_file;
for (uint32_t j = 0; j < level_files.size(); j++) {
level_file = level_files[j];
if (level_file->being_compacted) {
continue;
}
if (deleted_files.find(level_file) != deleted_files.end()) {
continue;
}
if (!include_end && end != nullptr &&
cfd->user_comparator()->Compare(level_file->largest.user_key(),
*end) == 0) {
continue;
}
edit.SetColumnFamily(cfd->GetID());
edit.DeleteFile(i, level_file->fd.GetNumber());
deleted_files.insert(level_file);
level_file->being_compacted = true;
}
vstorage->ComputeCompactionScore(*cfd->ioptions(),
*cfd->GetLatestMutableCFOptions());
}
}
if (edit.GetDeletedFiles().empty()) {
job_context.Clean();
return status;
}
input_version->Ref();
status = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(),
&edit, &mutex_, directories_.GetDbDir());
if (status.ok()) {
InstallSuperVersionAndScheduleWork(cfd,
&job_context.superversion_contexts[0],
*cfd->GetLatestMutableCFOptions());
}
for (auto* deleted_file : deleted_files) {
deleted_file->being_compacted = false;
}
input_version->Unref();
FindObsoleteFiles(&job_context, false);
} // lock released here
LogFlush(immutable_db_options_.info_log);
// remove files outside the db-lock
if (job_context.HaveSomethingToDelete()) {
// Call PurgeObsoleteFiles() without holding mutex.
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
return status;
}
void DBImpl::GetLiveFilesMetaData(std::vector<LiveFileMetaData>* metadata) {
InstrumentedMutexLock l(&mutex_);
versions_->GetLiveFilesMetaData(metadata);
}
Status DBImpl::GetLiveFilesChecksumInfo(FileChecksumList* checksum_list) {
InstrumentedMutexLock l(&mutex_);
return versions_->GetLiveFilesChecksumInfo(checksum_list);
}
void DBImpl::GetColumnFamilyMetaData(ColumnFamilyHandle* column_family,
ColumnFamilyMetaData* cf_meta) {
assert(column_family);
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
auto* sv = GetAndRefSuperVersion(cfd);
{
// Without mutex, Version::GetColumnFamilyMetaData will have data race with
// Compaction::MarkFilesBeingCompacted. One solution is to use mutex, but
// this may cause regression. An alternative is to make
// FileMetaData::being_compacted atomic, but it will make FileMetaData
// non-copy-able. Another option is to separate these variables from
// original FileMetaData struct, and this requires re-organization of data
// structures. For now, we take the easy approach. If
// DB::GetColumnFamilyMetaData is not called frequently, the regression
// should not be big. We still need to keep an eye on it.
InstrumentedMutexLock l(&mutex_);
sv->current->GetColumnFamilyMetaData(cf_meta);
}
ReturnAndCleanupSuperVersion(cfd, sv);
}
void DBImpl::GetAllColumnFamilyMetaData(
std::vector<ColumnFamilyMetaData>* metadata) {
InstrumentedMutexLock l(&mutex_);
for (auto cfd : *(versions_->GetColumnFamilySet())) {
{
metadata->emplace_back();
cfd->current()->GetColumnFamilyMetaData(&metadata->back());
}
}
}
#endif // ROCKSDB_LITE
Status DBImpl::CheckConsistency() {
mutex_.AssertHeld();
std::vector<LiveFileMetaData> metadata;
versions_->GetLiveFilesMetaData(&metadata);
TEST_SYNC_POINT("DBImpl::CheckConsistency:AfterGetLiveFilesMetaData");
std::string corruption_messages;
if (immutable_db_options_.skip_checking_sst_file_sizes_on_db_open) {
// Instead of calling GetFileSize() for each expected file, call
// GetChildren() for the DB directory and check that all expected files
// are listed, without checking their sizes.
// Since sst files might be in different directories, do it for each
// directory separately.
std::map<std::string, std::vector<std::string>> files_by_directory;
for (const auto& md : metadata) {
// md.name has a leading "/". Remove it.
std::string fname = md.name;
if (!fname.empty() && fname[0] == '/') {
fname = fname.substr(1);
}
files_by_directory[md.db_path].push_back(fname);
}
for (const auto& dir_files : files_by_directory) {
std::string directory = dir_files.first;
std::vector<std::string> existing_files;
Status s = env_->GetChildren(directory, &existing_files);
if (!s.ok()) {
corruption_messages +=
"Can't list files in " + directory + ": " + s.ToString() + "\n";
continue;
}
std::sort(existing_files.begin(), existing_files.end());
for (const std::string& fname : dir_files.second) {
if (!std::binary_search(existing_files.begin(), existing_files.end(),
fname) &&
!std::binary_search(existing_files.begin(), existing_files.end(),
Rocks2LevelTableFileName(fname))) {
corruption_messages +=
"Missing sst file " + fname + " in " + directory + "\n";
}
}
}
} else {
for (const auto& md : metadata) {
// md.name has a leading "/".
std::string file_path = md.db_path + md.name;
uint64_t fsize = 0;
TEST_SYNC_POINT("DBImpl::CheckConsistency:BeforeGetFileSize");
Status s = env_->GetFileSize(file_path, &fsize);
if (!s.ok() &&
env_->GetFileSize(Rocks2LevelTableFileName(file_path), &fsize).ok()) {
s = Status::OK();
}
if (!s.ok()) {
corruption_messages +=
"Can't access " + md.name + ": " + s.ToString() + "\n";
} else if (fsize != md.size) {
corruption_messages += "Sst file size mismatch: " + file_path +
". Size recorded in manifest " +
ToString(md.size) + ", actual size " +
ToString(fsize) + "\n";
}
}
}
if (corruption_messages.size() == 0) {
return Status::OK();
} else {
return Status::Corruption(corruption_messages);
}
}
Status DBImpl::GetDbIdentity(std::string& identity) const {
identity.assign(db_id_);
return Status::OK();
}
Status DBImpl::GetDbIdentityFromIdentityFile(std::string* identity) const {
std::string idfilename = IdentityFileName(dbname_);
const FileOptions soptions;
Status s = ReadFileToString(fs_.get(), idfilename, identity);
if (!s.ok()) {
return s;
}
// If last character is '\n' remove it from identity. (Old implementations
// of Env::GenerateUniqueId() would include a trailing '\n'.)
if (identity->size() > 0 && identity->back() == '\n') {
identity->pop_back();
}
return s;
}
Status DBImpl::GetDbSessionId(std::string& session_id) const {
session_id.assign(db_session_id_);
return Status::OK();
}
std::string DBImpl::GenerateDbSessionId(Env*) {
// GenerateRawUniqueId() generates an identifier that has a negligible
// probability of being duplicated. It should have full 128 bits of entropy.
uint64_t a, b;
GenerateRawUniqueId(&a, &b);
// Hash and reformat that down to a more compact format, 20 characters
// in base-36 ([0-9A-Z]), which is ~103 bits of entropy, which is enough
// to expect no collisions across a billion servers each opening DBs
// a million times (~2^50). Benefits vs. raw unique id:
// * Save ~ dozen bytes per SST file
// * Shorter shared backup file names (some platforms have low limits)
// * Visually distinct from DB id format
std::string db_session_id(20U, '\0');
char* buf = &db_session_id[0];
PutBaseChars<36>(&buf, 10, a, /*uppercase*/ true);
PutBaseChars<36>(&buf, 10, b, /*uppercase*/ true);
return db_session_id;
}
void DBImpl::SetDbSessionId() {
db_session_id_ = GenerateDbSessionId(env_);
TEST_SYNC_POINT_CALLBACK("DBImpl::SetDbSessionId", &db_session_id_);
}
// Default implementation -- returns not supported status
Status DB::CreateColumnFamily(const ColumnFamilyOptions& /*cf_options*/,
const std::string& /*column_family_name*/,
ColumnFamilyHandle** /*handle*/) {
return Status::NotSupported("");
}
Status DB::CreateColumnFamilies(
const ColumnFamilyOptions& /*cf_options*/,
const std::vector<std::string>& /*column_family_names*/,
std::vector<ColumnFamilyHandle*>* /*handles*/) {
return Status::NotSupported("");
}
Status DB::CreateColumnFamilies(
const std::vector<ColumnFamilyDescriptor>& /*column_families*/,
std::vector<ColumnFamilyHandle*>* /*handles*/) {
return Status::NotSupported("");
}
Status DB::DropColumnFamily(ColumnFamilyHandle* /*column_family*/) {
return Status::NotSupported("");
}
Status DB::DropColumnFamilies(
const std::vector<ColumnFamilyHandle*>& /*column_families*/) {
return Status::NotSupported("");
}
Status DB::DestroyColumnFamilyHandle(ColumnFamilyHandle* column_family) {
delete column_family;
return Status::OK();
}
DB::~DB() {}
Status DBImpl::Close() {
if (!closed_) {
{
InstrumentedMutexLock l(&mutex_);
// If there is unreleased snapshot, fail the close call
if (!snapshots_.empty()) {
return Status::Aborted("Cannot close DB with unreleased snapshot.");
}
}
closed_ = true;
return CloseImpl();
}
return Status::OK();
}
Status DB::ListColumnFamilies(const DBOptions& db_options,
const std::string& name,
std::vector<std::string>* column_families) {
const std::shared_ptr<FileSystem>& fs = db_options.env->GetFileSystem();
return VersionSet::ListColumnFamilies(column_families, name, fs.get());
}
Snapshot::~Snapshot() {}
Status DestroyDB(const std::string& dbname, const Options& options,
const std::vector<ColumnFamilyDescriptor>& column_families) {
ImmutableDBOptions soptions(SanitizeOptions(dbname, options));
Env* env = soptions.env;
std::vector<std::string> filenames;
bool wal_in_db_path = soptions.IsWalDirSameAsDBPath();
// Reset the logger because it holds a handle to the
// log file and prevents cleanup and directory removal
soptions.info_log.reset();
// Ignore error in case directory does not exist
env->GetChildren(dbname, &filenames).PermitUncheckedError();
FileLock* lock;
const std::string lockname = LockFileName(dbname);
Status result = env->LockFile(lockname, &lock);
if (result.ok()) {
uint64_t number;
FileType type;
InfoLogPrefix info_log_prefix(!soptions.db_log_dir.empty(), dbname);
for (const auto& fname : filenames) {
if (ParseFileName(fname, &number, info_log_prefix.prefix, &type) &&
type != kDBLockFile) { // Lock file will be deleted at end
Status del;
std::string path_to_delete = dbname + "/" + fname;
if (type == kMetaDatabase) {
del = DestroyDB(path_to_delete, options);
} else if (type == kTableFile || type == kWalFile ||
type == kBlobFile) {
del = DeleteDBFile(&soptions, path_to_delete, dbname,
/*force_bg=*/false, /*force_fg=*/!wal_in_db_path);
} else {
del = env->DeleteFile(path_to_delete);
}
if (!del.ok() && result.ok()) {
result = del;
}
}
}
std::set<std::string> paths;
for (const DbPath& db_path : options.db_paths) {
paths.insert(db_path.path);
}
for (const ColumnFamilyDescriptor& cf : column_families) {
for (const DbPath& cf_path : cf.options.cf_paths) {
paths.insert(cf_path.path);
}
}
for (const auto& path : paths) {
if (env->GetChildren(path, &filenames).ok()) {
for (const auto& fname : filenames) {
if (ParseFileName(fname, &number, &type) &&
(type == kTableFile ||
type == kBlobFile)) { // Lock file will be deleted at end
std::string file_path = path + "/" + fname;
Status del = DeleteDBFile(&soptions, file_path, dbname,
/*force_bg=*/false, /*force_fg=*/false);
if (!del.ok() && result.ok()) {
result = del;
}
}
}
// TODO: Should we return an error if we cannot delete the directory?
env->DeleteDir(path).PermitUncheckedError();
}
}
std::vector<std::string> walDirFiles;
std::string archivedir = ArchivalDirectory(dbname);
bool wal_dir_exists = false;
if (!soptions.IsWalDirSameAsDBPath(dbname)) {
wal_dir_exists = env->GetChildren(soptions.wal_dir, &walDirFiles).ok();
archivedir = ArchivalDirectory(soptions.wal_dir);
}
// Archive dir may be inside wal dir or dbname and should be
// processed and removed before those otherwise we have issues
// removing them
std::vector<std::string> archiveFiles;
if (env->GetChildren(archivedir, &archiveFiles).ok()) {
// Delete archival files.
for (const auto& file : archiveFiles) {
if (ParseFileName(file, &number, &type) && type == kWalFile) {
Status del =
DeleteDBFile(&soptions, archivedir + "/" + file, archivedir,
/*force_bg=*/false, /*force_fg=*/!wal_in_db_path);
if (!del.ok() && result.ok()) {
result = del;
}
}
}
// Ignore error in case dir contains other files
env->DeleteDir(archivedir).PermitUncheckedError();
}
// Delete log files in the WAL dir
if (wal_dir_exists) {
for (const auto& file : walDirFiles) {
if (ParseFileName(file, &number, &type) && type == kWalFile) {
Status del =
DeleteDBFile(&soptions, LogFileName(soptions.wal_dir, number),
soptions.wal_dir, /*force_bg=*/false,
/*force_fg=*/!wal_in_db_path);
if (!del.ok() && result.ok()) {
result = del;
}
}
}
// Ignore error in case dir contains other files
env->DeleteDir(soptions.wal_dir).PermitUncheckedError();
}
// Ignore error since state is already gone
env->UnlockFile(lock).PermitUncheckedError();
env->DeleteFile(lockname).PermitUncheckedError();
// sst_file_manager holds a ref to the logger. Make sure the logger is
// gone before trying to remove the directory.
soptions.sst_file_manager.reset();
// Ignore error in case dir contains other files
env->DeleteDir(dbname).PermitUncheckedError();
;
}
return result;
}
Status DBImpl::WriteOptionsFile(bool need_mutex_lock,
bool need_enter_write_thread) {
#ifndef ROCKSDB_LITE
WriteThread::Writer w;
if (need_mutex_lock) {
mutex_.Lock();
} else {
mutex_.AssertHeld();
}
if (need_enter_write_thread) {
write_thread_.EnterUnbatched(&w, &mutex_);
}
std::vector<std::string> cf_names;
std::vector<ColumnFamilyOptions> cf_opts;
// This part requires mutex to protect the column family options
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
cf_names.push_back(cfd->GetName());
cf_opts.push_back(cfd->GetLatestCFOptions());
}
// Unlock during expensive operations. New writes cannot get here
// because the single write thread ensures all new writes get queued.
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
mutex_.Unlock();
TEST_SYNC_POINT("DBImpl::WriteOptionsFile:1");
TEST_SYNC_POINT("DBImpl::WriteOptionsFile:2");
TEST_SYNC_POINT_CALLBACK("DBImpl::WriteOptionsFile:PersistOptions",
&db_options);
std::string file_name =
TempOptionsFileName(GetName(), versions_->NewFileNumber());
Status s = PersistRocksDBOptions(db_options, cf_names, cf_opts, file_name,
fs_.get());
if (s.ok()) {
s = RenameTempFileToOptionsFile(file_name);
}
// restore lock
if (!need_mutex_lock) {
mutex_.Lock();
}
if (need_enter_write_thread) {
write_thread_.ExitUnbatched(&w);
}
if (!s.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Unnable to persist options -- %s", s.ToString().c_str());
if (immutable_db_options_.fail_if_options_file_error) {
return Status::IOError("Unable to persist options.",
s.ToString().c_str());
}
}
#else
(void)need_mutex_lock;
(void)need_enter_write_thread;
#endif // !ROCKSDB_LITE
return Status::OK();
}
#ifndef ROCKSDB_LITE
namespace {
void DeleteOptionsFilesHelper(const std::map<uint64_t, std::string>& filenames,
const size_t num_files_to_keep,
const std::shared_ptr<Logger>& info_log,
Env* env) {
if (filenames.size() <= num_files_to_keep) {
return;
}
for (auto iter = std::next(filenames.begin(), num_files_to_keep);
iter != filenames.end(); ++iter) {
if (!env->DeleteFile(iter->second).ok()) {
ROCKS_LOG_WARN(info_log, "Unable to delete options file %s",
iter->second.c_str());
}
}
}
} // namespace
#endif // !ROCKSDB_LITE
Status DBImpl::DeleteObsoleteOptionsFiles() {
#ifndef ROCKSDB_LITE
std::vector<std::string> filenames;
// use ordered map to store keep the filenames sorted from the newest
// to the oldest.
std::map<uint64_t, std::string> options_filenames;
Status s;
s = GetEnv()->GetChildren(GetName(), &filenames);
if (!s.ok()) {
return s;
}
for (auto& filename : filenames) {
uint64_t file_number;
FileType type;
if (ParseFileName(filename, &file_number, &type) && type == kOptionsFile) {
options_filenames.insert(
{std::numeric_limits<uint64_t>::max() - file_number,
GetName() + "/" + filename});
}
}
// Keeps the latest 2 Options file
const size_t kNumOptionsFilesKept = 2;
DeleteOptionsFilesHelper(options_filenames, kNumOptionsFilesKept,
immutable_db_options_.info_log, GetEnv());
return Status::OK();
#else
return Status::OK();
#endif // !ROCKSDB_LITE
}
Status DBImpl::RenameTempFileToOptionsFile(const std::string& file_name) {
#ifndef ROCKSDB_LITE
Status s;
uint64_t options_file_number = versions_->NewFileNumber();
std::string options_file_name =
OptionsFileName(GetName(), options_file_number);
// Retry if the file name happen to conflict with an existing one.
s = GetEnv()->RenameFile(file_name, options_file_name);
if (s.ok()) {
InstrumentedMutexLock l(&mutex_);
versions_->options_file_number_ = options_file_number;
}
if (0 == disable_delete_obsolete_files_) {
// TODO: Should we check for errors here?
DeleteObsoleteOptionsFiles().PermitUncheckedError();
}
return s;
#else
(void)file_name;
return Status::OK();
#endif // !ROCKSDB_LITE
}
#ifdef ROCKSDB_USING_THREAD_STATUS
void DBImpl::NewThreadStatusCfInfo(ColumnFamilyData* cfd) const {
if (immutable_db_options_.enable_thread_tracking) {
ThreadStatusUtil::NewColumnFamilyInfo(this, cfd, cfd->GetName(),
cfd->ioptions()->env);
}
}
void DBImpl::EraseThreadStatusCfInfo(ColumnFamilyData* cfd) const {
if (immutable_db_options_.enable_thread_tracking) {
ThreadStatusUtil::EraseColumnFamilyInfo(cfd);
}
}
void DBImpl::EraseThreadStatusDbInfo() const {
if (immutable_db_options_.enable_thread_tracking) {
ThreadStatusUtil::EraseDatabaseInfo(this);
}
}
#else
void DBImpl::NewThreadStatusCfInfo(ColumnFamilyData* /*cfd*/) const {}
void DBImpl::EraseThreadStatusCfInfo(ColumnFamilyData* /*cfd*/) const {}
void DBImpl::EraseThreadStatusDbInfo() const {}
#endif // ROCKSDB_USING_THREAD_STATUS
//
// A global method that can dump out the build version
void DumpRocksDBBuildVersion(Logger* log) {
ROCKS_LOG_HEADER(log, "RocksDB version: %s\n",
GetRocksVersionAsString().c_str());
const auto& props = GetRocksBuildProperties();
const auto& sha = props.find("rocksdb_build_git_sha");
if (sha != props.end()) {
ROCKS_LOG_HEADER(log, "Git sha %s", sha->second.c_str());
}
const auto date = props.find("rocksdb_build_date");
if (date != props.end()) {
ROCKS_LOG_HEADER(log, "Compile date %s", date->second.c_str());
}
}
#ifndef ROCKSDB_LITE
SequenceNumber DBImpl::GetEarliestMemTableSequenceNumber(SuperVersion* sv,
bool include_history) {
// Find the earliest sequence number that we know we can rely on reading
// from the memtable without needing to check sst files.
SequenceNumber earliest_seq =
sv->imm->GetEarliestSequenceNumber(include_history);
if (earliest_seq == kMaxSequenceNumber) {
earliest_seq = sv->mem->GetEarliestSequenceNumber();
}
assert(sv->mem->GetEarliestSequenceNumber() >= earliest_seq);
return earliest_seq;
}
Status DBImpl::GetLatestSequenceForKey(SuperVersion* sv, const Slice& key,
bool cache_only,
SequenceNumber lower_bound_seq,
SequenceNumber* seq,
bool* found_record_for_key,
bool* is_blob_index) {
Status s;
MergeContext merge_context;
SequenceNumber max_covering_tombstone_seq = 0;
ReadOptions read_options;
SequenceNumber current_seq = versions_->LastSequence();
LookupKey lkey(key, current_seq);
*seq = kMaxSequenceNumber;
*found_record_for_key = false;
// Check if there is a record for this key in the latest memtable
sv->mem->Get(lkey, nullptr, nullptr, &s, &merge_context,
&max_covering_tombstone_seq, seq, read_options,
nullptr /*read_callback*/, is_blob_index);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading memtable.
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Unexpected status returned from MemTable::Get: %s\n",
s.ToString().c_str());
return s;
}
if (*seq != kMaxSequenceNumber) {
// Found a sequence number, no need to check immutable memtables
*found_record_for_key = true;
return Status::OK();
}
SequenceNumber lower_bound_in_mem = sv->mem->GetEarliestSequenceNumber();
if (lower_bound_in_mem != kMaxSequenceNumber &&
lower_bound_in_mem < lower_bound_seq) {
*found_record_for_key = false;
return Status::OK();
}
// Check if there is a record for this key in the immutable memtables
sv->imm->Get(lkey, nullptr, nullptr, &s, &merge_context,
&max_covering_tombstone_seq, seq, read_options,
nullptr /*read_callback*/, is_blob_index);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading memtable.
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Unexpected status returned from MemTableList::Get: %s\n",
s.ToString().c_str());
return s;
}
if (*seq != kMaxSequenceNumber) {
// Found a sequence number, no need to check memtable history
*found_record_for_key = true;
return Status::OK();
}
SequenceNumber lower_bound_in_imm = sv->imm->GetEarliestSequenceNumber();
if (lower_bound_in_imm != kMaxSequenceNumber &&
lower_bound_in_imm < lower_bound_seq) {
*found_record_for_key = false;
return Status::OK();
}
// Check if there is a record for this key in the immutable memtables
sv->imm->GetFromHistory(lkey, nullptr, nullptr, &s, &merge_context,
&max_covering_tombstone_seq, seq, read_options,
is_blob_index);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading memtable.
ROCKS_LOG_ERROR(
immutable_db_options_.info_log,
"Unexpected status returned from MemTableList::GetFromHistory: %s\n",
s.ToString().c_str());
return s;
}
if (*seq != kMaxSequenceNumber) {
// Found a sequence number, no need to check SST files
*found_record_for_key = true;
return Status::OK();
}
// We could do a sv->imm->GetEarliestSequenceNumber(/*include_history*/ true)
// check here to skip the history if possible. But currently the caller
// already does that. Maybe we should move the logic here later.
// TODO(agiardullo): possible optimization: consider checking cached
// SST files if cache_only=true?
if (!cache_only) {
// Check tables
sv->current->Get(read_options, lkey, nullptr, nullptr, &s, &merge_context,
&max_covering_tombstone_seq, nullptr /* value_found */,
found_record_for_key, seq, nullptr /*read_callback*/,
is_blob_index);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading SST files
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Unexpected status returned from Version::Get: %s\n",
s.ToString().c_str());
}
}
return s;
}
Status DBImpl::IngestExternalFile(
ColumnFamilyHandle* column_family,
const std::vector<std::string>& external_files,
const IngestExternalFileOptions& ingestion_options) {
IngestExternalFileArg arg;
arg.column_family = column_family;
arg.external_files = external_files;
arg.options = ingestion_options;
return IngestExternalFiles({arg});
}
Status DBImpl::IngestExternalFiles(
const std::vector<IngestExternalFileArg>& args) {
if (args.empty()) {
return Status::InvalidArgument("ingestion arg list is empty");
}
{
std::unordered_set<ColumnFamilyHandle*> unique_cfhs;
for (const auto& arg : args) {
if (arg.column_family == nullptr) {
return Status::InvalidArgument("column family handle is null");
} else if (unique_cfhs.count(arg.column_family) > 0) {
return Status::InvalidArgument(
"ingestion args have duplicate column families");
}
unique_cfhs.insert(arg.column_family);
}
}
// Ingest multiple external SST files atomically.
const size_t num_cfs = args.size();
for (size_t i = 0; i != num_cfs; ++i) {
if (args[i].external_files.empty()) {
char err_msg[128] = {0};
snprintf(err_msg, 128, "external_files[%zu] is empty", i);
return Status::InvalidArgument(err_msg);
}
}
for (const auto& arg : args) {
const IngestExternalFileOptions& ingest_opts = arg.options;
if (ingest_opts.ingest_behind &&
!immutable_db_options_.allow_ingest_behind) {
return Status::InvalidArgument(
"can't ingest_behind file in DB with allow_ingest_behind=false");
}
}
// TODO (yanqin) maybe handle the case in which column_families have
// duplicates
std::unique_ptr<std::list<uint64_t>::iterator> pending_output_elem;
size_t total = 0;
for (const auto& arg : args) {
total += arg.external_files.size();
}
uint64_t next_file_number = 0;
Status status = ReserveFileNumbersBeforeIngestion(
static_cast<ColumnFamilyHandleImpl*>(args[0].column_family)->cfd(), total,
pending_output_elem, &next_file_number);
if (!status.ok()) {
InstrumentedMutexLock l(&mutex_);
ReleaseFileNumberFromPendingOutputs(pending_output_elem);
return status;
}
std::vector<ExternalSstFileIngestionJob> ingestion_jobs;
for (const auto& arg : args) {
auto* cfd = static_cast<ColumnFamilyHandleImpl*>(arg.column_family)->cfd();
ingestion_jobs.emplace_back(versions_.get(), cfd, immutable_db_options_,
file_options_, &snapshots_, arg.options,
&directories_, &event_logger_, io_tracer_);
}
// TODO(yanqin) maybe make jobs run in parallel
uint64_t start_file_number = next_file_number;
for (size_t i = 1; i != num_cfs; ++i) {
start_file_number += args[i - 1].external_files.size();
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[i].column_family)->cfd();
SuperVersion* super_version = cfd->GetReferencedSuperVersion(this);
Status es = ingestion_jobs[i].Prepare(
args[i].external_files, args[i].files_checksums,
args[i].files_checksum_func_names, start_file_number, super_version);
// capture first error only
if (!es.ok() && status.ok()) {
status = es;
}
CleanupSuperVersion(super_version);
}
TEST_SYNC_POINT("DBImpl::IngestExternalFiles:BeforeLastJobPrepare:0");
TEST_SYNC_POINT("DBImpl::IngestExternalFiles:BeforeLastJobPrepare:1");
{
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[0].column_family)->cfd();
SuperVersion* super_version = cfd->GetReferencedSuperVersion(this);
Status es = ingestion_jobs[0].Prepare(
args[0].external_files, args[0].files_checksums,
args[0].files_checksum_func_names, next_file_number, super_version);
if (!es.ok()) {
status = es;
}
CleanupSuperVersion(super_version);
}
if (!status.ok()) {
for (size_t i = 0; i != num_cfs; ++i) {
ingestion_jobs[i].Cleanup(status);
}
InstrumentedMutexLock l(&mutex_);
ReleaseFileNumberFromPendingOutputs(pending_output_elem);
return status;
}
std::vector<SuperVersionContext> sv_ctxs;
for (size_t i = 0; i != num_cfs; ++i) {
sv_ctxs.emplace_back(true /* create_superversion */);
}
TEST_SYNC_POINT("DBImpl::IngestExternalFiles:BeforeJobsRun:0");
TEST_SYNC_POINT("DBImpl::IngestExternalFiles:BeforeJobsRun:1");
TEST_SYNC_POINT("DBImpl::AddFile:Start");
{
InstrumentedMutexLock l(&mutex_);
TEST_SYNC_POINT("DBImpl::AddFile:MutexLock");
// Stop writes to the DB by entering both write threads
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
WriteThread::Writer nonmem_w;
if (two_write_queues_) {
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
// When unordered_write is enabled, the keys are writing to memtable in an
// unordered way. If the ingestion job checks memtable key range before the
// key landing in memtable, the ingestion job may skip the necessary
// memtable flush.
// So wait here to ensure there is no pending write to memtable.
WaitForPendingWrites();
num_running_ingest_file_ += static_cast<int>(num_cfs);
TEST_SYNC_POINT("DBImpl::IngestExternalFile:AfterIncIngestFileCounter");
bool at_least_one_cf_need_flush = false;
std::vector<bool> need_flush(num_cfs, false);
for (size_t i = 0; i != num_cfs; ++i) {
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[i].column_family)->cfd();
if (cfd->IsDropped()) {
// TODO (yanqin) investigate whether we should abort ingestion or
// proceed with other non-dropped column families.
status = Status::InvalidArgument(
"cannot ingest an external file into a dropped CF");
break;
}
bool tmp = false;
status = ingestion_jobs[i].NeedsFlush(&tmp, cfd->GetSuperVersion());
need_flush[i] = tmp;
at_least_one_cf_need_flush = (at_least_one_cf_need_flush || tmp);
if (!status.ok()) {
break;
}
}
TEST_SYNC_POINT_CALLBACK("DBImpl::IngestExternalFile:NeedFlush",
&at_least_one_cf_need_flush);
if (status.ok() && at_least_one_cf_need_flush) {
FlushOptions flush_opts;
flush_opts.allow_write_stall = true;
if (immutable_db_options_.atomic_flush) {
autovector<ColumnFamilyData*> cfds_to_flush;
SelectColumnFamiliesForAtomicFlush(&cfds_to_flush);
mutex_.Unlock();
status = AtomicFlushMemTables(cfds_to_flush, flush_opts,
FlushReason::kExternalFileIngestion,
true /* writes_stopped */);
mutex_.Lock();
} else {
for (size_t i = 0; i != num_cfs; ++i) {
if (need_flush[i]) {
mutex_.Unlock();
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[i].column_family)
->cfd();
status = FlushMemTable(cfd, flush_opts,
FlushReason::kExternalFileIngestion,
true /* writes_stopped */);
mutex_.Lock();
if (!status.ok()) {
break;
}
}
}
}
}
// Run ingestion jobs.
if (status.ok()) {
for (size_t i = 0; i != num_cfs; ++i) {
status = ingestion_jobs[i].Run();
if (!status.ok()) {
break;
}
}
}
if (status.ok()) {
int consumed_seqno_count =
ingestion_jobs[0].ConsumedSequenceNumbersCount();
#ifndef NDEBUG
for (size_t i = 1; i != num_cfs; ++i) {
assert(!!consumed_seqno_count ==
!!ingestion_jobs[i].ConsumedSequenceNumbersCount());
consumed_seqno_count +=
ingestion_jobs[i].ConsumedSequenceNumbersCount();
}
#endif
if (consumed_seqno_count > 0) {
const SequenceNumber last_seqno = versions_->LastSequence();
versions_->SetLastAllocatedSequence(last_seqno + consumed_seqno_count);
versions_->SetLastPublishedSequence(last_seqno + consumed_seqno_count);
versions_->SetLastSequence(last_seqno + consumed_seqno_count);
}
autovector<ColumnFamilyData*> cfds_to_commit;
autovector<const MutableCFOptions*> mutable_cf_options_list;
autovector<autovector<VersionEdit*>> edit_lists;
uint32_t num_entries = 0;
for (size_t i = 0; i != num_cfs; ++i) {
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[i].column_family)->cfd();
if (cfd->IsDropped()) {
continue;
}
cfds_to_commit.push_back(cfd);
mutable_cf_options_list.push_back(cfd->GetLatestMutableCFOptions());
autovector<VersionEdit*> edit_list;
edit_list.push_back(ingestion_jobs[i].edit());
edit_lists.push_back(edit_list);
++num_entries;
}
// Mark the version edits as an atomic group if the number of version
// edits exceeds 1.
if (cfds_to_commit.size() > 1) {
for (auto& edits : edit_lists) {
assert(edits.size() == 1);
edits[0]->MarkAtomicGroup(--num_entries);
}
assert(0 == num_entries);
}
status =
versions_->LogAndApply(cfds_to_commit, mutable_cf_options_list,
edit_lists, &mutex_, directories_.GetDbDir());
}
if (status.ok()) {
for (size_t i = 0; i != num_cfs; ++i) {
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[i].column_family)->cfd();
if (!cfd->IsDropped()) {
InstallSuperVersionAndScheduleWork(cfd, &sv_ctxs[i],
*cfd->GetLatestMutableCFOptions());
#ifndef NDEBUG
if (0 == i && num_cfs > 1) {
TEST_SYNC_POINT(
"DBImpl::IngestExternalFiles:InstallSVForFirstCF:0");
TEST_SYNC_POINT(
"DBImpl::IngestExternalFiles:InstallSVForFirstCF:1");
}
#endif // !NDEBUG
}
}
} else if (versions_->io_status().IsIOError()) {
// Error while writing to MANIFEST.
// In fact, versions_->io_status() can also be the result of renaming
// CURRENT file. With current code, it's just difficult to tell. So just
// be pessimistic and try write to a new MANIFEST.
// TODO: distinguish between MANIFEST write and CURRENT renaming
const IOStatus& io_s = versions_->io_status();
// Should handle return error?
error_handler_.SetBGError(io_s, BackgroundErrorReason::kManifestWrite);
}
// Resume writes to the DB
if (two_write_queues_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
write_thread_.ExitUnbatched(&w);
if (status.ok()) {
for (auto& job : ingestion_jobs) {
job.UpdateStats();
}
}
ReleaseFileNumberFromPendingOutputs(pending_output_elem);
num_running_ingest_file_ -= static_cast<int>(num_cfs);
if (0 == num_running_ingest_file_) {
bg_cv_.SignalAll();
}
TEST_SYNC_POINT("DBImpl::AddFile:MutexUnlock");
}
// mutex_ is unlocked here
// Cleanup
for (size_t i = 0; i != num_cfs; ++i) {
sv_ctxs[i].Clean();
// This may rollback jobs that have completed successfully. This is
// intended for atomicity.
ingestion_jobs[i].Cleanup(status);
}
if (status.ok()) {
for (size_t i = 0; i != num_cfs; ++i) {
auto* cfd =
static_cast<ColumnFamilyHandleImpl*>(args[i].column_family)->cfd();
if (!cfd->IsDropped()) {
NotifyOnExternalFileIngested(cfd, ingestion_jobs[i]);
}
}
}
return status;
}
Status DBImpl::CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle) {
assert(handle != nullptr);
assert(*handle == nullptr);
std::string cf_comparator_name = options.comparator->Name();
if (cf_comparator_name != metadata.db_comparator_name) {
return Status::InvalidArgument("Comparator name mismatch");
}
// Create column family.
auto status = CreateColumnFamily(options, column_family_name, handle);
if (!status.ok()) {
return status;
}
// Import sst files from metadata.
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(*handle);
auto cfd = cfh->cfd();
ImportColumnFamilyJob import_job(versions_.get(), cfd, immutable_db_options_,
file_options_, import_options,
metadata.files, io_tracer_);
SuperVersionContext dummy_sv_ctx(/* create_superversion */ true);
VersionEdit dummy_edit;
uint64_t next_file_number = 0;
std::unique_ptr<std::list<uint64_t>::iterator> pending_output_elem;
{
// Lock db mutex
InstrumentedMutexLock l(&mutex_);
if (error_handler_.IsDBStopped()) {
// Don't import files when there is a bg_error
status = error_handler_.GetBGError();
}
// Make sure that bg cleanup wont delete the files that we are importing
pending_output_elem.reset(new std::list<uint64_t>::iterator(
CaptureCurrentFileNumberInPendingOutputs()));
if (status.ok()) {
// If crash happen after a hard link established, Recover function may
// reuse the file number that has already assigned to the internal file,
// and this will overwrite the external file. To protect the external
// file, we have to make sure the file number will never being reused.
next_file_number = versions_->FetchAddFileNumber(metadata.files.size());
auto cf_options = cfd->GetLatestMutableCFOptions();
status = versions_->LogAndApply(cfd, *cf_options, &dummy_edit, &mutex_,
directories_.GetDbDir());
if (status.ok()) {
InstallSuperVersionAndScheduleWork(cfd, &dummy_sv_ctx, *cf_options);
}
}
}
dummy_sv_ctx.Clean();
if (status.ok()) {
SuperVersion* sv = cfd->GetReferencedSuperVersion(this);
status = import_job.Prepare(next_file_number, sv);
CleanupSuperVersion(sv);
}
if (status.ok()) {
SuperVersionContext sv_context(true /*create_superversion*/);
{
// Lock db mutex
InstrumentedMutexLock l(&mutex_);
// Stop writes to the DB by entering both write threads
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
WriteThread::Writer nonmem_w;
if (two_write_queues_) {
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
num_running_ingest_file_++;
assert(!cfd->IsDropped());
status = import_job.Run();
// Install job edit [Mutex will be unlocked here]
if (status.ok()) {
auto cf_options = cfd->GetLatestMutableCFOptions();
status = versions_->LogAndApply(cfd, *cf_options, import_job.edit(),
&mutex_, directories_.GetDbDir());
if (status.ok()) {
InstallSuperVersionAndScheduleWork(cfd, &sv_context, *cf_options);
}
}
// Resume writes to the DB
if (two_write_queues_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
write_thread_.ExitUnbatched(&w);
num_running_ingest_file_--;
if (num_running_ingest_file_ == 0) {
bg_cv_.SignalAll();
}
}
// mutex_ is unlocked here
sv_context.Clean();
}
{
InstrumentedMutexLock l(&mutex_);
ReleaseFileNumberFromPendingOutputs(pending_output_elem);
}
import_job.Cleanup(status);
if (!status.ok()) {
Status temp_s = DropColumnFamily(*handle);
if (!temp_s.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"DropColumnFamily failed with error %s",
temp_s.ToString().c_str());
}
// Always returns Status::OK()
temp_s = DestroyColumnFamilyHandle(*handle);
assert(temp_s.ok());
*handle = nullptr;
}
return status;
}
Status DBImpl::VerifyFileChecksums(const ReadOptions& read_options) {
return VerifyChecksumInternal(read_options, /*use_file_checksum=*/true);
}
Status DBImpl::VerifyChecksum(const ReadOptions& read_options) {
return VerifyChecksumInternal(read_options, /*use_file_checksum=*/false);
}
Status DBImpl::VerifyChecksumInternal(const ReadOptions& read_options,
bool use_file_checksum) {
// `bytes_read` stat is enabled based on compile-time support and cannot
// be dynamically toggled. So we do not need to worry about `PerfLevel`
// here, unlike many other `IOStatsContext` / `PerfContext` stats.
uint64_t prev_bytes_read = IOSTATS(bytes_read);
Status s;
if (use_file_checksum) {
FileChecksumGenFactory* const file_checksum_gen_factory =
immutable_db_options_.file_checksum_gen_factory.get();
if (!file_checksum_gen_factory) {
s = Status::InvalidArgument(
"Cannot verify file checksum if options.file_checksum_gen_factory is "
"null");
return s;
}
}
std::vector<ColumnFamilyData*> cfd_list;
{
InstrumentedMutexLock l(&mutex_);
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->IsDropped() && cfd->initialized()) {
cfd->Ref();
cfd_list.push_back(cfd);
}
}
}
std::vector<SuperVersion*> sv_list;
for (auto cfd : cfd_list) {
sv_list.push_back(cfd->GetReferencedSuperVersion(this));
}
for (auto& sv : sv_list) {
VersionStorageInfo* vstorage = sv->current->storage_info();
ColumnFamilyData* cfd = sv->current->cfd();
Options opts;
if (!use_file_checksum) {
InstrumentedMutexLock l(&mutex_);
opts = Options(BuildDBOptions(immutable_db_options_, mutable_db_options_),
cfd->GetLatestCFOptions());
}
for (int i = 0; i < vstorage->num_non_empty_levels() && s.ok(); i++) {
for (size_t j = 0; j < vstorage->LevelFilesBrief(i).num_files && s.ok();
j++) {
const auto& fd_with_krange = vstorage->LevelFilesBrief(i).files[j];
const auto& fd = fd_with_krange.fd;
const FileMetaData* fmeta = fd_with_krange.file_metadata;
assert(fmeta);
std::string fname = TableFileName(cfd->ioptions()->cf_paths,
fd.GetNumber(), fd.GetPathId());
if (use_file_checksum) {
s = VerifyFullFileChecksum(fmeta->file_checksum,
fmeta->file_checksum_func_name, fname,
read_options);
} else {
s = ROCKSDB_NAMESPACE::VerifySstFileChecksum(opts, file_options_,
read_options, fname);
}
RecordTick(stats_, VERIFY_CHECKSUM_READ_BYTES,
IOSTATS(bytes_read) - prev_bytes_read);
prev_bytes_read = IOSTATS(bytes_read);
}
}
if (s.ok() && use_file_checksum) {
const auto& blob_files = vstorage->GetBlobFiles();
for (const auto& pair : blob_files) {
const uint64_t blob_file_number = pair.first;
const auto& meta = pair.second;
assert(meta);
const std::string blob_file_name = BlobFileName(
cfd->ioptions()->cf_paths.front().path, blob_file_number);
s = VerifyFullFileChecksum(meta->GetChecksumValue(),
meta->GetChecksumMethod(), blob_file_name,
read_options);
RecordTick(stats_, VERIFY_CHECKSUM_READ_BYTES,
IOSTATS(bytes_read) - prev_bytes_read);
prev_bytes_read = IOSTATS(bytes_read);
if (!s.ok()) {
break;
}
}
}
if (!s.ok()) {
break;
}
}
bool defer_purge =
immutable_db_options().avoid_unnecessary_blocking_io;
{
InstrumentedMutexLock l(&mutex_);
for (auto sv : sv_list) {
if (sv && sv->Unref()) {
sv->Cleanup();
if (defer_purge) {
AddSuperVersionsToFreeQueue(sv);
} else {
delete sv;
}
}
}
if (defer_purge) {
SchedulePurge();
}
for (auto cfd : cfd_list) {
cfd->UnrefAndTryDelete();
}
}
RecordTick(stats_, VERIFY_CHECKSUM_READ_BYTES,
IOSTATS(bytes_read) - prev_bytes_read);
return s;
}
Status DBImpl::VerifyFullFileChecksum(const std::string& file_checksum_expected,
const std::string& func_name_expected,
const std::string& fname,
const ReadOptions& read_options) {
Status s;
if (file_checksum_expected == kUnknownFileChecksum) {
return s;
}
std::string file_checksum;
std::string func_name;
s = ROCKSDB_NAMESPACE::GenerateOneFileChecksum(
fs_.get(), fname, immutable_db_options_.file_checksum_gen_factory.get(),
func_name_expected, &file_checksum, &func_name,
read_options.readahead_size, immutable_db_options_.allow_mmap_reads,
io_tracer_, immutable_db_options_.rate_limiter.get());
if (s.ok()) {
assert(func_name_expected == func_name);
if (file_checksum != file_checksum_expected) {
std::ostringstream oss;
oss << fname << " file checksum mismatch, ";
oss << "expecting "
<< Slice(file_checksum_expected).ToString(/*hex=*/true);
oss << ", but actual " << Slice(file_checksum).ToString(/*hex=*/true);
s = Status::Corruption(oss.str());
TEST_SYNC_POINT_CALLBACK("DBImpl::VerifyFullFileChecksum:mismatch", &s);
}
}
return s;
}
void DBImpl::NotifyOnExternalFileIngested(
ColumnFamilyData* cfd, const ExternalSstFileIngestionJob& ingestion_job) {
if (immutable_db_options_.listeners.empty()) {
return;
}
for (const IngestedFileInfo& f : ingestion_job.files_to_ingest()) {
ExternalFileIngestionInfo info;
info.cf_name = cfd->GetName();
info.external_file_path = f.external_file_path;
info.internal_file_path = f.internal_file_path;
info.global_seqno = f.assigned_seqno;
info.table_properties = f.table_properties;
for (auto listener : immutable_db_options_.listeners) {
listener->OnExternalFileIngested(this, info);
}
}
}
void DBImpl::WaitForIngestFile() {
mutex_.AssertHeld();
while (num_running_ingest_file_ > 0) {
bg_cv_.Wait();
}
}
Status DBImpl::StartTrace(const TraceOptions& trace_options,
std::unique_ptr<TraceWriter>&& trace_writer) {
InstrumentedMutexLock lock(&trace_mutex_);
tracer_.reset(new Tracer(immutable_db_options_.clock, trace_options,
std::move(trace_writer)));
return Status::OK();
}
Status DBImpl::EndTrace() {
InstrumentedMutexLock lock(&trace_mutex_);
Status s;
if (tracer_ != nullptr) {
s = tracer_->Close();
tracer_.reset();
} else {
s = Status::IOError("No trace file to close");
}
return s;
}
Status DBImpl::NewDefaultReplayer(
const std::vector<ColumnFamilyHandle*>& handles,
std::unique_ptr<TraceReader>&& reader,
std::unique_ptr<Replayer>* replayer) {
replayer->reset(new ReplayerImpl(this, handles, std::move(reader)));
return Status::OK();
}
Status DBImpl::StartBlockCacheTrace(
const TraceOptions& trace_options,
std::unique_ptr<TraceWriter>&& trace_writer) {
return block_cache_tracer_.StartTrace(immutable_db_options_.clock,
trace_options, std::move(trace_writer));
}
Status DBImpl::EndBlockCacheTrace() {
block_cache_tracer_.EndTrace();
return Status::OK();
}
Status DBImpl::TraceIteratorSeek(const uint32_t& cf_id, const Slice& key,
const Slice& lower_bound,
const Slice upper_bound) {
Status s;
if (tracer_) {
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_) {
s = tracer_->IteratorSeek(cf_id, key, lower_bound, upper_bound);
}
}
return s;
}
Status DBImpl::TraceIteratorSeekForPrev(const uint32_t& cf_id, const Slice& key,
const Slice& lower_bound,
const Slice upper_bound) {
Status s;
if (tracer_) {
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_) {
s = tracer_->IteratorSeekForPrev(cf_id, key, lower_bound, upper_bound);
}
}
return s;
}
Status DBImpl::ReserveFileNumbersBeforeIngestion(
ColumnFamilyData* cfd, uint64_t num,
std::unique_ptr<std::list<uint64_t>::iterator>& pending_output_elem,
uint64_t* next_file_number) {
Status s;
SuperVersionContext dummy_sv_ctx(true /* create_superversion */);
assert(nullptr != next_file_number);
InstrumentedMutexLock l(&mutex_);
if (error_handler_.IsDBStopped()) {
// Do not ingest files when there is a bg_error
return error_handler_.GetBGError();
}
pending_output_elem.reset(new std::list<uint64_t>::iterator(
CaptureCurrentFileNumberInPendingOutputs()));
*next_file_number = versions_->FetchAddFileNumber(static_cast<uint64_t>(num));
auto cf_options = cfd->GetLatestMutableCFOptions();
VersionEdit dummy_edit;
// If crash happen after a hard link established, Recover function may
// reuse the file number that has already assigned to the internal file,
// and this will overwrite the external file. To protect the external
// file, we have to make sure the file number will never being reused.
s = versions_->LogAndApply(cfd, *cf_options, &dummy_edit, &mutex_,
directories_.GetDbDir());
if (s.ok()) {
InstallSuperVersionAndScheduleWork(cfd, &dummy_sv_ctx, *cf_options);
}
dummy_sv_ctx.Clean();
return s;
}
Status DBImpl::GetCreationTimeOfOldestFile(uint64_t* creation_time) {
if (mutable_db_options_.max_open_files == -1) {
uint64_t oldest_time = port::kMaxUint64;
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->IsDropped()) {
uint64_t ctime;
{
SuperVersion* sv = GetAndRefSuperVersion(cfd);
Version* version = sv->current;
version->GetCreationTimeOfOldestFile(&ctime);
ReturnAndCleanupSuperVersion(cfd, sv);
}
if (ctime < oldest_time) {
oldest_time = ctime;
}
if (oldest_time == 0) {
break;
}
}
}
*creation_time = oldest_time;
return Status::OK();
} else {
return Status::NotSupported("This API only works if max_open_files = -1");
}
}
#endif // ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE