mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 11:43:49 +00:00
c7c7b07f06
Summary: Cleans up some of the dependencies on test code in the Makefile while building tools: - Moves the test::RandomString, DBBaseTest::RandomString into Random - Moves the test::RandomHumanReadableString into Random - Moves the DestroyDir method into file_utils - Moves the SetupSyncPointsToMockDirectIO into sync_point. - Moves the FaultInjection Env and FS classes under env These changes allow all of the tools to build without dependencies on test_util, thereby simplifying the build dependencies. By moving the FaultInjection code, the dependency in db_stress on different libraries for debug vs release was eliminated. Tested both release and debug builds via Make and CMake for both static and shared libraries. More work remains to clean up how the tools are built and remove some unnecessary dependencies. There is also more work that should be done to get the Makefile and CMake to align in their builds -- what is in the libraries and the sizes of the executables are different. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7097 Reviewed By: riversand963 Differential Revision: D22463160 Pulled By: pdillinger fbshipit-source-id: e19462b53324ab3f0b7c72459dbc73165cc382b2
187 lines
6.1 KiB
C++
187 lines
6.1 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#pragma once
|
|
#include <stdint.h>
|
|
#include <algorithm>
|
|
#include <random>
|
|
|
|
#include "rocksdb/rocksdb_namespace.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
// A very simple random number generator. Not especially good at
|
|
// generating truly random bits, but good enough for our needs in this
|
|
// package.
|
|
class Random {
|
|
private:
|
|
enum : uint32_t {
|
|
M = 2147483647L // 2^31-1
|
|
};
|
|
enum : uint64_t {
|
|
A = 16807 // bits 14, 8, 7, 5, 2, 1, 0
|
|
};
|
|
|
|
uint32_t seed_;
|
|
|
|
static uint32_t GoodSeed(uint32_t s) { return (s & M) != 0 ? (s & M) : 1; }
|
|
|
|
public:
|
|
// This is the largest value that can be returned from Next()
|
|
enum : uint32_t { kMaxNext = M };
|
|
|
|
explicit Random(uint32_t s) : seed_(GoodSeed(s)) {}
|
|
|
|
void Reset(uint32_t s) { seed_ = GoodSeed(s); }
|
|
|
|
uint32_t Next() {
|
|
// We are computing
|
|
// seed_ = (seed_ * A) % M, where M = 2^31-1
|
|
//
|
|
// seed_ must not be zero or M, or else all subsequent computed values
|
|
// will be zero or M respectively. For all other values, seed_ will end
|
|
// up cycling through every number in [1,M-1]
|
|
uint64_t product = seed_ * A;
|
|
|
|
// Compute (product % M) using the fact that ((x << 31) % M) == x.
|
|
seed_ = static_cast<uint32_t>((product >> 31) + (product & M));
|
|
// The first reduction may overflow by 1 bit, so we may need to
|
|
// repeat. mod == M is not possible; using > allows the faster
|
|
// sign-bit-based test.
|
|
if (seed_ > M) {
|
|
seed_ -= M;
|
|
}
|
|
return seed_;
|
|
}
|
|
|
|
// Returns a uniformly distributed value in the range [0..n-1]
|
|
// REQUIRES: n > 0
|
|
uint32_t Uniform(int n) { return Next() % n; }
|
|
|
|
// Randomly returns true ~"1/n" of the time, and false otherwise.
|
|
// REQUIRES: n > 0
|
|
bool OneIn(int n) { return Uniform(n) == 0; }
|
|
|
|
// "Optional" one-in-n, where 0 or negative always returns false
|
|
// (may or may not consume a random value)
|
|
bool OneInOpt(int n) { return n > 0 && OneIn(n); }
|
|
|
|
// Returns random bool that is true for the given percentage of
|
|
// calls on average. Zero or less is always false and 100 or more
|
|
// is always true (may or may not consume a random value)
|
|
bool PercentTrue(int percentage) {
|
|
return static_cast<int>(Uniform(100)) < percentage;
|
|
}
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
|
|
uint32_t Skewed(int max_log) {
|
|
return Uniform(1 << Uniform(max_log + 1));
|
|
}
|
|
|
|
// Returns a random string of length "len"
|
|
std::string RandomString(int len);
|
|
|
|
// Generates a random string of len bytes using human-readable characters
|
|
std::string HumanReadableString(int len);
|
|
|
|
// Returns a Random instance for use by the current thread without
|
|
// additional locking
|
|
static Random* GetTLSInstance();
|
|
};
|
|
|
|
// A good 32-bit random number generator based on std::mt19937.
|
|
// This exists in part to avoid compiler variance in warning about coercing
|
|
// uint_fast32_t from mt19937 to uint32_t.
|
|
class Random32 {
|
|
private:
|
|
std::mt19937 generator_;
|
|
|
|
public:
|
|
explicit Random32(uint32_t s) : generator_(s) {}
|
|
|
|
// Generates the next random number
|
|
uint32_t Next() { return static_cast<uint32_t>(generator_()); }
|
|
|
|
// Returns a uniformly distributed value in the range [0..n-1]
|
|
// REQUIRES: n > 0
|
|
uint32_t Uniform(uint32_t n) {
|
|
return static_cast<uint32_t>(
|
|
std::uniform_int_distribution<std::mt19937::result_type>(
|
|
0, n - 1)(generator_));
|
|
}
|
|
|
|
// Returns an *almost* uniformly distributed value in the range [0..n-1].
|
|
// Much faster than Uniform().
|
|
// REQUIRES: n > 0
|
|
uint32_t Uniformish(uint32_t n) {
|
|
// fastrange (without the header)
|
|
return static_cast<uint32_t>((uint64_t(generator_()) * uint64_t(n)) >> 32);
|
|
}
|
|
|
|
// Randomly returns true ~"1/n" of the time, and false otherwise.
|
|
// REQUIRES: n > 0
|
|
bool OneIn(uint32_t n) { return Uniform(n) == 0; }
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
|
|
uint32_t Skewed(int max_log) {
|
|
return Uniform(uint32_t{1} << Uniform(max_log + 1));
|
|
}
|
|
|
|
// Reset the seed of the generator to the given value
|
|
void Seed(uint32_t new_seed) { generator_.seed(new_seed); }
|
|
};
|
|
|
|
// A good 64-bit random number generator based on std::mt19937_64
|
|
class Random64 {
|
|
private:
|
|
std::mt19937_64 generator_;
|
|
|
|
public:
|
|
explicit Random64(uint64_t s) : generator_(s) { }
|
|
|
|
// Generates the next random number
|
|
uint64_t Next() { return generator_(); }
|
|
|
|
// Returns a uniformly distributed value in the range [0..n-1]
|
|
// REQUIRES: n > 0
|
|
uint64_t Uniform(uint64_t n) {
|
|
return std::uniform_int_distribution<uint64_t>(0, n - 1)(generator_);
|
|
}
|
|
|
|
// Randomly returns true ~"1/n" of the time, and false otherwise.
|
|
// REQUIRES: n > 0
|
|
bool OneIn(uint64_t n) { return Uniform(n) == 0; }
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
|
|
uint64_t Skewed(int max_log) {
|
|
return Uniform(uint64_t(1) << Uniform(max_log + 1));
|
|
}
|
|
};
|
|
|
|
// A seeded replacement for removed std::random_shuffle
|
|
template <class RandomIt>
|
|
void RandomShuffle(RandomIt first, RandomIt last, uint32_t seed) {
|
|
std::mt19937 rng(seed);
|
|
std::shuffle(first, last, rng);
|
|
}
|
|
|
|
// A replacement for removed std::random_shuffle
|
|
template <class RandomIt>
|
|
void RandomShuffle(RandomIt first, RandomIt last) {
|
|
RandomShuffle(first, last, std::random_device{}());
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|