rocksdb/memtable
Peter Dillinger dd23e84cad Re-implement GetApproximateMemTableStats for skip lists (#13047)
Summary:
GetApproximateMemTableStats() could return some bad results with the standard skip list memtable. See this new db_bench test showing the dismal distribution of results when the actual number of entries in range is 1000:

```
$ ./db_bench --benchmarks=filluniquerandom,approximatememtablestats,readrandom --value_size=1 --num=1000000 --batch_size=1000
...
filluniquerandom :       1.391 micros/op 718915 ops/sec 1.391 seconds 1000000 operations;   11.7 MB/s
approximatememtablestats :       3.711 micros/op 269492 ops/sec 3.711 seconds 1000000 operations;
Reported entry count stats (expected 1000):
Count: 1000000 Average: 2344.1611  StdDev: 26587.27
Min: 0  Median: 965.8555  Max: 835273
Percentiles: P50: 965.86 P75: 1610.77 P99: 12618.01 P99.9: 74991.58 P99.99: 830970.97
------------------------------------------------------
[       0,       1 ]   131344  13.134%  13.134% ###
(       1,       2 ]      115   0.011%  13.146%
(       2,       3 ]      106   0.011%  13.157%
(       3,       4 ]      190   0.019%  13.176%
(       4,       6 ]      214   0.021%  13.197%
(       6,      10 ]      522   0.052%  13.249%
(      10,      15 ]      748   0.075%  13.324%
(      15,      22 ]     1002   0.100%  13.424%
(      22,      34 ]     1948   0.195%  13.619%
(      34,      51 ]     3067   0.307%  13.926%
(      51,      76 ]     4213   0.421%  14.347%
(      76,     110 ]     5721   0.572%  14.919%
(     110,     170 ]    11375   1.137%  16.056%
(     170,     250 ]    17928   1.793%  17.849%
(     250,     380 ]    36597   3.660%  21.509% #
(     380,     580 ]    77882   7.788%  29.297% ##
(     580,     870 ]   160193  16.019%  45.317% ###
(     870,    1300 ]   210098  21.010%  66.326% ####
(    1300,    1900 ]   167461  16.746%  83.072% ###
(    1900,    2900 ]    78678   7.868%  90.940% ##
(    2900,    4400 ]    47743   4.774%  95.715% #
(    4400,    6600 ]    17650   1.765%  97.480%
(    6600,    9900 ]    11895   1.190%  98.669%
(    9900,   14000 ]     4993   0.499%  99.168%
(   14000,   22000 ]     2384   0.238%  99.407%
(   22000,   33000 ]     1966   0.197%  99.603%
(   50000,   75000 ]     2968   0.297%  99.900%
(  570000,  860000 ]      999   0.100% 100.000%

readrandom   :       1.967 micros/op 508487 ops/sec 1.967 seconds 1000000 operations;    8.2 MB/s (1000000 of 1000000 found)
```

Perhaps the only good thing to say about the old implementation was that it was fast, though apparently not that fast.

I've implemented a much more robust and reasonably fast new version of the function. It's still logarithmic but with some larger constant factors. The standard deviation from true count is around 20% or less, and roughly the CPU cost of two memtable point look-ups. See code comments for detail.

```
$ ./db_bench --benchmarks=filluniquerandom,approximatememtablestats,readrandom --value_size=1 --num=1000000 --batch_size=1000
...
filluniquerandom :       1.478 micros/op 676434 ops/sec 1.478 seconds 1000000 operations;   11.0 MB/s
approximatememtablestats :       2.694 micros/op 371157 ops/sec 2.694 seconds 1000000 operations;
Reported entry count stats (expected 1000):
Count: 1000000 Average: 1073.5158  StdDev: 197.80
Min: 608  Median: 1079.9506  Max: 2176
Percentiles: P50: 1079.95 P75: 1223.69 P99: 1852.36 P99.9: 1898.70 P99.99: 2176.00
------------------------------------------------------
(     580,     870 ]   134848  13.485%  13.485% ###
(     870,    1300 ]   747868  74.787%  88.272% ###############
(    1300,    1900 ]   116536  11.654%  99.925% ##
(    1900,    2900 ]      748   0.075% 100.000%

readrandom   :       1.997 micros/op 500654 ops/sec 1.997 seconds 1000000 operations;    8.1 MB/s (1000000 of 1000000 found)
```

We can already see that the distribution of results is dramatically better and wonderfully normal-looking, with relative standard deviation around 20%. The function is also FASTER, at least with these parameters. Let's look how this behavior generalizes, first *much* larger range:

```
$ ./db_bench --benchmarks=filluniquerandom,approximatememtablestats,readrandom --value_size=1 --num=1000000 --batch_size=30000
filluniquerandom :       1.390 micros/op 719654 ops/sec 1.376 seconds 990000 operations;   11.7 MB/s
approximatememtablestats :       1.129 micros/op 885649 ops/sec 1.129 seconds 1000000 operations;
Reported entry count stats (expected 30000):
Count: 1000000 Average: 31098.8795  StdDev: 3601.47
Min: 21504  Median: 29333.9303  Max: 43008
Percentiles: P50: 29333.93 P75: 33018.00 P99: 43008.00 P99.9: 43008.00 P99.99: 43008.00
------------------------------------------------------
(   14000,   22000 ]      408   0.041%   0.041%
(   22000,   33000 ]   749327  74.933%  74.974% ###############
(   33000,   50000 ]   250265  25.027% 100.000% #####

readrandom   :       1.894 micros/op 528083 ops/sec 1.894 seconds 1000000 operations;    8.5 MB/s (989989 of 1000000 found)
```

This is *even faster* and relatively *more accurate*, with relative standard deviation closer to 10%. Code comments explain why. Now let's look at smaller ranges. Implementation quirks or conveniences:
* When actual number in range is >= 40, the minimum return value is 40.
* When the actual is <= 10, it is guaranteed to return that actual number.
```
$ ./db_bench --benchmarks=filluniquerandom,approximatememtablestats,readrandom --value_size=1 --num=1000000 --batch_size=75
...
filluniquerandom :       1.417 micros/op 705668 ops/sec 1.417 seconds 999975 operations;   11.4 MB/s
approximatememtablestats :       3.342 micros/op 299197 ops/sec 3.342 seconds 1000000 operations;
Reported entry count stats (expected 75):
Count: 1000000 Average: 75.1210  StdDev: 15.02
Min: 40  Median: 71.9395  Max: 256
Percentiles: P50: 71.94 P75: 89.69 P99: 119.12 P99.9: 166.68 P99.99: 229.78
------------------------------------------------------
(      34,      51 ]    38867   3.887%   3.887% #
(      51,      76 ]   550554  55.055%  58.942% ###########
(      76,     110 ]   398854  39.885%  98.828% ########
(     110,     170 ]    11353   1.135%  99.963%
(     170,     250 ]      364   0.036%  99.999%
(     250,     380 ]        8   0.001% 100.000%

readrandom   :       1.861 micros/op 537224 ops/sec 1.861 seconds 1000000 operations;    8.7 MB/s (999974 of 1000000 found)

$ ./db_bench --benchmarks=filluniquerandom,approximatememtablestats,readrandom --value_size=1 --num=1000000 --batch_size=25
...
filluniquerandom :       1.501 micros/op 666283 ops/sec 1.501 seconds 1000000 operations;   10.8 MB/s
approximatememtablestats :       5.118 micros/op 195401 ops/sec 5.118 seconds 1000000 operations;
Reported entry count stats (expected 25):
Count: 1000000 Average: 26.2392  StdDev: 4.58
Min: 25  Median: 28.4590  Max: 72
Percentiles: P50: 28.46 P75: 31.69 P99: 49.27 P99.9: 67.95 P99.99: 72.00
------------------------------------------------------
(      22,      34 ]   928936  92.894%  92.894% ###################
(      34,      51 ]    67960   6.796%  99.690% #
(      51,      76 ]     3104   0.310% 100.000%

readrandom   :       1.892 micros/op 528595 ops/sec 1.892 seconds 1000000 operations;    8.6 MB/s (1000000 of 1000000 found)

$ ./db_bench --benchmarks=filluniquerandom,approximatememtablestats,readrandom --value_size=1 --num=1000000 --batch_size=10
...
filluniquerandom :       1.642 micros/op 608916 ops/sec 1.642 seconds 1000000 operations;    9.9 MB/s
approximatememtablestats :       3.042 micros/op 328721 ops/sec 3.042 seconds 1000000 operations;
Reported entry count stats (expected 10):
Count: 1000000 Average: 10.0000  StdDev: 0.00
Min: 10  Median: 10.0000  Max: 10
Percentiles: P50: 10.00 P75: 10.00 P99: 10.00 P99.9: 10.00 P99.99: 10.00
------------------------------------------------------
(       6,      10 ]  1000000 100.000% 100.000% ####################

readrandom   :       1.805 micros/op 554126 ops/sec 1.805 seconds 1000000 operations;    9.0 MB/s (1000000 of 1000000 found)
```

Remarkably consistent.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/13047

Test Plan: new db_bench test for both performance and accuracy (see above); added to crash test; unit test updated.

Reviewed By: cbi42

Differential Revision: D63722003

Pulled By: pdillinger

fbshipit-source-id: cfc8613c085e87c17ecec22d82601aac2a5a1b26
2024-10-02 14:25:50 -07:00
..
alloc_tracker.cc internal_repo_rocksdb (-8794174668376270091) (#12114) 2023-12-01 11:10:30 -08:00
hash_linklist_rep.cc Remove 'virtual' when implied by 'override' (#12319) 2024-01-31 13:14:42 -08:00
hash_skiplist_rep.cc Remove 'virtual' when implied by 'override' (#12319) 2024-01-31 13:14:42 -08:00
inlineskiplist.h Re-implement GetApproximateMemTableStats for skip lists (#13047) 2024-10-02 14:25:50 -07:00
inlineskiplist_test.cc Prefer static_cast in place of most reinterpret_cast (#12308) 2024-02-07 10:44:11 -08:00
memtablerep_bench.cc
skiplist.h Re-implement GetApproximateMemTableStats for skip lists (#13047) 2024-10-02 14:25:50 -07:00
skiplist_test.cc Prefer static_cast in place of most reinterpret_cast (#12308) 2024-02-07 10:44:11 -08:00
skiplistrep.cc Re-implement GetApproximateMemTableStats for skip lists (#13047) 2024-10-02 14:25:50 -07:00
stl_wrappers.h
vectorrep.cc internal_repo_rocksdb (-8794174668376270091) (#12114) 2023-12-01 11:10:30 -08:00
write_buffer_manager.cc Add `SetAllowStall()` (#11335) 2023-03-30 09:43:33 -07:00
write_buffer_manager_test.cc