rocksdb/memtable/write_buffer_manager_test.cc
Jay Zhuang 5d3aefb682 Migrate to docker for CI run (#10496)
Summary:
Moved linux builds to using docker to avoid CI instability caused by dependency installation site down.
Added the `Dockerfile` which is used to build the image.
The build time is also significantly reduced, because no dependencies installation and with using 2xlarge+ instance for slow build (like tsan test).
Also fixed a few issues detected while building this:
* `DestoryDB()` Status not checked for a few tests
* nullptr might be used in `inlineskiplist.cc`

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10496

Test Plan: CI

Reviewed By: ajkr

Differential Revision: D38554200

Pulled By: jay-zhuang

fbshipit-source-id: 16e8fb2bf07b9c84bb27fb18421c4d54f2f248fd
2022-08-10 17:34:38 -07:00

304 lines
12 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "rocksdb/write_buffer_manager.h"
#include "test_util/testharness.h"
namespace ROCKSDB_NAMESPACE {
class WriteBufferManagerTest : public testing::Test {};
#ifndef ROCKSDB_LITE
const size_t kSizeDummyEntry = 256 * 1024;
TEST_F(WriteBufferManagerTest, ShouldFlush) {
// A write buffer manager of size 10MB
std::unique_ptr<WriteBufferManager> wbf(
new WriteBufferManager(10 * 1024 * 1024));
wbf->ReserveMem(8 * 1024 * 1024);
ASSERT_FALSE(wbf->ShouldFlush());
// 90% of the hard limit will hit the condition
wbf->ReserveMem(1 * 1024 * 1024);
ASSERT_TRUE(wbf->ShouldFlush());
// Scheduling for freeing will release the condition
wbf->ScheduleFreeMem(1 * 1024 * 1024);
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(2 * 1024 * 1024);
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(4 * 1024 * 1024);
// 11MB total, 6MB mutable. hard limit still hit
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(2 * 1024 * 1024);
// 11MB total, 4MB mutable. hard limit stills but won't flush because more
// than half data is already being flushed.
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(4 * 1024 * 1024);
// 15 MB total, 8MB mutable.
ASSERT_TRUE(wbf->ShouldFlush());
wbf->FreeMem(7 * 1024 * 1024);
// 8MB total, 8MB mutable.
ASSERT_FALSE(wbf->ShouldFlush());
// change size: 8M limit, 7M mutable limit
wbf->SetBufferSize(8 * 1024 * 1024);
// 8MB total, 8MB mutable.
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(2 * 1024 * 1024);
// 8MB total, 6MB mutable.
ASSERT_TRUE(wbf->ShouldFlush());
wbf->FreeMem(2 * 1024 * 1024);
// 6MB total, 6MB mutable.
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(1 * 1024 * 1024);
// 7MB total, 7MB mutable.
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(1 * 1024 * 1024);
// 8MB total, 8MB mutable.
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(1 * 1024 * 1024);
wbf->FreeMem(1 * 1024 * 1024);
// 7MB total, 7MB mutable.
ASSERT_FALSE(wbf->ShouldFlush());
}
class ChargeWriteBufferTest : public testing::Test {};
TEST_F(ChargeWriteBufferTest, Basic) {
constexpr std::size_t kMetaDataChargeOverhead = 10000;
LRUCacheOptions co;
// 1GB cache
co.capacity = 1024 * 1024 * 1024;
co.num_shard_bits = 4;
co.metadata_charge_policy = kDontChargeCacheMetadata;
std::shared_ptr<Cache> cache = NewLRUCache(co);
// A write buffer manager of size 50MB
std::unique_ptr<WriteBufferManager> wbf(
new WriteBufferManager(50 * 1024 * 1024, cache));
// Allocate 333KB will allocate 512KB, memory_used_ = 333KB
wbf->ReserveMem(333 * 1024);
// 2 dummy entries are added for size 333 KB
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 2 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 2 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 2 * 256 * 1024 + kMetaDataChargeOverhead);
// Allocate another 512KB, memory_used_ = 845KB
wbf->ReserveMem(512 * 1024);
// 2 more dummy entries are added for size 512 KB
// since ceil((memory_used_ - dummy_entries_in_cache_usage) % kSizeDummyEntry)
// = 2
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + kMetaDataChargeOverhead);
// Allocate another 10MB, memory_used_ = 11085KB
wbf->ReserveMem(10 * 1024 * 1024);
// 40 more entries are added for size 10 * 1024 * 1024 KB
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead);
// Free 1MB, memory_used_ = 10061KB
// It will not cause any change in cache cost
// since memory_used_ > dummy_entries_in_cache_usage * (3/4)
wbf->FreeMem(1 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead);
ASSERT_FALSE(wbf->ShouldFlush());
// Allocate another 41MB, memory_used_ = 52045KB
wbf->ReserveMem(41 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 204 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 204 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(),
204 * 256 * 1024 + kMetaDataChargeOverhead);
ASSERT_TRUE(wbf->ShouldFlush());
ASSERT_TRUE(wbf->ShouldFlush());
// Schedule free 20MB, memory_used_ = 52045KB
// It will not cause any change in memory_used and cache cost
wbf->ScheduleFreeMem(20 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 204 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 204 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(),
204 * 256 * 1024 + kMetaDataChargeOverhead);
// Still need flush as the hard limit hits
ASSERT_TRUE(wbf->ShouldFlush());
// Free 20MB, memory_used_ = 31565KB
// It will releae 80 dummy entries from cache since
// since memory_used_ < dummy_entries_in_cache_usage * (3/4)
// and floor((dummy_entries_in_cache_usage - memory_used_) % kSizeDummyEntry)
// = 80
wbf->FreeMem(20 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 124 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 124 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(),
124 * 256 * 1024 + kMetaDataChargeOverhead);
ASSERT_FALSE(wbf->ShouldFlush());
// Free 16KB, memory_used_ = 31549KB
// It will not release any dummy entry since memory_used_ >=
// dummy_entries_in_cache_usage * (3/4)
wbf->FreeMem(16 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 124 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 124 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(),
124 * 256 * 1024 + kMetaDataChargeOverhead);
// Free 20MB, memory_used_ = 11069KB
// It will releae 80 dummy entries from cache
// since memory_used_ < dummy_entries_in_cache_usage * (3/4)
// and floor((dummy_entries_in_cache_usage - memory_used_) % kSizeDummyEntry)
// = 80
wbf->FreeMem(20 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead);
// Free 1MB, memory_used_ = 10045KB
// It will not cause any change in cache cost
// since memory_used_ > dummy_entries_in_cache_usage * (3/4)
wbf->FreeMem(1 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead);
// Reserve 512KB, memory_used_ = 10557KB
// It will not casue any change in cache cost
// since memory_used_ > dummy_entries_in_cache_usage * (3/4)
// which reflects the benefit of saving dummy entry insertion on memory
// reservation after delay decrease
wbf->ReserveMem(512 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead);
// Destroy write buffer manger should free everything
wbf.reset();
ASSERT_EQ(cache->GetPinnedUsage(), 0);
}
TEST_F(ChargeWriteBufferTest, BasicWithNoBufferSizeLimit) {
constexpr std::size_t kMetaDataChargeOverhead = 10000;
// 1GB cache
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024 * 1024, 4);
// A write buffer manager of size 256MB
std::unique_ptr<WriteBufferManager> wbf(new WriteBufferManager(0, cache));
// Allocate 10MB, memory_used_ = 10240KB
// It will allocate 40 dummy entries
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 40 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 40 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 40 * 256 * 1024 + kMetaDataChargeOverhead);
ASSERT_FALSE(wbf->ShouldFlush());
// Free 9MB, memory_used_ = 1024KB
// It will free 36 dummy entries
wbf->FreeMem(9 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + kMetaDataChargeOverhead);
// Free 160KB gradually, memory_used_ = 864KB
// It will not cause any change
// since memory_used_ > dummy_entries_in_cache_usage * 3/4
for (int i = 0; i < 40; i++) {
wbf->FreeMem(4 * 1024);
}
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + kMetaDataChargeOverhead);
}
TEST_F(ChargeWriteBufferTest, BasicWithCacheFull) {
constexpr std::size_t kMetaDataChargeOverhead = 20000;
// 12MB cache size with strict capacity
LRUCacheOptions lo;
lo.capacity = 12 * 1024 * 1024;
lo.num_shard_bits = 0;
lo.strict_capacity_limit = true;
std::shared_ptr<Cache> cache = NewLRUCache(lo);
std::unique_ptr<WriteBufferManager> wbf(new WriteBufferManager(0, cache));
// Allocate 10MB, memory_used_ = 10240KB
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 40 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 40 * kSizeDummyEntry);
ASSERT_LT(cache->GetPinnedUsage(),
40 * kSizeDummyEntry + kMetaDataChargeOverhead);
// Allocate 10MB, memory_used_ = 20480KB
// Some dummy entry insertion will fail due to full cache
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 40 * kSizeDummyEntry);
ASSERT_LE(cache->GetPinnedUsage(), 12 * 1024 * 1024);
ASSERT_LT(wbf->dummy_entries_in_cache_usage(), 80 * kSizeDummyEntry);
// Free 15MB after encoutering cache full, memory_used_ = 5120KB
wbf->FreeMem(15 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 20 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 20 * kSizeDummyEntry);
ASSERT_LT(cache->GetPinnedUsage(),
20 * kSizeDummyEntry + kMetaDataChargeOverhead);
// Reserve 15MB, creating cache full again, memory_used_ = 20480KB
wbf->ReserveMem(15 * 1024 * 1024);
ASSERT_LE(cache->GetPinnedUsage(), 12 * 1024 * 1024);
ASSERT_LT(wbf->dummy_entries_in_cache_usage(), 80 * kSizeDummyEntry);
// Increase capacity so next insert will fully succeed
cache->SetCapacity(40 * 1024 * 1024);
// Allocate 10MB, memory_used_ = 30720KB
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 120 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 120 * kSizeDummyEntry);
ASSERT_LT(cache->GetPinnedUsage(),
120 * kSizeDummyEntry + kMetaDataChargeOverhead);
// Gradually release 20 MB
// It ended up sequentially releasing 32, 24, 18 dummy entries when
// memory_used_ decreases to 22528KB, 16384KB, 11776KB.
// In total, it releases 74 dummy entries
for (int i = 0; i < 40; i++) {
wbf->FreeMem(512 * 1024);
}
ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 46 * kSizeDummyEntry);
ASSERT_GE(cache->GetPinnedUsage(), 46 * kSizeDummyEntry);
ASSERT_LT(cache->GetPinnedUsage(),
46 * kSizeDummyEntry + kMetaDataChargeOverhead);
}
#endif // ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}