rocksdb/microbench/ribbon_bench.cc
Peter Dillinger 8c681087c7 Refactor FilterPolicies toward Customizable (#9567)
Summary:
Some changes to make it easier to make FilterPolicy
customizable. Especially, create distinct classes for the different
testing-only and user-facing built-in FilterPolicy modes.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9567

Test Plan:
tests updated, with no intended difference in functionality
tested. No difference in test performance seen as a result of moving to
string-based filter type configuration.

Reviewed By: mrambacher

Differential Revision: D34234694

Pulled By: pdillinger

fbshipit-source-id: 8a94931a9e04c3bcca863a4f524cfd064aaf0122
2022-02-16 08:30:03 -08:00

154 lines
5.3 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
// this is a simple micro-benchmark for compare ribbon filter vs. other filter
// for more comprehensive, please check the dedicate util/filter_bench.
#include "benchmark/benchmark.h"
#include "table/block_based/filter_policy_internal.h"
#include "table/block_based/mock_block_based_table.h"
namespace ROCKSDB_NAMESPACE {
struct KeyMaker {
explicit KeyMaker(size_t avg_size)
: smallest_size_(avg_size),
buf_size_(avg_size + 11), // pad to vary key size and alignment
buf_(new char[buf_size_]) {
memset(buf_.get(), 0, buf_size_);
assert(smallest_size_ > 8);
}
size_t smallest_size_;
size_t buf_size_;
std::unique_ptr<char[]> buf_;
// Returns a unique(-ish) key based on the given parameter values. Each
// call returns a Slice from the same buffer so previously returned
// Slices should be considered invalidated.
Slice Get(uint32_t filter_num, uint32_t val_num) const {
size_t start = val_num % 4;
size_t len = smallest_size_;
// To get range [avg_size - 2, avg_size + 2]
// use range [smallest_size, smallest_size + 4]
len += FastRange32((val_num >> 5) * 1234567891, 5);
char *data = buf_.get() + start;
// Populate key data such that all data makes it into a key of at
// least 8 bytes. We also don't want all the within-filter key
// variance confined to a contiguous 32 bits, because then a 32 bit
// hash function can "cheat" the false positive rate by
// approximating a perfect hash.
EncodeFixed32(data, val_num);
EncodeFixed32(data + 4, filter_num + val_num);
// ensure clearing leftovers from different alignment
EncodeFixed32(data + 8, 0);
return {data, len};
}
};
// benchmark arguments:
// 0. filter impl (like filter_bench -impl)
// 1. filter config bits_per_key
// 2. average data key length
// 3. data entry number
static void CustomArguments(benchmark::internal::Benchmark *b) {
for (int filter_impl : {0, 2, 3}) {
for (int bits_per_key : {10, 20}) {
for (int key_len_avg : {10, 100}) {
for (int64_t entry_num : {1 << 10, 1 << 20}) {
b->Args({filter_impl, bits_per_key, key_len_avg, entry_num});
}
}
}
}
b->ArgNames({"filter_impl", "bits_per_key", "key_len_avg", "entry_num"});
}
static void FilterBuild(benchmark::State &state) {
// setup data
auto filter = BloomLikeFilterPolicy::Create(
BloomLikeFilterPolicy::GetAllFixedImpls().at(state.range(0)),
static_cast<double>(state.range(1)));
auto tester = new mock::MockBlockBasedTableTester(filter);
KeyMaker km(state.range(2));
std::unique_ptr<const char[]> owner;
const int64_t kEntryNum = state.range(3);
auto rnd = Random32(12345);
uint32_t filter_num = rnd.Next();
// run the test
for (auto _ : state) {
std::unique_ptr<FilterBitsBuilder> builder(tester->GetBuilder());
for (uint32_t i = 0; i < kEntryNum; i++) {
builder->AddKey(km.Get(filter_num, i));
}
auto ret = builder->Finish(&owner);
state.counters["size"] = static_cast<double>(ret.size());
}
}
BENCHMARK(FilterBuild)->Apply(CustomArguments);
static void FilterQueryPositive(benchmark::State &state) {
// setup data
auto filter = BloomLikeFilterPolicy::Create(
BloomLikeFilterPolicy::GetAllFixedImpls().at(state.range(0)),
static_cast<double>(state.range(1)));
auto tester = new mock::MockBlockBasedTableTester(filter);
KeyMaker km(state.range(2));
std::unique_ptr<const char[]> owner;
const int64_t kEntryNum = state.range(3);
auto rnd = Random32(12345);
uint32_t filter_num = rnd.Next();
std::unique_ptr<FilterBitsBuilder> builder(tester->GetBuilder());
for (uint32_t i = 0; i < kEntryNum; i++) {
builder->AddKey(km.Get(filter_num, i));
}
auto data = builder->Finish(&owner);
auto reader = filter->GetFilterBitsReader(data);
// run test
uint32_t i = 0;
for (auto _ : state) {
i++;
i = i % kEntryNum;
reader->MayMatch(km.Get(filter_num, i));
}
}
BENCHMARK(FilterQueryPositive)->Apply(CustomArguments);
static void FilterQueryNegative(benchmark::State &state) {
// setup data
auto filter = BloomLikeFilterPolicy::Create(
BloomLikeFilterPolicy::GetAllFixedImpls().at(state.range(0)),
static_cast<double>(state.range(1)));
auto tester = new mock::MockBlockBasedTableTester(filter);
KeyMaker km(state.range(2));
std::unique_ptr<const char[]> owner;
const int64_t kEntryNum = state.range(3);
auto rnd = Random32(12345);
uint32_t filter_num = rnd.Next();
std::unique_ptr<FilterBitsBuilder> builder(tester->GetBuilder());
for (uint32_t i = 0; i < kEntryNum; i++) {
builder->AddKey(km.Get(filter_num, i));
}
auto data = builder->Finish(&owner);
auto reader = filter->GetFilterBitsReader(data);
// run test
uint32_t i = 0;
double fp_cnt = 0;
for (auto _ : state) {
i++;
auto result = reader->MayMatch(km.Get(filter_num + 1, i));
if (result) {
fp_cnt++;
}
}
state.counters["FP %"] =
benchmark::Counter(fp_cnt * 100, benchmark::Counter::kAvgIterations);
}
BENCHMARK(FilterQueryNegative)->Apply(CustomArguments);
} // namespace ROCKSDB_NAMESPACE
BENCHMARK_MAIN();