rocksdb/table/table_test.cc

2256 lines
79 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <inttypes.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "db/dbformat.h"
#include "db/memtable.h"
#include "db/write_batch_internal.h"
#include "db/writebuffer.h"
#include "memtable/stl_wrappers.h"
#include "rocksdb/cache.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/iterator.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "table/block.h"
#include "table/block_based_table_builder.h"
#include "table/block_based_table_factory.h"
#include "table/block_based_table_reader.h"
#include "table/block_builder.h"
#include "table/format.h"
#include "table/get_context.h"
#include "table/internal_iterator.h"
#include "table/meta_blocks.h"
#include "table/plain_table_factory.h"
#include "table/scoped_arena_iterator.h"
#include "util/compression.h"
#include "util/random.h"
#include "util/statistics.h"
#include "util/string_util.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace rocksdb {
extern const uint64_t kLegacyBlockBasedTableMagicNumber;
extern const uint64_t kLegacyPlainTableMagicNumber;
extern const uint64_t kBlockBasedTableMagicNumber;
extern const uint64_t kPlainTableMagicNumber;
namespace {
// Return reverse of "key".
// Used to test non-lexicographic comparators.
std::string Reverse(const Slice& key) {
auto rev = key.ToString();
std::reverse(rev.begin(), rev.end());
return rev;
}
class ReverseKeyComparator : public Comparator {
public:
virtual const char* Name() const override {
return "rocksdb.ReverseBytewiseComparator";
}
virtual int Compare(const Slice& a, const Slice& b) const override {
return BytewiseComparator()->Compare(Reverse(a), Reverse(b));
}
virtual void FindShortestSeparator(std::string* start,
const Slice& limit) const override {
std::string s = Reverse(*start);
std::string l = Reverse(limit);
BytewiseComparator()->FindShortestSeparator(&s, l);
*start = Reverse(s);
}
virtual void FindShortSuccessor(std::string* key) const override {
std::string s = Reverse(*key);
BytewiseComparator()->FindShortSuccessor(&s);
*key = Reverse(s);
}
};
ReverseKeyComparator reverse_key_comparator;
void Increment(const Comparator* cmp, std::string* key) {
if (cmp == BytewiseComparator()) {
key->push_back('\0');
} else {
assert(cmp == &reverse_key_comparator);
std::string rev = Reverse(*key);
rev.push_back('\0');
*key = Reverse(rev);
}
}
} // namespace
// Helper class for tests to unify the interface between
// BlockBuilder/TableBuilder and Block/Table.
class Constructor {
public:
explicit Constructor(const Comparator* cmp)
: data_(stl_wrappers::LessOfComparator(cmp)) {}
virtual ~Constructor() { }
void Add(const std::string& key, const Slice& value) {
data_[key] = value.ToString();
}
// Finish constructing the data structure with all the keys that have
// been added so far. Returns the keys in sorted order in "*keys"
// and stores the key/value pairs in "*kvmap"
void Finish(const Options& options, const ImmutableCFOptions& ioptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
std::vector<std::string>* keys, stl_wrappers::KVMap* kvmap) {
last_internal_key_ = &internal_comparator;
*kvmap = data_;
keys->clear();
for (const auto& kv : data_) {
keys->push_back(kv.first);
}
data_.clear();
Status s = FinishImpl(options, ioptions, table_options,
internal_comparator, *kvmap);
ASSERT_TRUE(s.ok()) << s.ToString();
}
// Construct the data structure from the data in "data"
virtual Status FinishImpl(const Options& options,
const ImmutableCFOptions& ioptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& data) = 0;
virtual InternalIterator* NewIterator() const = 0;
virtual const stl_wrappers::KVMap& data() { return data_; }
virtual bool IsArenaMode() const { return false; }
virtual DB* db() const { return nullptr; } // Overridden in DBConstructor
virtual bool AnywayDeleteIterator() const { return false; }
protected:
const InternalKeyComparator* last_internal_key_;
private:
stl_wrappers::KVMap data_;
};
class BlockConstructor: public Constructor {
public:
explicit BlockConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp),
block_(nullptr) { }
~BlockConstructor() {
delete block_;
}
virtual Status FinishImpl(const Options& options,
const ImmutableCFOptions& ioptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& kv_map) override {
delete block_;
block_ = nullptr;
BlockBuilder builder(table_options.block_restart_interval);
for (const auto kv : kv_map) {
builder.Add(kv.first, kv.second);
}
// Open the block
data_ = builder.Finish().ToString();
BlockContents contents;
contents.data = data_;
contents.cachable = false;
block_ = new Block(std::move(contents));
return Status::OK();
}
virtual InternalIterator* NewIterator() const override {
return block_->NewIterator(comparator_);
}
private:
const Comparator* comparator_;
std::string data_;
Block* block_;
BlockConstructor();
};
// A helper class that converts internal format keys into user keys
class KeyConvertingIterator : public InternalIterator {
public:
explicit KeyConvertingIterator(InternalIterator* iter,
bool arena_mode = false)
: iter_(iter), arena_mode_(arena_mode) {}
virtual ~KeyConvertingIterator() {
if (arena_mode_) {
iter_->~InternalIterator();
} else {
delete iter_;
}
}
virtual bool Valid() const override { return iter_->Valid(); }
virtual void Seek(const Slice& target) override {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->Seek(encoded);
}
virtual void SeekToFirst() override { iter_->SeekToFirst(); }
virtual void SeekToLast() override { iter_->SeekToLast(); }
virtual void Next() override { iter_->Next(); }
virtual void Prev() override { iter_->Prev(); }
virtual Slice key() const override {
assert(Valid());
ParsedInternalKey parsed_key;
if (!ParseInternalKey(iter_->key(), &parsed_key)) {
status_ = Status::Corruption("malformed internal key");
return Slice("corrupted key");
}
return parsed_key.user_key;
}
virtual Slice value() const override { return iter_->value(); }
virtual Status status() const override {
return status_.ok() ? iter_->status() : status_;
}
private:
mutable Status status_;
InternalIterator* iter_;
bool arena_mode_;
// No copying allowed
KeyConvertingIterator(const KeyConvertingIterator&);
void operator=(const KeyConvertingIterator&);
};
class TableConstructor: public Constructor {
public:
explicit TableConstructor(const Comparator* cmp,
bool convert_to_internal_key = false)
: Constructor(cmp),
convert_to_internal_key_(convert_to_internal_key) {}
~TableConstructor() { Reset(); }
virtual Status FinishImpl(const Options& options,
const ImmutableCFOptions& ioptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& kv_map) override {
Reset();
soptions.use_mmap_reads = ioptions.allow_mmap_reads;
file_writer_.reset(test::GetWritableFileWriter(new test::StringSink()));
unique_ptr<TableBuilder> builder;
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
builder.reset(ioptions.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, internal_comparator,
&int_tbl_prop_collector_factories,
options.compression, CompressionOptions(), false),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer_.get()));
for (const auto kv : kv_map) {
if (convert_to_internal_key_) {
ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
builder->Add(encoded, kv.second);
} else {
builder->Add(kv.first, kv.second);
}
EXPECT_TRUE(builder->status().ok());
}
Status s = builder->Finish();
file_writer_->Flush();
EXPECT_TRUE(s.ok()) << s.ToString();
EXPECT_EQ(GetSink()->contents().size(), builder->FileSize());
// Open the table
uniq_id_ = cur_uniq_id_++;
file_reader_.reset(test::GetRandomAccessFileReader(new test::StringSource(
GetSink()->contents(), uniq_id_, ioptions.allow_mmap_reads)));
return ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions, soptions, internal_comparator),
std::move(file_reader_), GetSink()->contents().size(), &table_reader_);
}
virtual InternalIterator* NewIterator() const override {
ReadOptions ro;
InternalIterator* iter = table_reader_->NewIterator(ro);
if (convert_to_internal_key_) {
return new KeyConvertingIterator(iter);
} else {
return iter;
}
}
uint64_t ApproximateOffsetOf(const Slice& key) const {
return table_reader_->ApproximateOffsetOf(key);
}
virtual Status Reopen(const ImmutableCFOptions& ioptions) {
file_reader_.reset(test::GetRandomAccessFileReader(new test::StringSource(
GetSink()->contents(), uniq_id_, ioptions.allow_mmap_reads)));
return ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions, soptions, *last_internal_key_),
std::move(file_reader_), GetSink()->contents().size(), &table_reader_);
}
virtual TableReader* GetTableReader() {
return table_reader_.get();
}
virtual bool AnywayDeleteIterator() const override {
return convert_to_internal_key_;
}
private:
void Reset() {
uniq_id_ = 0;
table_reader_.reset();
file_writer_.reset();
file_reader_.reset();
}
test::StringSink* GetSink() {
return static_cast<test::StringSink*>(file_writer_->writable_file());
}
uint64_t uniq_id_;
unique_ptr<WritableFileWriter> file_writer_;
unique_ptr<RandomAccessFileReader> file_reader_;
unique_ptr<TableReader> table_reader_;
bool convert_to_internal_key_;
TableConstructor();
static uint64_t cur_uniq_id_;
EnvOptions soptions;
};
uint64_t TableConstructor::cur_uniq_id_ = 1;
class MemTableConstructor: public Constructor {
public:
explicit MemTableConstructor(const Comparator* cmp, WriteBuffer* wb)
: Constructor(cmp),
internal_comparator_(cmp),
write_buffer_(wb),
table_factory_(new SkipListFactory) {
options_.memtable_factory = table_factory_;
ImmutableCFOptions ioptions(options_);
memtable_ = new MemTable(internal_comparator_, ioptions,
MutableCFOptions(options_, ioptions), wb,
kMaxSequenceNumber);
memtable_->Ref();
}
~MemTableConstructor() {
delete memtable_->Unref();
}
virtual Status FinishImpl(const Options&, const ImmutableCFOptions& ioptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& kv_map) override {
delete memtable_->Unref();
ImmutableCFOptions mem_ioptions(ioptions);
memtable_ = new MemTable(internal_comparator_, mem_ioptions,
MutableCFOptions(options_, mem_ioptions),
write_buffer_, kMaxSequenceNumber);
memtable_->Ref();
int seq = 1;
for (const auto kv : kv_map) {
memtable_->Add(seq, kTypeValue, kv.first, kv.second);
seq++;
}
return Status::OK();
}
virtual InternalIterator* NewIterator() const override {
return new KeyConvertingIterator(
memtable_->NewIterator(ReadOptions(), &arena_), true);
}
virtual bool AnywayDeleteIterator() const override { return true; }
virtual bool IsArenaMode() const override { return true; }
private:
mutable Arena arena_;
InternalKeyComparator internal_comparator_;
Options options_;
WriteBuffer* write_buffer_;
MemTable* memtable_;
std::shared_ptr<SkipListFactory> table_factory_;
};
class InternalIteratorFromIterator : public InternalIterator {
public:
explicit InternalIteratorFromIterator(Iterator* it) : it_(it) {}
virtual bool Valid() const override { return it_->Valid(); }
virtual void Seek(const Slice& target) override { it_->Seek(target); }
virtual void SeekToFirst() override { it_->SeekToFirst(); }
virtual void SeekToLast() override { it_->SeekToLast(); }
virtual void Next() override { it_->Next(); }
virtual void Prev() override { it_->Prev(); }
Slice key() const override { return it_->key(); }
Slice value() const override { return it_->value(); }
virtual Status status() const override { return it_->status(); }
private:
unique_ptr<Iterator> it_;
};
class DBConstructor: public Constructor {
public:
explicit DBConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp) {
db_ = nullptr;
NewDB();
}
~DBConstructor() {
delete db_;
}
virtual Status FinishImpl(const Options& options,
const ImmutableCFOptions& ioptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& kv_map) override {
delete db_;
db_ = nullptr;
NewDB();
for (const auto kv : kv_map) {
WriteBatch batch;
batch.Put(kv.first, kv.second);
EXPECT_TRUE(db_->Write(WriteOptions(), &batch).ok());
}
return Status::OK();
}
virtual InternalIterator* NewIterator() const override {
return new InternalIteratorFromIterator(db_->NewIterator(ReadOptions()));
}
virtual DB* db() const override { return db_; }
private:
void NewDB() {
std::string name = test::TmpDir() + "/table_testdb";
Options options;
options.comparator = comparator_;
Status status = DestroyDB(name, options);
ASSERT_TRUE(status.ok()) << status.ToString();
options.create_if_missing = true;
options.error_if_exists = true;
options.write_buffer_size = 10000; // Something small to force merging
status = DB::Open(options, name, &db_);
ASSERT_TRUE(status.ok()) << status.ToString();
}
const Comparator* comparator_;
DB* db_;
};
enum TestType {
BLOCK_BASED_TABLE_TEST,
#ifndef ROCKSDB_LITE
PLAIN_TABLE_SEMI_FIXED_PREFIX,
PLAIN_TABLE_FULL_STR_PREFIX,
PLAIN_TABLE_TOTAL_ORDER,
#endif // !ROCKSDB_LITE
BLOCK_TEST,
MEMTABLE_TEST,
DB_TEST
};
struct TestArgs {
TestType type;
bool reverse_compare;
int restart_interval;
CompressionType compression;
uint32_t format_version;
bool use_mmap;
};
static std::vector<TestArgs> GenerateArgList() {
std::vector<TestArgs> test_args;
std::vector<TestType> test_types = {
BLOCK_BASED_TABLE_TEST,
#ifndef ROCKSDB_LITE
PLAIN_TABLE_SEMI_FIXED_PREFIX,
PLAIN_TABLE_FULL_STR_PREFIX,
PLAIN_TABLE_TOTAL_ORDER,
#endif // !ROCKSDB_LITE
BLOCK_TEST,
MEMTABLE_TEST, DB_TEST};
std::vector<bool> reverse_compare_types = {false, true};
std::vector<int> restart_intervals = {16, 1, 1024};
// Only add compression if it is supported
std::vector<std::pair<CompressionType, bool>> compression_types;
compression_types.emplace_back(kNoCompression, false);
if (Snappy_Supported()) {
compression_types.emplace_back(kSnappyCompression, false);
}
if (Zlib_Supported()) {
compression_types.emplace_back(kZlibCompression, false);
compression_types.emplace_back(kZlibCompression, true);
}
if (BZip2_Supported()) {
compression_types.emplace_back(kBZip2Compression, false);
compression_types.emplace_back(kBZip2Compression, true);
}
if (LZ4_Supported()) {
compression_types.emplace_back(kLZ4Compression, false);
compression_types.emplace_back(kLZ4Compression, true);
compression_types.emplace_back(kLZ4HCCompression, false);
compression_types.emplace_back(kLZ4HCCompression, true);
}
if (ZSTD_Supported()) {
compression_types.emplace_back(kZSTDNotFinalCompression, false);
compression_types.emplace_back(kZSTDNotFinalCompression, true);
}
for (auto test_type : test_types) {
for (auto reverse_compare : reverse_compare_types) {
#ifndef ROCKSDB_LITE
if (test_type == PLAIN_TABLE_SEMI_FIXED_PREFIX ||
test_type == PLAIN_TABLE_FULL_STR_PREFIX ||
test_type == PLAIN_TABLE_TOTAL_ORDER) {
// Plain table doesn't use restart index or compression.
TestArgs one_arg;
one_arg.type = test_type;
one_arg.reverse_compare = reverse_compare;
one_arg.restart_interval = restart_intervals[0];
one_arg.compression = compression_types[0].first;
one_arg.use_mmap = true;
test_args.push_back(one_arg);
one_arg.use_mmap = false;
test_args.push_back(one_arg);
continue;
}
#endif // !ROCKSDB_LITE
for (auto restart_interval : restart_intervals) {
for (auto compression_type : compression_types) {
TestArgs one_arg;
one_arg.type = test_type;
one_arg.reverse_compare = reverse_compare;
one_arg.restart_interval = restart_interval;
one_arg.compression = compression_type.first;
one_arg.format_version = compression_type.second ? 2 : 1;
one_arg.use_mmap = false;
test_args.push_back(one_arg);
}
}
}
}
return test_args;
}
// In order to make all tests run for plain table format, including
// those operating on empty keys, create a new prefix transformer which
// return fixed prefix if the slice is not shorter than the prefix length,
// and the full slice if it is shorter.
class FixedOrLessPrefixTransform : public SliceTransform {
private:
const size_t prefix_len_;
public:
explicit FixedOrLessPrefixTransform(size_t prefix_len) :
prefix_len_(prefix_len) {
}
virtual const char* Name() const override { return "rocksdb.FixedPrefix"; }
virtual Slice Transform(const Slice& src) const override {
assert(InDomain(src));
if (src.size() < prefix_len_) {
return src;
}
return Slice(src.data(), prefix_len_);
}
virtual bool InDomain(const Slice& src) const override { return true; }
virtual bool InRange(const Slice& dst) const override {
return (dst.size() <= prefix_len_);
}
};
class HarnessTest : public testing::Test {
public:
HarnessTest()
: ioptions_(options_),
constructor_(nullptr),
write_buffer_(options_.db_write_buffer_size) {}
void Init(const TestArgs& args) {
delete constructor_;
constructor_ = nullptr;
options_ = Options();
options_.compression = args.compression;
// Use shorter block size for tests to exercise block boundary
// conditions more.
if (args.reverse_compare) {
options_.comparator = &reverse_key_comparator;
}
internal_comparator_.reset(
new test::PlainInternalKeyComparator(options_.comparator));
support_prev_ = true;
only_support_prefix_seek_ = false;
options_.allow_mmap_reads = args.use_mmap;
switch (args.type) {
case BLOCK_BASED_TABLE_TEST:
table_options_.flush_block_policy_factory.reset(
new FlushBlockBySizePolicyFactory());
table_options_.block_size = 256;
table_options_.block_restart_interval = args.restart_interval;
table_options_.format_version = args.format_version;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new TableConstructor(options_.comparator);
break;
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
case PLAIN_TABLE_SEMI_FIXED_PREFIX:
support_prev_ = false;
only_support_prefix_seek_ = true;
options_.prefix_extractor.reset(new FixedOrLessPrefixTransform(2));
options_.table_factory.reset(NewPlainTableFactory());
constructor_ = new TableConstructor(options_.comparator, true);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
case PLAIN_TABLE_FULL_STR_PREFIX:
support_prev_ = false;
only_support_prefix_seek_ = true;
options_.prefix_extractor.reset(NewNoopTransform());
options_.table_factory.reset(NewPlainTableFactory());
constructor_ = new TableConstructor(options_.comparator, true);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
case PLAIN_TABLE_TOTAL_ORDER:
support_prev_ = false;
only_support_prefix_seek_ = false;
options_.prefix_extractor = nullptr;
{
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = kPlainTableVariableLength;
plain_table_options.bloom_bits_per_key = 0;
plain_table_options.hash_table_ratio = 0;
options_.table_factory.reset(
NewPlainTableFactory(plain_table_options));
}
constructor_ = new TableConstructor(options_.comparator, true);
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
#endif // !ROCKSDB_LITE
case BLOCK_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new BlockConstructor(options_.comparator);
break;
case MEMTABLE_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new MemTableConstructor(options_.comparator,
&write_buffer_);
break;
case DB_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_ = new DBConstructor(options_.comparator);
break;
}
ioptions_ = ImmutableCFOptions(options_);
}
~HarnessTest() { delete constructor_; }
void Add(const std::string& key, const std::string& value) {
constructor_->Add(key, value);
}
void Test(Random* rnd) {
std::vector<std::string> keys;
stl_wrappers::KVMap data;
constructor_->Finish(options_, ioptions_, table_options_,
*internal_comparator_, &keys, &data);
TestForwardScan(keys, data);
if (support_prev_) {
TestBackwardScan(keys, data);
}
TestRandomAccess(rnd, keys, data);
}
void TestForwardScan(const std::vector<std::string>& keys,
const stl_wrappers::KVMap& data) {
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToFirst();
for (stl_wrappers::KVMap::const_iterator model_iter = data.begin();
model_iter != data.end(); ++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Next();
}
ASSERT_TRUE(!iter->Valid());
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
void TestBackwardScan(const std::vector<std::string>& keys,
const stl_wrappers::KVMap& data) {
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToLast();
for (stl_wrappers::KVMap::const_reverse_iterator model_iter = data.rbegin();
model_iter != data.rend(); ++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Prev();
}
ASSERT_TRUE(!iter->Valid());
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
void TestRandomAccess(Random* rnd, const std::vector<std::string>& keys,
const stl_wrappers::KVMap& data) {
static const bool kVerbose = false;
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
stl_wrappers::KVMap::const_iterator model_iter = data.begin();
if (kVerbose) fprintf(stderr, "---\n");
for (int i = 0; i < 200; i++) {
const int toss = rnd->Uniform(support_prev_ ? 5 : 3);
switch (toss) {
case 0: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Next\n");
iter->Next();
++model_iter;
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 1: {
if (kVerbose) fprintf(stderr, "SeekToFirst\n");
iter->SeekToFirst();
model_iter = data.begin();
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 2: {
std::string key = PickRandomKey(rnd, keys);
model_iter = data.lower_bound(key);
if (kVerbose) fprintf(stderr, "Seek '%s'\n",
EscapeString(key).c_str());
iter->Seek(Slice(key));
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 3: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Prev\n");
iter->Prev();
if (model_iter == data.begin()) {
model_iter = data.end(); // Wrap around to invalid value
} else {
--model_iter;
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 4: {
if (kVerbose) fprintf(stderr, "SeekToLast\n");
iter->SeekToLast();
if (keys.empty()) {
model_iter = data.end();
} else {
std::string last = data.rbegin()->first;
model_iter = data.lower_bound(last);
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
}
}
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
std::string ToString(const stl_wrappers::KVMap& data,
const stl_wrappers::KVMap::const_iterator& it) {
if (it == data.end()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const stl_wrappers::KVMap& data,
const stl_wrappers::KVMap::const_reverse_iterator& it) {
if (it == data.rend()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const InternalIterator* it) {
if (!it->Valid()) {
return "END";
} else {
return "'" + it->key().ToString() + "->" + it->value().ToString() + "'";
}
}
std::string PickRandomKey(Random* rnd, const std::vector<std::string>& keys) {
if (keys.empty()) {
return "foo";
} else {
const int index = rnd->Uniform(static_cast<int>(keys.size()));
std::string result = keys[index];
switch (rnd->Uniform(support_prev_ ? 3 : 1)) {
case 0:
// Return an existing key
break;
case 1: {
// Attempt to return something smaller than an existing key
if (result.size() > 0 && result[result.size() - 1] > '\0'
&& (!only_support_prefix_seek_
|| options_.prefix_extractor->Transform(result).size()
< result.size())) {
result[result.size() - 1]--;
}
break;
}
case 2: {
// Return something larger than an existing key
Increment(options_.comparator, &result);
break;
}
}
return result;
}
}
// Returns nullptr if not running against a DB
DB* db() const { return constructor_->db(); }
private:
Options options_ = Options();
ImmutableCFOptions ioptions_;
BlockBasedTableOptions table_options_ = BlockBasedTableOptions();
Constructor* constructor_;
WriteBuffer write_buffer_;
bool support_prev_;
bool only_support_prefix_seek_;
shared_ptr<InternalKeyComparator> internal_comparator_;
};
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
// Tests against all kinds of tables
class TableTest : public testing::Test {
public:
const InternalKeyComparator& GetPlainInternalComparator(
const Comparator* comp) {
if (!plain_internal_comparator) {
plain_internal_comparator.reset(
new test::PlainInternalKeyComparator(comp));
}
return *plain_internal_comparator;
}
private:
std::unique_ptr<InternalKeyComparator> plain_internal_comparator;
};
class GeneralTableTest : public TableTest {};
class BlockBasedTableTest : public TableTest {};
class PlainTableTest : public TableTest {};
class TablePropertyTest : public testing::Test {};
// This test serves as the living tutorial for the prefix scan of user collected
// properties.
TEST_F(TablePropertyTest, PrefixScanTest) {
UserCollectedProperties props{{"num.111.1", "1"},
{"num.111.2", "2"},
{"num.111.3", "3"},
{"num.333.1", "1"},
{"num.333.2", "2"},
{"num.333.3", "3"},
{"num.555.1", "1"},
{"num.555.2", "2"},
{"num.555.3", "3"}, };
// prefixes that exist
for (const std::string& prefix : {"num.111", "num.333", "num.555"}) {
int num = 0;
for (auto pos = props.lower_bound(prefix);
pos != props.end() &&
pos->first.compare(0, prefix.size(), prefix) == 0;
++pos) {
++num;
auto key = prefix + "." + ToString(num);
ASSERT_EQ(key, pos->first);
ASSERT_EQ(ToString(num), pos->second);
}
ASSERT_EQ(3, num);
}
// prefixes that don't exist
for (const std::string& prefix :
{"num.000", "num.222", "num.444", "num.666"}) {
auto pos = props.lower_bound(prefix);
ASSERT_TRUE(pos == props.end() ||
pos->first.compare(0, prefix.size(), prefix) != 0);
}
}
// This test include all the basic checks except those for index size and block
// size, which will be conducted in separated unit tests.
TEST_F(BlockBasedTableTest, BasicBlockBasedTableProperties) {
TableConstructor c(BytewiseComparator());
c.Add("a1", "val1");
c.Add("b2", "val2");
c.Add("c3", "val3");
c.Add("d4", "val4");
c.Add("e5", "val5");
c.Add("f6", "val6");
c.Add("g7", "val7");
c.Add("h8", "val8");
c.Add("j9", "val9");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ(kvmap.size(), props.num_entries);
auto raw_key_size = kvmap.size() * 2ul;
auto raw_value_size = kvmap.size() * 4ul;
ASSERT_EQ(raw_key_size, props.raw_key_size);
ASSERT_EQ(raw_value_size, props.raw_value_size);
ASSERT_EQ(1ul, props.num_data_blocks);
ASSERT_EQ("", props.filter_policy_name); // no filter policy is used
// Verify data size.
BlockBuilder block_builder(1);
for (const auto& item : kvmap) {
block_builder.Add(item.first, item.second);
}
Slice content = block_builder.Finish();
ASSERT_EQ(content.size() + kBlockTrailerSize, props.data_size);
}
TEST_F(BlockBasedTableTest, FilterPolicyNameProperties) {
TableConstructor c(BytewiseComparator(), true);
c.Add("a1", "val1");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
BlockBasedTableOptions table_options;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ("rocksdb.BuiltinBloomFilter", props.filter_policy_name);
}
//
// BlockBasedTableTest::PrefetchTest
//
void AssertKeysInCache(BlockBasedTable* table_reader,
const std::vector<std::string>& keys_in_cache,
const std::vector<std::string>& keys_not_in_cache) {
for (auto key : keys_in_cache) {
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), key));
}
for (auto key : keys_not_in_cache) {
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), key));
}
}
void PrefetchRange(TableConstructor* c, Options* opt,
BlockBasedTableOptions* table_options,
const std::vector<std::string>& keys, const char* key_begin,
const char* key_end,
const std::vector<std::string>& keys_in_cache,
const std::vector<std::string>& keys_not_in_cache,
const Status expected_status = Status::OK()) {
// reset the cache and reopen the table
table_options->block_cache = NewLRUCache(16 * 1024 * 1024);
opt->table_factory.reset(NewBlockBasedTableFactory(*table_options));
const ImmutableCFOptions ioptions2(*opt);
ASSERT_OK(c->Reopen(ioptions2));
// prefetch
auto* table_reader = dynamic_cast<BlockBasedTable*>(c->GetTableReader());
// empty string replacement is a trick so we don't crash the test
Slice begin(key_begin ? key_begin : "");
Slice end(key_end ? key_end : "");
Status s = table_reader->Prefetch(key_begin ? &begin : nullptr,
key_end ? &end : nullptr);
ASSERT_TRUE(s.code() == expected_status.code());
// assert our expectation in cache warmup
AssertKeysInCache(table_reader, keys_in_cache, keys_not_in_cache);
}
TEST_F(BlockBasedTableTest, PrefetchTest) {
// The purpose of this test is to test the prefetching operation built into
// BlockBasedTable.
Options opt;
unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
// big enough so we don't ever lose cached values.
table_options.block_cache = NewLRUCache(16 * 1024 * 1024);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator());
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(opt);
c.Finish(opt, ioptions, table_options, *ikc, &keys, &kvmap);
// We get the following data spread :
//
// Data block Index
// ========================
// [ k01 k02 k03 ] k03
// [ k04 ] k04
// [ k05 ] k05
// [ k06 k07 ] k07
// Simple
PrefetchRange(&c, &opt, &table_options, keys,
/*key_range=*/ "k01", "k05",
/*keys_in_cache=*/ {"k01", "k02", "k03", "k04", "k05"},
/*keys_not_in_cache=*/ {"k06", "k07"});
PrefetchRange(&c, &opt, &table_options, keys,
"k01", "k01",
{"k01", "k02", "k03"},
{"k04", "k05", "k06", "k07"});
// odd
PrefetchRange(&c, &opt, &table_options, keys,
"a", "z",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"},
{});
PrefetchRange(&c, &opt, &table_options, keys,
"k00", "k00",
{"k01", "k02", "k03"},
{"k04", "k05", "k06", "k07"});
// Edge cases
PrefetchRange(&c, &opt, &table_options, keys,
"k00", "k06",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"},
{});
PrefetchRange(&c, &opt, &table_options, keys,
"k00", "zzz",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"},
{});
// null keys
PrefetchRange(&c, &opt, &table_options, keys,
nullptr, nullptr,
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"},
{});
PrefetchRange(&c, &opt, &table_options, keys,
"k04", nullptr,
{"k04", "k05", "k06", "k07"},
{"k01", "k02", "k03"});
PrefetchRange(&c, &opt, &table_options, keys,
nullptr, "k05",
{"k01", "k02", "k03", "k04", "k05"},
{"k06", "k07"});
// invalid
PrefetchRange(&c, &opt, &table_options, keys,
"k06", "k00", {}, {},
Status::InvalidArgument(Slice("k06 "), Slice("k07")));
}
TEST_F(BlockBasedTableTest, TotalOrderSeekOnHashIndex) {
BlockBasedTableOptions table_options;
for (int i = 0; i < 4; ++i) {
Options options;
// Make each key/value an individual block
table_options.block_size = 64;
switch (i) {
case 0:
// Binary search index
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
break;
case 1:
// Hash search index
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 2:
// Hash search index with hash_index_allow_collision
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.hash_index_allow_collision = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 3:
default:
// Hash search index with filter policy
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
}
TableConstructor c(BytewiseComparator(), true);
c.Add("aaaa1", std::string('a', 56));
c.Add("bbaa1", std::string('a', 56));
c.Add("cccc1", std::string('a', 56));
c.Add("bbbb1", std::string('a', 56));
c.Add("baaa1", std::string('a', 56));
c.Add("abbb1", std::string('a', 56));
c.Add("cccc2", std::string('a', 56));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto props = c.GetTableReader()->GetTableProperties();
ASSERT_EQ(7u, props->num_data_blocks);
auto* reader = c.GetTableReader();
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<InternalIterator> iter(reader->NewIterator(ro));
iter->Seek(InternalKey("b", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("baaa1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString());
iter->Seek(InternalKey("bb", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString());
iter->Seek(InternalKey("bbb", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("cccc1", ExtractUserKey(iter->key()).ToString());
}
}
static std::string RandomString(Random* rnd, int len) {
std::string r;
test::RandomString(rnd, len, &r);
return r;
}
void AddInternalKey(TableConstructor* c, const std::string& prefix,
int suffix_len = 800) {
static Random rnd(1023);
InternalKey k(prefix + RandomString(&rnd, 800), 0, kTypeValue);
c->Add(k.Encode().ToString(), "v");
}
TEST_F(TableTest, HashIndexTest) {
TableConstructor c(BytewiseComparator());
// keys with prefix length 3, make sure the key/value is big enough to fill
// one block
AddInternalKey(&c, "0015");
AddInternalKey(&c, "0035");
AddInternalKey(&c, "0054");
AddInternalKey(&c, "0055");
AddInternalKey(&c, "0056");
AddInternalKey(&c, "0057");
AddInternalKey(&c, "0058");
AddInternalKey(&c, "0075");
AddInternalKey(&c, "0076");
AddInternalKey(&c, "0095");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
BlockBasedTableOptions table_options;
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.hash_index_allow_collision = true;
table_options.block_size = 1700;
table_options.block_cache = NewLRUCache(1024);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options, *comparator, &keys, &kvmap);
auto reader = c.GetTableReader();
auto props = reader->GetTableProperties();
ASSERT_EQ(5u, props->num_data_blocks);
std::unique_ptr<InternalIterator> hash_iter(
reader->NewIterator(ReadOptions()));
// -- Find keys do not exist, but have common prefix.
std::vector<std::string> prefixes = {"001", "003", "005", "007", "009"};
std::vector<std::string> lower_bound = {keys[0], keys[1], keys[2],
keys[7], keys[9], };
// find the lower bound of the prefix
for (size_t i = 0; i < prefixes.size(); ++i) {
hash_iter->Seek(InternalKey(prefixes[i], 0, kTypeValue).Encode());
ASSERT_OK(hash_iter->status());
ASSERT_TRUE(hash_iter->Valid());
// seek the first element in the block
ASSERT_EQ(lower_bound[i], hash_iter->key().ToString());
ASSERT_EQ("v", hash_iter->value().ToString());
}
// find the upper bound of prefixes
std::vector<std::string> upper_bound = {keys[1], keys[2], keys[7], keys[9], };
// find existing keys
for (const auto& item : kvmap) {
auto ukey = ExtractUserKey(item.first).ToString();
hash_iter->Seek(ukey);
// ASSERT_OK(regular_iter->status());
ASSERT_OK(hash_iter->status());
// ASSERT_TRUE(regular_iter->Valid());
ASSERT_TRUE(hash_iter->Valid());
ASSERT_EQ(item.first, hash_iter->key().ToString());
ASSERT_EQ(item.second, hash_iter->value().ToString());
}
for (size_t i = 0; i < prefixes.size(); ++i) {
// the key is greater than any existing keys.
auto key = prefixes[i] + "9";
hash_iter->Seek(InternalKey(key, 0, kTypeValue).Encode());
ASSERT_OK(hash_iter->status());
if (i == prefixes.size() - 1) {
// last key
ASSERT_TRUE(!hash_iter->Valid());
} else {
ASSERT_TRUE(hash_iter->Valid());
// seek the first element in the block
ASSERT_EQ(upper_bound[i], hash_iter->key().ToString());
ASSERT_EQ("v", hash_iter->value().ToString());
}
}
// find keys with prefix that don't match any of the existing prefixes.
std::vector<std::string> non_exist_prefixes = {"002", "004", "006", "008"};
for (const auto& prefix : non_exist_prefixes) {
hash_iter->Seek(InternalKey(prefix, 0, kTypeValue).Encode());
// regular_iter->Seek(prefix);
ASSERT_OK(hash_iter->status());
// Seek to non-existing prefixes should yield either invalid, or a
// key with prefix greater than the target.
if (hash_iter->Valid()) {
Slice ukey = ExtractUserKey(hash_iter->key());
Slice ukey_prefix = options.prefix_extractor->Transform(ukey);
ASSERT_TRUE(BytewiseComparator()->Compare(prefix, ukey_prefix) < 0);
}
}
}
// It's very hard to figure out the index block size of a block accurately.
// To make sure we get the index size, we just make sure as key number
// grows, the filter block size also grows.
TEST_F(BlockBasedTableTest, IndexSizeStat) {
uint64_t last_index_size = 0;
// we need to use random keys since the pure human readable texts
// may be well compressed, resulting insignifcant change of index
// block size.
Random rnd(test::RandomSeed());
std::vector<std::string> keys;
for (int i = 0; i < 100; ++i) {
keys.push_back(RandomString(&rnd, 10000));
}
// Each time we load one more key to the table. the table index block
// size is expected to be larger than last time's.
for (size_t i = 1; i < keys.size(); ++i) {
TableConstructor c(BytewiseComparator());
for (size_t j = 0; j < i; ++j) {
c.Add(keys[j], "val");
}
std::vector<std::string> ks;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &ks, &kvmap);
auto index_size = c.GetTableReader()->GetTableProperties()->index_size;
ASSERT_GT(index_size, last_index_size);
last_index_size = index_size;
}
}
TEST_F(BlockBasedTableTest, NumBlockStat) {
Random rnd(test::RandomSeed());
TableConstructor c(BytewiseComparator());
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_restart_interval = 1;
table_options.block_size = 1000;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
for (int i = 0; i < 10; ++i) {
// the key/val are slightly smaller than block size, so that each block
// holds roughly one key/value pair.
c.Add(RandomString(&rnd, 900), "val");
}
std::vector<std::string> ks;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &ks, &kvmap);
ASSERT_EQ(kvmap.size(),
c.GetTableReader()->GetTableProperties()->num_data_blocks);
}
// A simple tool that takes the snapshot of block cache statistics.
class BlockCachePropertiesSnapshot {
public:
explicit BlockCachePropertiesSnapshot(Statistics* statistics) {
block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_MISS);
block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_HIT);
index_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_INDEX_MISS);
index_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_INDEX_HIT);
data_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_DATA_MISS);
data_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_DATA_HIT);
filter_block_cache_miss =
statistics->getTickerCount(BLOCK_CACHE_FILTER_MISS);
filter_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_FILTER_HIT);
block_cache_bytes_read = statistics->getTickerCount(BLOCK_CACHE_BYTES_READ);
block_cache_bytes_write =
statistics->getTickerCount(BLOCK_CACHE_BYTES_WRITE);
}
void AssertIndexBlockStat(int64_t expected_index_block_cache_miss,
int64_t expected_index_block_cache_hit) {
ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit);
}
void AssertFilterBlockStat(int64_t expected_filter_block_cache_miss,
int64_t expected_filter_block_cache_hit) {
ASSERT_EQ(expected_filter_block_cache_miss, filter_block_cache_miss);
ASSERT_EQ(expected_filter_block_cache_hit, filter_block_cache_hit);
}
// Check if the fetched props matches the expected ones.
// TODO(kailiu) Use this only when you disabled filter policy!
void AssertEqual(int64_t expected_index_block_cache_miss,
int64_t expected_index_block_cache_hit,
int64_t expected_data_block_cache_miss,
int64_t expected_data_block_cache_hit) const {
ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit);
ASSERT_EQ(expected_data_block_cache_miss, data_block_cache_miss);
ASSERT_EQ(expected_data_block_cache_hit, data_block_cache_hit);
ASSERT_EQ(expected_index_block_cache_miss + expected_data_block_cache_miss,
block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit + expected_data_block_cache_hit,
block_cache_hit);
}
int64_t GetCacheBytesRead() { return block_cache_bytes_read; }
int64_t GetCacheBytesWrite() { return block_cache_bytes_write; }
private:
int64_t block_cache_miss = 0;
int64_t block_cache_hit = 0;
int64_t index_block_cache_miss = 0;
int64_t index_block_cache_hit = 0;
int64_t data_block_cache_miss = 0;
int64_t data_block_cache_hit = 0;
int64_t filter_block_cache_miss = 0;
int64_t filter_block_cache_hit = 0;
int64_t block_cache_bytes_read = 0;
int64_t block_cache_bytes_write = 0;
};
// Make sure, by default, index/filter blocks were pre-loaded (meaning we won't
// use block cache to store them).
TEST_F(BlockBasedTableTest, BlockCacheDisabledTest) {
Options options;
options.create_if_missing = true;
options.statistics = CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1024);
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator(), true);
c.Add("key", "value");
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// preloading filter/index blocks is enabled.
auto reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
ASSERT_TRUE(reader->TEST_filter_block_preloaded());
ASSERT_TRUE(reader->TEST_index_reader_preloaded());
{
// nothing happens in the beginning
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertIndexBlockStat(0, 0);
props.AssertFilterBlockStat(0, 0);
}
{
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(), nullptr, nullptr,
nullptr, nullptr);
// a hack that just to trigger BlockBasedTable::GetFilter.
reader->Get(ReadOptions(), "non-exist-key", &get_context);
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertIndexBlockStat(0, 0);
props.AssertFilterBlockStat(0, 0);
}
}
// Due to the difficulities of the intersaction between statistics, this test
// only tests the case when "index block is put to block cache"
TEST_F(BlockBasedTableTest, FilterBlockInBlockCache) {
// -- Table construction
Options options;
options.create_if_missing = true;
options.statistics = CreateDBStatistics();
// Enable the cache for index/filter blocks
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1024);
table_options.cache_index_and_filter_blocks = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator());
c.Add("key", "value");
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// preloading filter/index blocks is prohibited.
auto* reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
ASSERT_TRUE(!reader->TEST_filter_block_preloaded());
ASSERT_TRUE(!reader->TEST_index_reader_preloaded());
// -- PART 1: Open with regular block cache.
// Since block_cache is disabled, no cache activities will be involved.
unique_ptr<InternalIterator> iter;
int64_t last_cache_bytes_read = 0;
// At first, no block will be accessed.
{
BlockCachePropertiesSnapshot props(options.statistics.get());
// index will be added to block cache.
props.AssertEqual(1, // index block miss
0, 0, 0);
ASSERT_EQ(props.GetCacheBytesRead(), 0);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Only index block will be accessed
{
iter.reset(c.NewIterator());
BlockCachePropertiesSnapshot props(options.statistics.get());
// NOTE: to help better highlight the "detla" of each ticker, I use
// <last_value> + <added_value> to indicate the increment of changed
// value; other numbers remain the same.
props.AssertEqual(1, 0 + 1, // index block hit
0, 0);
// Cache hit, bytes read from cache should increase
ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Only data block will be accessed
{
iter->SeekToFirst();
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, 1, 0 + 1, // data block miss
0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Data block will be in cache
{
iter.reset(c.NewIterator());
iter->SeekToFirst();
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, 1 + 1, /* index block hit */
1, 0 + 1 /* data block hit */);
// Cache hit, bytes read from cache should increase
ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
table_options.block_cache->GetUsage());
last_cache_bytes_read = props.GetCacheBytesRead();
}
// release the iterator so that the block cache can reset correctly.
iter.reset();
// -- PART 2: Open with very small block cache
// In this test, no block will ever get hit since the block cache is
// too small to fit even one entry.
table_options.block_cache = NewLRUCache(1);
options.statistics = CreateDBStatistics();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions2(options);
c.Reopen(ioptions2);
{
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, // index block miss
0, 0, 0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
{
// Both index and data block get accessed.
// It first cache index block then data block. But since the cache size
// is only 1, index block will be purged after data block is inserted.
iter.reset(c.NewIterator());
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1 + 1, // index block miss
0, 0, // data block miss
0);
// Cache hit, bytes read from cache should increase
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
{
// SeekToFirst() accesses data block. With similar reason, we expect data
// block's cache miss.
iter->SeekToFirst();
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(2, 0, 0 + 1, // data block miss
0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
iter.reset();
// -- PART 3: Open table with bloom filter enabled but not in SST file
table_options.block_cache = NewLRUCache(4096);
table_options.cache_index_and_filter_blocks = false;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c3(BytewiseComparator());
std::string user_key = "k01";
InternalKey internal_key(user_key, 0, kTypeValue);
c3.Add(internal_key.Encode().ToString(), "hello");
ImmutableCFOptions ioptions3(options);
// Generate table without filter policy
c3.Finish(options, ioptions3, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// Open table with filter policy
table_options.filter_policy.reset(NewBloomFilterPolicy(1));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.statistics = CreateDBStatistics();
ImmutableCFOptions ioptions4(options);
ASSERT_OK(c3.Reopen(ioptions4));
reader = dynamic_cast<BlockBasedTable*>(c3.GetTableReader());
ASSERT_TRUE(!reader->TEST_filter_block_preloaded());
std::string value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, nullptr);
ASSERT_OK(reader->Get(ReadOptions(), user_key, &get_context));
ASSERT_EQ(value, "hello");
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertFilterBlockStat(0, 0);
}
void ValidateBlockSizeDeviation(int value, int expected) {
BlockBasedTableOptions table_options;
table_options.block_size_deviation = value;
BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options);
const BlockBasedTableOptions* normalized_table_options =
(const BlockBasedTableOptions*)factory->GetOptions();
ASSERT_EQ(normalized_table_options->block_size_deviation, expected);
delete factory;
}
void ValidateBlockRestartInterval(int value, int expected) {
BlockBasedTableOptions table_options;
table_options.block_restart_interval = value;
BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options);
const BlockBasedTableOptions* normalized_table_options =
(const BlockBasedTableOptions*)factory->GetOptions();
ASSERT_EQ(normalized_table_options->block_restart_interval, expected);
delete factory;
}
TEST_F(BlockBasedTableTest, InvalidOptions) {
// invalid values for block_size_deviation (<0 or >100) are silently set to 0
ValidateBlockSizeDeviation(-10, 0);
ValidateBlockSizeDeviation(-1, 0);
ValidateBlockSizeDeviation(0, 0);
ValidateBlockSizeDeviation(1, 1);
ValidateBlockSizeDeviation(99, 99);
ValidateBlockSizeDeviation(100, 100);
ValidateBlockSizeDeviation(101, 0);
ValidateBlockSizeDeviation(1000, 0);
// invalid values for block_restart_interval (<1) are silently set to 1
ValidateBlockRestartInterval(-10, 1);
ValidateBlockRestartInterval(-1, 1);
ValidateBlockRestartInterval(0, 1);
ValidateBlockRestartInterval(1, 1);
ValidateBlockRestartInterval(2, 2);
ValidateBlockRestartInterval(1000, 1000);
}
TEST_F(BlockBasedTableTest, BlockReadCountTest) {
// bloom_filter_type = 0 -- block-based filter
// bloom_filter_type = 0 -- full filter
for (int bloom_filter_type = 0; bloom_filter_type < 2; ++bloom_filter_type) {
for (int index_and_filter_in_cache = 0; index_and_filter_in_cache < 2;
++index_and_filter_in_cache) {
Options options;
options.create_if_missing = true;
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(1, 0);
table_options.cache_index_and_filter_blocks = index_and_filter_in_cache;
table_options.filter_policy.reset(
NewBloomFilterPolicy(10, bloom_filter_type == 0));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator());
std::string user_key = "k04";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
c.Add(encoded_key, "hello");
ImmutableCFOptions ioptions(options);
// Generate table with filter policy
c.Finish(options, ioptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto reader = c.GetTableReader();
std::string value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, nullptr);
perf_context.Reset();
ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context));
if (index_and_filter_in_cache) {
// data, index and filter block
ASSERT_EQ(perf_context.block_read_count, 3);
} else {
// just the data block
ASSERT_EQ(perf_context.block_read_count, 1);
}
ASSERT_EQ(get_context.State(), GetContext::kFound);
ASSERT_EQ(value, "hello");
// Get non-existing key
user_key = "does-not-exist";
internal_key = InternalKey(user_key, 0, kTypeValue);
encoded_key = internal_key.Encode().ToString();
get_context = GetContext(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, nullptr);
perf_context.Reset();
ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context));
ASSERT_EQ(get_context.State(), GetContext::kNotFound);
if (index_and_filter_in_cache) {
if (bloom_filter_type == 0) {
// with block-based, we read index and then the filter
ASSERT_EQ(perf_context.block_read_count, 2);
} else {
// with full-filter, we read filter first and then we stop
ASSERT_EQ(perf_context.block_read_count, 1);
}
} else {
// filter is already in memory and it figures out that the key doesn't
// exist
ASSERT_EQ(perf_context.block_read_count, 0);
}
}
}
}
TEST_F(BlockBasedTableTest, BlockCacheLeak) {
// Check that when we reopen a table we don't lose access to blocks already
// in the cache. This test checks whether the Table actually makes use of the
// unique ID from the file.
Options opt;
unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
// big enough so we don't ever lose cached values.
table_options.block_cache = NewLRUCache(16 * 1024 * 1024);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator());
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableCFOptions ioptions(opt);
c.Finish(opt, ioptions, table_options, *ikc, &keys, &kvmap);
unique_ptr<InternalIterator> iter(c.NewIterator());
iter->SeekToFirst();
while (iter->Valid()) {
iter->key();
iter->value();
iter->Next();
}
ASSERT_OK(iter->status());
const ImmutableCFOptions ioptions1(opt);
ASSERT_OK(c.Reopen(ioptions1));
auto table_reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
for (const std::string& key : keys) {
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), key));
}
// rerun with different block cache
table_options.block_cache = NewLRUCache(16 * 1024 * 1024);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableCFOptions ioptions2(opt);
ASSERT_OK(c.Reopen(ioptions2));
table_reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
for (const std::string& key : keys) {
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), key));
}
}
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
TEST_F(PlainTableTest, BasicPlainTableProperties) {
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = 8;
plain_table_options.bloom_bits_per_key = 8;
plain_table_options.hash_table_ratio = 0;
PlainTableFactory factory(plain_table_options);
test::StringSink sink;
unique_ptr<WritableFileWriter> file_writer(
test::GetWritableFileWriter(new test::StringSink()));
Options options;
const ImmutableCFOptions ioptions(options);
InternalKeyComparator ikc(options.comparator);
std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
int_tbl_prop_collector_factories;
std::unique_ptr<TableBuilder> builder(factory.NewTableBuilder(
TableBuilderOptions(ioptions, ikc, &int_tbl_prop_collector_factories,
kNoCompression, CompressionOptions(), false),
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
file_writer.get()));
for (char c = 'a'; c <= 'z'; ++c) {
std::string key(8, c);
key.append("\1 "); // PlainTable expects internal key structure
std::string value(28, c + 42);
builder->Add(key, value);
}
ASSERT_OK(builder->Finish());
file_writer->Flush();
test::StringSink* ss =
static_cast<test::StringSink*>(file_writer->writable_file());
unique_ptr<RandomAccessFileReader> file_reader(
test::GetRandomAccessFileReader(
new test::StringSource(ss->contents(), 72242, true)));
TableProperties* props = nullptr;
auto s = ReadTableProperties(file_reader.get(), ss->contents().size(),
kPlainTableMagicNumber, Env::Default(), nullptr,
&props);
std::unique_ptr<TableProperties> props_guard(props);
ASSERT_OK(s);
ASSERT_EQ(0ul, props->index_size);
ASSERT_EQ(0ul, props->filter_size);
ASSERT_EQ(16ul * 26, props->raw_key_size);
ASSERT_EQ(28ul * 26, props->raw_value_size);
ASSERT_EQ(26ul, props->num_entries);
ASSERT_EQ(1ul, props->num_data_blocks);
}
#endif // !ROCKSDB_LITE
TEST_F(GeneralTableTest, ApproximateOffsetOfPlain) {
TableConstructor c(BytewiseComparator());
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
test::PlainInternalKeyComparator internal_comparator(options.comparator);
options.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options, internal_comparator,
&keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000));
}
static void DoCompressionTest(CompressionType comp) {
Random rnd(301);
TableConstructor c(BytewiseComparator());
std::string tmp;
c.Add("k01", "hello");
c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
c.Add("k03", "hello3");
c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
test::PlainInternalKeyComparator ikc(options.comparator);
options.compression = comp;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
const ImmutableCFOptions ioptions(options);
c.Finish(options, ioptions, table_options, ikc, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 6100));
}
TEST_F(GeneralTableTest, ApproximateOffsetOfCompressed) {
std::vector<CompressionType> compression_state;
if (!Snappy_Supported()) {
fprintf(stderr, "skipping snappy compression tests\n");
} else {
compression_state.push_back(kSnappyCompression);
}
if (!Zlib_Supported()) {
fprintf(stderr, "skipping zlib compression tests\n");
} else {
compression_state.push_back(kZlibCompression);
}
// TODO(kailiu) DoCompressionTest() doesn't work with BZip2.
/*
if (!BZip2_Supported()) {
fprintf(stderr, "skipping bzip2 compression tests\n");
} else {
compression_state.push_back(kBZip2Compression);
}
*/
if (!LZ4_Supported()) {
fprintf(stderr, "skipping lz4 and lz4hc compression tests\n");
} else {
compression_state.push_back(kLZ4Compression);
compression_state.push_back(kLZ4HCCompression);
}
for (auto state : compression_state) {
DoCompressionTest(state);
}
}
TEST_F(HarnessTest, Randomized) {
std::vector<TestArgs> args = GenerateArgList();
for (unsigned int i = 0; i < args.size(); i++) {
Init(args[i]);
Random rnd(test::RandomSeed() + 5);
for (int num_entries = 0; num_entries < 2000;
num_entries += (num_entries < 50 ? 1 : 200)) {
if ((num_entries % 10) == 0) {
fprintf(stderr, "case %d of %d: num_entries = %d\n", (i + 1),
static_cast<int>(args.size()), num_entries);
}
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
}
}
}
#ifndef ROCKSDB_LITE
TEST_F(HarnessTest, RandomizedLongDB) {
Random rnd(test::RandomSeed());
TestArgs args = {DB_TEST, false, 16, kNoCompression, 0, false};
Init(args);
int num_entries = 100000;
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
// We must have created enough data to force merging
int files = 0;
for (int level = 0; level < db()->NumberLevels(); level++) {
std::string value;
char name[100];
snprintf(name, sizeof(name), "rocksdb.num-files-at-level%d", level);
ASSERT_TRUE(db()->GetProperty(name, &value));
files += atoi(value.c_str());
}
ASSERT_GT(files, 0);
}
#endif // ROCKSDB_LITE
class MemTableTest : public testing::Test {};
TEST_F(MemTableTest, Simple) {
InternalKeyComparator cmp(BytewiseComparator());
auto table_factory = std::make_shared<SkipListFactory>();
Options options;
options.memtable_factory = table_factory;
ImmutableCFOptions ioptions(options);
WriteBuffer wb(options.db_write_buffer_size);
MemTable* memtable =
new MemTable(cmp, ioptions, MutableCFOptions(options, ioptions), &wb,
kMaxSequenceNumber);
memtable->Ref();
WriteBatch batch;
WriteBatchInternal::SetSequence(&batch, 100);
batch.Put(std::string("k1"), std::string("v1"));
batch.Put(std::string("k2"), std::string("v2"));
batch.Put(std::string("k3"), std::string("v3"));
batch.Put(std::string("largekey"), std::string("vlarge"));
ColumnFamilyMemTablesDefault cf_mems_default(memtable);
ASSERT_TRUE(
WriteBatchInternal::InsertInto(&batch, &cf_mems_default, nullptr).ok());
Arena arena;
ScopedArenaIterator iter(memtable->NewIterator(ReadOptions(), &arena));
iter->SeekToFirst();
while (iter->Valid()) {
fprintf(stderr, "key: '%s' -> '%s'\n",
iter->key().ToString().c_str(),
iter->value().ToString().c_str());
iter->Next();
}
delete memtable->Unref();
}
// Test the empty key
TEST_F(HarnessTest, SimpleEmptyKey) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 1);
Add("", "v");
Test(&rnd);
}
}
TEST_F(HarnessTest, SimpleSingle) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 2);
Add("abc", "v");
Test(&rnd);
}
}
TEST_F(HarnessTest, SimpleMulti) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 3);
Add("abc", "v");
Add("abcd", "v");
Add("ac", "v2");
Test(&rnd);
}
}
TEST_F(HarnessTest, SimpleSpecialKey) {
auto args = GenerateArgList();
for (const auto& arg : args) {
Init(arg);
Random rnd(test::RandomSeed() + 4);
Add("\xff\xff", "v3");
Test(&rnd);
}
}
TEST_F(HarnessTest, FooterTests) {
{
// upconvert legacy block based
std::string encoded;
Footer footer(kLegacyBlockBasedTableMagicNumber, 0);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 0U);
}
{
// xxhash block based
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
{
// upconvert legacy plain table
std::string encoded;
Footer footer(kLegacyPlainTableMagicNumber, 0);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 0U);
}
{
// xxhash block based
std::string encoded;
Footer footer(kPlainTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
#endif // !ROCKSDB_LITE
{
// version == 2
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 2);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
decoded_footer.DecodeFrom(&encoded_slice);
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 2U);
}
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}