rocksdb/db/external_sst_file_ingestion_job.cc
Changyu Bi 1c7652fcef Introduce a WriteBatchWithIndex-based implementation of ReadOnlyMemTable (#13123)
Summary:
introduce the class WBWIMemTable that implements ReadOnlyMemTable interface with data stored in a WriteBatchWithIndex object.

This PR implements the main read path: Get, MultiGet and Iterator. It only supports Put, Delete and SingleDelete operations for now. All the keys in the WBWIMemTable will be assigned a global sequence number through WBWIMemTable::SetGlobalSequenceNumber().

Planned follow up PRs:
- Create WBWIMemTable with a transaction's WBWI and ingest it into a DB during Transaction::Commit()
- Support for Merge. This will be more complicated since we can have multiple updates with the same user key for Merge.
- Support for other operations like WideColumn and other ReadOnlyMemTable methods.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/13123

Test Plan: * A mini-stress test for the read path is added as a new unit test

Reviewed By: jowlyzhang

Differential Revision: D65633419

Pulled By: cbi42

fbshipit-source-id: 0684fe47260b41f51ca39c300eb72ca5bc9c5a3b
2024-11-12 09:27:11 -08:00

1319 lines
53 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/external_sst_file_ingestion_job.h"
#include <algorithm>
#include <cinttypes>
#include <string>
#include <unordered_set>
#include <vector>
#include "db/db_impl/db_impl.h"
#include "db/version_edit.h"
#include "file/file_util.h"
#include "file/random_access_file_reader.h"
#include "logging/logging.h"
#include "table/merging_iterator.h"
#include "table/sst_file_writer_collectors.h"
#include "table/table_builder.h"
#include "table/unique_id_impl.h"
#include "test_util/sync_point.h"
#include "util/udt_util.h"
namespace ROCKSDB_NAMESPACE {
Status ExternalSstFileIngestionJob::Prepare(
const std::vector<std::string>& external_files_paths,
const std::vector<std::string>& files_checksums,
const std::vector<std::string>& files_checksum_func_names,
const Temperature& file_temperature, uint64_t next_file_number,
SuperVersion* sv) {
Status status;
// Read the information of files we are ingesting
for (const std::string& file_path : external_files_paths) {
IngestedFileInfo file_to_ingest;
// For temperature, first assume it matches provided hint
file_to_ingest.file_temperature = file_temperature;
status =
GetIngestedFileInfo(file_path, next_file_number++, &file_to_ingest, sv);
if (!status.ok()) {
return status;
}
// Files generated in another DB or CF may have a different column family
// ID, so we let it pass here.
if (file_to_ingest.cf_id !=
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily &&
file_to_ingest.cf_id != cfd_->GetID() &&
!ingestion_options_.allow_db_generated_files) {
return Status::InvalidArgument(
"External file column family id don't match");
}
if (file_to_ingest.num_entries == 0 &&
file_to_ingest.num_range_deletions == 0) {
return Status::InvalidArgument("File contain no entries");
}
if (!file_to_ingest.smallest_internal_key.Valid() ||
!file_to_ingest.largest_internal_key.Valid()) {
return Status::Corruption("Generated table have corrupted keys");
}
files_to_ingest_.emplace_back(std::move(file_to_ingest));
}
auto num_files = files_to_ingest_.size();
if (num_files == 0) {
return Status::InvalidArgument("The list of files is empty");
} else if (num_files > 1) {
// Verify that passed files don't have overlapping ranges
autovector<const IngestedFileInfo*> sorted_files;
for (size_t i = 0; i < num_files; i++) {
sorted_files.push_back(&files_to_ingest_[i]);
}
std::sort(sorted_files.begin(), sorted_files.end(), file_range_checker_);
for (size_t i = 0; i + 1 < num_files; i++) {
if (file_range_checker_.OverlapsWithPrev(sorted_files[i],
sorted_files[i + 1],
/* ranges_sorted= */ true)) {
files_overlap_ = true;
break;
}
}
}
if (ingestion_options_.ingest_behind && files_overlap_) {
return Status::NotSupported(
"Files with overlapping ranges cannot be ingested with ingestion "
"behind mode.");
}
// Overlapping files need at least two different sequence numbers. If settings
// disables global seqno, ingestion will fail anyway, so fail fast in prepare.
if (!ingestion_options_.allow_global_seqno && files_overlap_) {
return Status::InvalidArgument(
"Global seqno is required, but disabled (because external files key "
"range overlaps).");
}
if (ucmp_->timestamp_size() > 0 && files_overlap_) {
return Status::NotSupported(
"Files with overlapping ranges cannot be ingested to column "
"family with user-defined timestamp enabled.");
}
// Copy/Move external files into DB
std::unordered_set<size_t> ingestion_path_ids;
for (IngestedFileInfo& f : files_to_ingest_) {
f.copy_file = false;
const std::string path_outside_db = f.external_file_path;
const std::string path_inside_db = TableFileName(
cfd_->ioptions()->cf_paths, f.fd.GetNumber(), f.fd.GetPathId());
if (ingestion_options_.move_files || ingestion_options_.link_files) {
status =
fs_->LinkFile(path_outside_db, path_inside_db, IOOptions(), nullptr);
if (status.ok()) {
// It is unsafe to assume application had sync the file and file
// directory before ingest the file. For integrity of RocksDB we need
// to sync the file.
std::unique_ptr<FSWritableFile> file_to_sync;
Status s = fs_->ReopenWritableFile(path_inside_db, env_options_,
&file_to_sync, nullptr);
TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::Prepare:Reopen",
&s);
// Some file systems (especially remote/distributed) don't support
// reopening a file for writing and don't require reopening and
// syncing the file. Ignore the NotSupported error in that case.
if (!s.IsNotSupported()) {
status = s;
if (status.ok()) {
TEST_SYNC_POINT(
"ExternalSstFileIngestionJob::BeforeSyncIngestedFile");
status = SyncIngestedFile(file_to_sync.get());
TEST_SYNC_POINT(
"ExternalSstFileIngestionJob::AfterSyncIngestedFile");
if (!status.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to sync ingested file %s: %s",
path_inside_db.c_str(), status.ToString().c_str());
}
}
}
} else if (status.IsNotSupported() &&
ingestion_options_.failed_move_fall_back_to_copy) {
// Original file is on a different FS, use copy instead of hard linking.
f.copy_file = true;
ROCKS_LOG_INFO(db_options_.info_log,
"Tried to link file %s but it's not supported : %s",
path_outside_db.c_str(), status.ToString().c_str());
}
} else {
f.copy_file = true;
}
if (f.copy_file) {
TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::Prepare:CopyFile",
nullptr);
// Always determining the destination temperature from the ingested-to
// level would be difficult because in general we only find out the level
// ingested to later, during Run().
// However, we can guarantee "last level" temperature for when the user
// requires ingestion to the last level.
Temperature dst_temp =
(ingestion_options_.ingest_behind ||
ingestion_options_.fail_if_not_bottommost_level)
? sv->mutable_cf_options.last_level_temperature
: sv->mutable_cf_options.default_write_temperature;
// Note: CopyFile also syncs the new file.
status = CopyFile(fs_.get(), path_outside_db, f.file_temperature,
path_inside_db, dst_temp, 0, db_options_.use_fsync,
io_tracer_);
// The destination of the copy will be ingested
f.file_temperature = dst_temp;
} else {
// Note: we currently assume that linking files does not cross
// temperatures, so no need to change f.file_temperature
}
TEST_SYNC_POINT("ExternalSstFileIngestionJob::Prepare:FileAdded");
if (!status.ok()) {
break;
}
f.internal_file_path = path_inside_db;
// Initialize the checksum information of ingested files.
f.file_checksum = kUnknownFileChecksum;
f.file_checksum_func_name = kUnknownFileChecksumFuncName;
ingestion_path_ids.insert(f.fd.GetPathId());
}
TEST_SYNC_POINT("ExternalSstFileIngestionJob::BeforeSyncDir");
if (status.ok()) {
for (auto path_id : ingestion_path_ids) {
status = directories_->GetDataDir(path_id)->FsyncWithDirOptions(
IOOptions(), nullptr,
DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced));
if (!status.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to sync directory %" ROCKSDB_PRIszt
" while ingest file: %s",
path_id, status.ToString().c_str());
break;
}
}
}
TEST_SYNC_POINT("ExternalSstFileIngestionJob::AfterSyncDir");
// Generate and check the sst file checksum. Note that, if
// IngestExternalFileOptions::write_global_seqno is true, we will not update
// the checksum information in the files_to_ingests_ here, since the file is
// updated with the new global_seqno. After global_seqno is updated, DB will
// generate the new checksum and store it in the Manifest. In all other cases
// if ingestion_options_.write_global_seqno == true and
// verify_file_checksum is false, we only check the checksum function name.
if (status.ok() && db_options_.file_checksum_gen_factory != nullptr) {
if (ingestion_options_.verify_file_checksum == false &&
files_checksums.size() == files_to_ingest_.size() &&
files_checksum_func_names.size() == files_to_ingest_.size()) {
// Only when verify_file_checksum == false and the checksum for ingested
// files are provided, DB will use the provided checksum and does not
// generate the checksum for ingested files.
need_generate_file_checksum_ = false;
} else {
need_generate_file_checksum_ = true;
}
FileChecksumGenContext gen_context;
std::unique_ptr<FileChecksumGenerator> file_checksum_gen =
db_options_.file_checksum_gen_factory->CreateFileChecksumGenerator(
gen_context);
std::vector<std::string> generated_checksums;
std::vector<std::string> generated_checksum_func_names;
// Step 1: generate the checksum for ingested sst file.
if (need_generate_file_checksum_) {
for (size_t i = 0; i < files_to_ingest_.size(); i++) {
std::string generated_checksum;
std::string generated_checksum_func_name;
std::string requested_checksum_func_name;
// TODO: rate limit file reads for checksum calculation during file
// ingestion.
// TODO: plumb Env::IOActivity
ReadOptions ro;
IOStatus io_s = GenerateOneFileChecksum(
fs_.get(), files_to_ingest_[i].internal_file_path,
db_options_.file_checksum_gen_factory.get(),
requested_checksum_func_name, &generated_checksum,
&generated_checksum_func_name,
ingestion_options_.verify_checksums_readahead_size,
db_options_.allow_mmap_reads, io_tracer_,
db_options_.rate_limiter.get(), ro, db_options_.stats,
db_options_.clock);
if (!io_s.ok()) {
status = io_s;
ROCKS_LOG_WARN(db_options_.info_log,
"Sst file checksum generation of file: %s failed: %s",
files_to_ingest_[i].internal_file_path.c_str(),
status.ToString().c_str());
break;
}
if (ingestion_options_.write_global_seqno == false) {
files_to_ingest_[i].file_checksum = generated_checksum;
files_to_ingest_[i].file_checksum_func_name =
generated_checksum_func_name;
}
generated_checksums.push_back(generated_checksum);
generated_checksum_func_names.push_back(generated_checksum_func_name);
}
}
// Step 2: based on the verify_file_checksum and ingested checksum
// information, do the verification.
if (status.ok()) {
if (files_checksums.size() == files_to_ingest_.size() &&
files_checksum_func_names.size() == files_to_ingest_.size()) {
// Verify the checksum and checksum function name.
if (ingestion_options_.verify_file_checksum) {
for (size_t i = 0; i < files_to_ingest_.size(); i++) {
if (files_checksum_func_names[i] !=
generated_checksum_func_names[i]) {
status = Status::InvalidArgument(
"Checksum function name does not match with the checksum "
"function name of this DB");
ROCKS_LOG_WARN(
db_options_.info_log,
"Sst file checksum verification of file: %s failed: %s",
external_files_paths[i].c_str(), status.ToString().c_str());
break;
}
if (files_checksums[i] != generated_checksums[i]) {
status = Status::Corruption(
"Ingested checksum does not match with the generated "
"checksum");
ROCKS_LOG_WARN(
db_options_.info_log,
"Sst file checksum verification of file: %s failed: %s",
files_to_ingest_[i].internal_file_path.c_str(),
status.ToString().c_str());
break;
}
}
} else {
// If verify_file_checksum is not enabled, we only verify the
// checksum function name. If it does not match, fail the ingestion.
// If matches, we trust the ingested checksum information and store
// in the Manifest.
for (size_t i = 0; i < files_to_ingest_.size(); i++) {
if (files_checksum_func_names[i] != file_checksum_gen->Name()) {
status = Status::InvalidArgument(
"Checksum function name does not match with the checksum "
"function name of this DB");
ROCKS_LOG_WARN(
db_options_.info_log,
"Sst file checksum verification of file: %s failed: %s",
external_files_paths[i].c_str(), status.ToString().c_str());
break;
}
files_to_ingest_[i].file_checksum = files_checksums[i];
files_to_ingest_[i].file_checksum_func_name =
files_checksum_func_names[i];
}
}
} else if (files_checksums.size() != files_checksum_func_names.size() ||
files_checksums.size() != 0) {
// The checksum or checksum function name vector are not both empty
// and they are incomplete.
status = Status::InvalidArgument(
"The checksum information of ingested sst files are nonempty and "
"the size of checksums or the size of the checksum function "
"names "
"does not match with the number of ingested sst files");
ROCKS_LOG_WARN(
db_options_.info_log,
"The ingested sst files checksum information is incomplete: %s",
status.ToString().c_str());
}
}
}
if (status.ok()) {
DivideInputFilesIntoBatches();
}
return status;
}
void ExternalSstFileIngestionJob::DivideInputFilesIntoBatches() {
if (!files_overlap_) {
// No overlap, treat as one batch without the need of tracking overall batch
// range.
file_batches_to_ingest_.emplace_back(/* _track_batch_range= */ false);
for (auto& file : files_to_ingest_) {
file_batches_to_ingest_.back().AddFile(&file, file_range_checker_);
}
return;
}
file_batches_to_ingest_.emplace_back(/* _track_batch_range= */ true);
for (auto& file : files_to_ingest_) {
if (file_range_checker_.OverlapsWithPrev(&file_batches_to_ingest_.back(),
&file,
/* ranges_sorted= */ false)) {
file_batches_to_ingest_.emplace_back(/* _track_batch_range= */ true);
}
file_batches_to_ingest_.back().AddFile(&file, file_range_checker_);
}
}
Status ExternalSstFileIngestionJob::NeedsFlush(bool* flush_needed,
SuperVersion* super_version) {
size_t n = files_to_ingest_.size();
autovector<UserKeyRange> ranges;
ranges.reserve(n);
for (const IngestedFileInfo& file_to_ingest : files_to_ingest_) {
ranges.emplace_back(file_to_ingest.start_ukey, file_to_ingest.limit_ukey);
}
Status status = cfd_->RangesOverlapWithMemtables(
ranges, super_version, db_options_.allow_data_in_errors, flush_needed);
if (status.ok() && *flush_needed) {
if (!ingestion_options_.allow_blocking_flush) {
status = Status::InvalidArgument("External file requires flush");
}
if (ucmp_->timestamp_size() > 0) {
status = Status::InvalidArgument(
"Column family enables user-defined timestamps, please make "
"sure the key range (without timestamp) of external file does not "
"overlap with key range in the memtables.");
}
}
return status;
}
// REQUIRES: we have become the only writer by entering both write_thread_ and
// nonmem_write_thread_
Status ExternalSstFileIngestionJob::Run() {
SuperVersion* super_version = cfd_->GetSuperVersion();
// If column family is flushed after Prepare and before Run, we should have a
// specific state of Memtables. The mutable Memtable should be empty, and the
// immutable Memtable list should be empty.
if (flushed_before_run_ && (super_version->imm->NumNotFlushed() != 0 ||
!super_version->mem->IsEmpty())) {
return Status::TryAgain(
"Inconsistent memtable state detected when flushed before run.");
}
Status status;
#ifndef NDEBUG
// We should never run the job with a memtable that is overlapping
// with the files we are ingesting
bool need_flush = false;
status = NeedsFlush(&need_flush, super_version);
if (!status.ok()) {
return status;
}
if (need_flush) {
return Status::TryAgain("need_flush");
}
assert(status.ok() && need_flush == false);
#endif
bool force_global_seqno = false;
if (ingestion_options_.snapshot_consistency && !db_snapshots_->empty()) {
// We need to assign a global sequence number to all the files even
// if the don't overlap with any ranges since we have snapshots
force_global_seqno = true;
}
// It is safe to use this instead of LastAllocatedSequence since we are
// the only active writer, and hence they are equal
SequenceNumber last_seqno = versions_->LastSequence();
edit_.SetColumnFamily(cfd_->GetID());
// The levels that the files will be ingested into
std::optional<int> prev_batch_uppermost_level;
for (auto& batch : file_batches_to_ingest_) {
int batch_uppermost_level = 0;
status = AssignLevelsForOneBatch(batch, super_version, force_global_seqno,
&last_seqno, &batch_uppermost_level,
prev_batch_uppermost_level);
if (!status.ok()) {
return status;
}
prev_batch_uppermost_level = batch_uppermost_level;
}
CreateEquivalentFileIngestingCompactions();
return status;
}
Status ExternalSstFileIngestionJob::AssignLevelsForOneBatch(
FileBatchInfo& batch, SuperVersion* super_version, bool force_global_seqno,
SequenceNumber* last_seqno, int* batch_uppermost_level,
std::optional<int> prev_batch_uppermost_level) {
Status status;
assert(batch_uppermost_level);
*batch_uppermost_level = std::numeric_limits<int>::max();
for (IngestedFileInfo* file : batch.files) {
assert(file);
SequenceNumber assigned_seqno = 0;
if (ingestion_options_.ingest_behind) {
status = CheckLevelForIngestedBehindFile(file);
} else {
status = AssignLevelAndSeqnoForIngestedFile(
super_version, force_global_seqno, cfd_->ioptions()->compaction_style,
*last_seqno, file, &assigned_seqno, prev_batch_uppermost_level);
}
// Modify the smallest/largest internal key to include the sequence number
// that we just learned. Only overwrite sequence number zero. There could
// be a nonzero sequence number already to indicate a range tombstone's
// exclusive endpoint.
ParsedInternalKey smallest_parsed, largest_parsed;
if (status.ok()) {
status = ParseInternalKey(*(file->smallest_internal_key.rep()),
&smallest_parsed, false /* log_err_key */);
}
if (status.ok()) {
status = ParseInternalKey(*(file->largest_internal_key.rep()),
&largest_parsed, false /* log_err_key */);
}
if (!status.ok()) {
return status;
}
if (smallest_parsed.sequence == 0 && assigned_seqno != 0) {
UpdateInternalKey(file->smallest_internal_key.rep(), assigned_seqno,
smallest_parsed.type);
}
if (largest_parsed.sequence == 0 && assigned_seqno != 0) {
UpdateInternalKey(file->largest_internal_key.rep(), assigned_seqno,
largest_parsed.type);
}
status = AssignGlobalSeqnoForIngestedFile(file, assigned_seqno);
if (!status.ok()) {
return status;
}
TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::Run",
&assigned_seqno);
assert(assigned_seqno == 0 || assigned_seqno == *last_seqno + 1);
if (assigned_seqno > *last_seqno) {
*last_seqno = assigned_seqno;
++consumed_seqno_count_;
}
status = GenerateChecksumForIngestedFile(file);
if (!status.ok()) {
return status;
}
// We use the import time as the ancester time. This is the time the data
// is written to the database.
int64_t temp_current_time = 0;
uint64_t current_time = kUnknownFileCreationTime;
uint64_t oldest_ancester_time = kUnknownOldestAncesterTime;
if (clock_->GetCurrentTime(&temp_current_time).ok()) {
current_time = oldest_ancester_time =
static_cast<uint64_t>(temp_current_time);
}
uint64_t tail_size = 0;
bool contain_no_data_blocks = file->table_properties.num_entries > 0 &&
(file->table_properties.num_entries ==
file->table_properties.num_range_deletions);
if (file->table_properties.tail_start_offset > 0 ||
contain_no_data_blocks) {
uint64_t file_size = file->fd.GetFileSize();
assert(file->table_properties.tail_start_offset <= file_size);
tail_size = file_size - file->table_properties.tail_start_offset;
}
bool marked_for_compaction =
file->table_properties.num_range_deletions == 1 &&
(file->table_properties.num_entries ==
file->table_properties.num_range_deletions);
FileMetaData f_metadata(
file->fd.GetNumber(), file->fd.GetPathId(), file->fd.GetFileSize(),
file->smallest_internal_key, file->largest_internal_key,
file->assigned_seqno, file->assigned_seqno, false,
file->file_temperature, kInvalidBlobFileNumber, oldest_ancester_time,
current_time,
ingestion_options_.ingest_behind
? kReservedEpochNumberForFileIngestedBehind
: cfd_->NewEpochNumber(),
file->file_checksum, file->file_checksum_func_name, file->unique_id, 0,
tail_size, file->user_defined_timestamps_persisted);
f_metadata.temperature = file->file_temperature;
f_metadata.marked_for_compaction = marked_for_compaction;
edit_.AddFile(file->picked_level, f_metadata);
*batch_uppermost_level =
std::min(*batch_uppermost_level, file->picked_level);
}
return Status::OK();
}
void ExternalSstFileIngestionJob::CreateEquivalentFileIngestingCompactions() {
// A map from output level to input of compactions equivalent to this
// ingestion job.
// TODO: simplify below logic to creating compaction per ingested file
// instead of per output level, once we figure out how to treat ingested files
// with adjacent range deletion tombstones to same output level in the same
// job as non-overlapping compactions.
std::map<int, CompactionInputFiles>
output_level_to_file_ingesting_compaction_input;
for (const auto& pair : edit_.GetNewFiles()) {
int output_level = pair.first;
const FileMetaData& f_metadata = pair.second;
CompactionInputFiles& input =
output_level_to_file_ingesting_compaction_input[output_level];
if (input.files.empty()) {
// Treat the source level of ingested files to be level 0
input.level = 0;
}
compaction_input_metdatas_.push_back(new FileMetaData(f_metadata));
input.files.push_back(compaction_input_metdatas_.back());
}
for (const auto& pair : output_level_to_file_ingesting_compaction_input) {
int output_level = pair.first;
const CompactionInputFiles& input = pair.second;
const auto& mutable_cf_options = *(cfd_->GetLatestMutableCFOptions());
file_ingesting_compactions_.push_back(new Compaction(
cfd_->current()->storage_info(), *cfd_->ioptions(), mutable_cf_options,
mutable_db_options_, {input}, output_level,
/* output file size limit not applicable */
MaxFileSizeForLevel(mutable_cf_options, output_level,
cfd_->ioptions()->compaction_style),
LLONG_MAX /* max compaction bytes, not applicable */,
0 /* output path ID, not applicable */, mutable_cf_options.compression,
mutable_cf_options.compression_opts,
mutable_cf_options.default_write_temperature,
0 /* max_subcompaction, not applicable */,
{} /* grandparents, not applicable */,
std::nullopt /* earliest_snapshot */, nullptr /* snapshot_checker */,
false /* is manual */, "" /* trim_ts */, -1 /* score, not applicable */,
false /* is deletion compaction, not applicable */,
files_overlap_ /* l0_files_might_overlap, not applicable */,
CompactionReason::kExternalSstIngestion));
}
}
void ExternalSstFileIngestionJob::RegisterRange() {
for (const auto& c : file_ingesting_compactions_) {
cfd_->compaction_picker()->RegisterCompaction(c);
}
}
void ExternalSstFileIngestionJob::UnregisterRange() {
for (const auto& c : file_ingesting_compactions_) {
cfd_->compaction_picker()->UnregisterCompaction(c);
delete c;
}
file_ingesting_compactions_.clear();
for (const auto& f : compaction_input_metdatas_) {
delete f;
}
compaction_input_metdatas_.clear();
}
void ExternalSstFileIngestionJob::UpdateStats() {
// Update internal stats for new ingested files
uint64_t total_keys = 0;
uint64_t total_l0_files = 0;
uint64_t total_time = clock_->NowMicros() - job_start_time_;
EventLoggerStream stream = event_logger_->Log();
stream << "event"
<< "ingest_finished";
stream << "files_ingested";
stream.StartArray();
for (IngestedFileInfo& f : files_to_ingest_) {
InternalStats::CompactionStats stats(
CompactionReason::kExternalSstIngestion, 1);
stats.micros = total_time;
// If actual copy occurred for this file, then we need to count the file
// size as the actual bytes written. If the file was linked, then we ignore
// the bytes written for file metadata.
// TODO (yanqin) maybe account for file metadata bytes for exact accuracy?
if (f.copy_file) {
stats.bytes_written = f.fd.GetFileSize();
} else {
stats.bytes_moved = f.fd.GetFileSize();
}
stats.num_output_files = 1;
cfd_->internal_stats()->AddCompactionStats(f.picked_level,
Env::Priority::USER, stats);
cfd_->internal_stats()->AddCFStats(InternalStats::BYTES_INGESTED_ADD_FILE,
f.fd.GetFileSize());
total_keys += f.num_entries;
if (f.picked_level == 0) {
total_l0_files += 1;
}
ROCKS_LOG_INFO(
db_options_.info_log,
"[AddFile] External SST file %s was ingested in L%d with path %s "
"(global_seqno=%" PRIu64 ")\n",
f.external_file_path.c_str(), f.picked_level,
f.internal_file_path.c_str(), f.assigned_seqno);
stream << "file" << f.internal_file_path << "level" << f.picked_level;
}
stream.EndArray();
stream << "lsm_state";
stream.StartArray();
auto vstorage = cfd_->current()->storage_info();
for (int level = 0; level < vstorage->num_levels(); ++level) {
stream << vstorage->NumLevelFiles(level);
}
stream.EndArray();
cfd_->internal_stats()->AddCFStats(InternalStats::INGESTED_NUM_KEYS_TOTAL,
total_keys);
cfd_->internal_stats()->AddCFStats(InternalStats::INGESTED_NUM_FILES_TOTAL,
files_to_ingest_.size());
cfd_->internal_stats()->AddCFStats(
InternalStats::INGESTED_LEVEL0_NUM_FILES_TOTAL, total_l0_files);
}
void ExternalSstFileIngestionJob::Cleanup(const Status& status) {
IOOptions io_opts;
if (!status.ok()) {
// We failed to add the files to the database
// remove all the files we copied
DeleteInternalFiles();
consumed_seqno_count_ = 0;
files_overlap_ = false;
} else if (status.ok() && ingestion_options_.move_files) {
// The files were moved and added successfully, remove original file links
for (IngestedFileInfo& f : files_to_ingest_) {
Status s = fs_->DeleteFile(f.external_file_path, io_opts, nullptr);
if (!s.ok()) {
ROCKS_LOG_WARN(
db_options_.info_log,
"%s was added to DB successfully but failed to remove original "
"file link : %s",
f.external_file_path.c_str(), s.ToString().c_str());
}
}
}
}
void ExternalSstFileIngestionJob::DeleteInternalFiles() {
IOOptions io_opts;
for (IngestedFileInfo& f : files_to_ingest_) {
if (f.internal_file_path.empty()) {
continue;
}
Status s = fs_->DeleteFile(f.internal_file_path, io_opts, nullptr);
if (!s.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"AddFile() clean up for file %s failed : %s",
f.internal_file_path.c_str(), s.ToString().c_str());
}
}
}
Status ExternalSstFileIngestionJob::ResetTableReader(
const std::string& external_file, uint64_t new_file_number,
bool user_defined_timestamps_persisted, SuperVersion* sv,
IngestedFileInfo* file_to_ingest,
std::unique_ptr<TableReader>* table_reader) {
std::unique_ptr<FSRandomAccessFile> sst_file;
FileOptions fo{env_options_};
fo.temperature = file_to_ingest->file_temperature;
Status status =
fs_->NewRandomAccessFile(external_file, fo, &sst_file, nullptr);
if (!status.ok()) {
return status;
}
Temperature updated_temp = sst_file->GetTemperature();
if (updated_temp != Temperature::kUnknown &&
updated_temp != file_to_ingest->file_temperature) {
// The hint was missing or wrong. Track temperature reported by storage.
file_to_ingest->file_temperature = updated_temp;
}
std::unique_ptr<RandomAccessFileReader> sst_file_reader(
new RandomAccessFileReader(std::move(sst_file), external_file,
nullptr /*Env*/, io_tracer_));
table_reader->reset();
ReadOptions ro;
ro.fill_cache = ingestion_options_.fill_cache;
status = sv->mutable_cf_options.table_factory->NewTableReader(
ro,
TableReaderOptions(
*cfd_->ioptions(), sv->mutable_cf_options.prefix_extractor,
env_options_, cfd_->internal_comparator(),
sv->mutable_cf_options.block_protection_bytes_per_key,
/*skip_filters*/ false, /*immortal*/ false,
/*force_direct_prefetch*/ false, /*level*/ -1,
/*block_cache_tracer*/ nullptr,
/*max_file_size_for_l0_meta_pin*/ 0, versions_->DbSessionId(),
/*cur_file_num*/ new_file_number,
/* unique_id */ {}, /* largest_seqno */ 0,
/* tail_size */ 0, user_defined_timestamps_persisted),
std::move(sst_file_reader), file_to_ingest->file_size, table_reader,
// No need to prefetch index/filter if caching is not needed.
/*prefetch_index_and_filter_in_cache=*/ingestion_options_.fill_cache);
return status;
}
Status ExternalSstFileIngestionJob::SanityCheckTableProperties(
const std::string& external_file, uint64_t new_file_number,
SuperVersion* sv, IngestedFileInfo* file_to_ingest,
std::unique_ptr<TableReader>* table_reader) {
// Get the external file properties
auto props = table_reader->get()->GetTableProperties();
assert(props.get());
const auto& uprops = props->user_collected_properties;
// Get table version
auto version_iter = uprops.find(ExternalSstFilePropertyNames::kVersion);
if (version_iter == uprops.end()) {
assert(!SstFileWriter::CreatedBySstFileWriter(*props));
if (!ingestion_options_.allow_db_generated_files) {
return Status::Corruption("External file version not found");
} else {
// 0 is special version for when a file from live DB does not have the
// version table property
file_to_ingest->version = 0;
}
} else {
assert(SstFileWriter::CreatedBySstFileWriter(*props));
file_to_ingest->version = DecodeFixed32(version_iter->second.c_str());
}
auto seqno_iter = uprops.find(ExternalSstFilePropertyNames::kGlobalSeqno);
if (file_to_ingest->version == 2) {
// version 2 imply that we have global sequence number
if (seqno_iter == uprops.end()) {
return Status::Corruption(
"External file global sequence number not found");
}
// Set the global sequence number
file_to_ingest->original_seqno = DecodeFixed64(seqno_iter->second.c_str());
if (props->external_sst_file_global_seqno_offset == 0) {
file_to_ingest->global_seqno_offset = 0;
return Status::Corruption("Was not able to find file global seqno field");
}
file_to_ingest->global_seqno_offset =
static_cast<size_t>(props->external_sst_file_global_seqno_offset);
} else if (file_to_ingest->version == 1) {
// SST file V1 should not have global seqno field
assert(seqno_iter == uprops.end());
file_to_ingest->original_seqno = 0;
if (ingestion_options_.allow_blocking_flush ||
ingestion_options_.allow_global_seqno) {
return Status::InvalidArgument(
"External SST file V1 does not support global seqno");
}
} else if (file_to_ingest->version == 0) {
// allow_db_generated_files is true
assert(seqno_iter == uprops.end());
file_to_ingest->original_seqno = 0;
file_to_ingest->global_seqno_offset = 0;
} else {
return Status::InvalidArgument("External file version " +
std::to_string(file_to_ingest->version) +
" is not supported");
}
file_to_ingest->cf_id = static_cast<uint32_t>(props->column_family_id);
// This assignment works fine even though `table_reader` may later be reset,
// since that will not affect how table properties are parsed, and this
// assignment is making a copy.
file_to_ingest->table_properties = *props;
// Get number of entries in table
file_to_ingest->num_entries = props->num_entries;
file_to_ingest->num_range_deletions = props->num_range_deletions;
// Validate table properties related to comparator name and user defined
// timestamps persisted flag.
file_to_ingest->user_defined_timestamps_persisted =
static_cast<bool>(props->user_defined_timestamps_persisted);
bool mark_sst_file_has_no_udt = false;
Status s = ValidateUserDefinedTimestampsOptions(
cfd_->user_comparator(), props->comparator_name,
cfd_->ioptions()->persist_user_defined_timestamps,
file_to_ingest->user_defined_timestamps_persisted,
&mark_sst_file_has_no_udt);
if (s.ok() && mark_sst_file_has_no_udt) {
// A column family that enables user-defined timestamps in Memtable only
// feature can also ingest external files created by a setting that disables
// user-defined timestamps. In that case, we need to re-mark the
// user_defined_timestamps_persisted flag for the file.
file_to_ingest->user_defined_timestamps_persisted = false;
} else if (!s.ok()) {
return s;
}
// `TableReader` is initialized with `user_defined_timestamps_persisted` flag
// to be true. If its value changed to false after this sanity check, we
// need to reset the `TableReader`.
if (ucmp_->timestamp_size() > 0 &&
!file_to_ingest->user_defined_timestamps_persisted) {
s = ResetTableReader(external_file, new_file_number,
file_to_ingest->user_defined_timestamps_persisted, sv,
file_to_ingest, table_reader);
}
return s;
}
Status ExternalSstFileIngestionJob::GetIngestedFileInfo(
const std::string& external_file, uint64_t new_file_number,
IngestedFileInfo* file_to_ingest, SuperVersion* sv) {
file_to_ingest->external_file_path = external_file;
// Get external file size
Status status = fs_->GetFileSize(external_file, IOOptions(),
&file_to_ingest->file_size, nullptr);
if (!status.ok()) {
return status;
}
// Assign FD with number
file_to_ingest->fd =
FileDescriptor(new_file_number, 0, file_to_ingest->file_size);
// Create TableReader for external file
std::unique_ptr<TableReader> table_reader;
// Initially create the `TableReader` with flag
// `user_defined_timestamps_persisted` to be true since that's the most common
// case
status = ResetTableReader(external_file, new_file_number,
/*user_defined_timestamps_persisted=*/true, sv,
file_to_ingest, &table_reader);
if (!status.ok()) {
return status;
}
status = SanityCheckTableProperties(external_file, new_file_number, sv,
file_to_ingest, &table_reader);
if (!status.ok()) {
return status;
}
if (ingestion_options_.verify_checksums_before_ingest) {
// If customized readahead size is needed, we can pass a user option
// all the way to here. Right now we just rely on the default readahead
// to keep things simple.
// TODO: plumb Env::IOActivity, Env::IOPriority
ReadOptions ro;
ro.readahead_size = ingestion_options_.verify_checksums_readahead_size;
ro.fill_cache = ingestion_options_.fill_cache;
status = table_reader->VerifyChecksum(
ro, TableReaderCaller::kExternalSSTIngestion);
if (!status.ok()) {
return status;
}
}
ParsedInternalKey key;
// TODO: plumb Env::IOActivity, Env::IOPriority
ReadOptions ro;
ro.fill_cache = ingestion_options_.fill_cache;
std::unique_ptr<InternalIterator> iter(table_reader->NewIterator(
ro, sv->mutable_cf_options.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kExternalSSTIngestion));
// Get first (smallest) and last (largest) key from file.
bool allow_data_in_errors = db_options_.allow_data_in_errors;
iter->SeekToFirst();
if (iter->Valid()) {
Status pik_status =
ParseInternalKey(iter->key(), &key, allow_data_in_errors);
if (!pik_status.ok()) {
return Status::Corruption("Corrupted key in external file. ",
pik_status.getState());
}
if (key.sequence != 0) {
return Status::Corruption("External file has non zero sequence number");
}
file_to_ingest->smallest_internal_key.SetFrom(key);
Slice largest;
if (strcmp(sv->mutable_cf_options.table_factory->Name(), "PlainTable") ==
0) {
// PlainTable iterator does not support SeekToLast().
largest = iter->key();
for (; iter->Valid(); iter->Next()) {
if (cfd_->internal_comparator().Compare(iter->key(), largest) > 0) {
largest = iter->key();
}
}
if (!iter->status().ok()) {
return iter->status();
}
} else {
iter->SeekToLast();
if (!iter->Valid()) {
if (iter->status().ok()) {
// The file contains at least 1 key since iter is valid after
// SeekToFirst().
return Status::Corruption("Can not find largest key in sst file");
} else {
return iter->status();
}
}
largest = iter->key();
}
pik_status = ParseInternalKey(largest, &key, allow_data_in_errors);
if (!pik_status.ok()) {
return Status::Corruption("Corrupted key in external file. ",
pik_status.getState());
}
if (key.sequence != 0) {
return Status::Corruption("External file has non zero sequence number");
}
file_to_ingest->largest_internal_key.SetFrom(key);
} else if (!iter->status().ok()) {
return iter->status();
}
SequenceNumber largest_seqno =
table_reader.get()->GetTableProperties()->key_largest_seqno;
// UINT64_MAX means unknown and the file is generated before table property
// `key_largest_seqno` is introduced.
if (largest_seqno != UINT64_MAX && largest_seqno > 0) {
return Status::Corruption(
"External file has non zero largest sequence number " +
std::to_string(largest_seqno));
}
if (ingestion_options_.allow_db_generated_files &&
largest_seqno == UINT64_MAX) {
// Need to verify that all keys have seqno zero.
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
Status pik_status =
ParseInternalKey(iter->key(), &key, allow_data_in_errors);
if (!pik_status.ok()) {
return Status::Corruption("Corrupted key in external file. ",
pik_status.getState());
}
if (key.sequence != 0) {
return Status::NotSupported(
"External file has a key with non zero sequence number.");
}
}
if (!iter->status().ok()) {
return iter->status();
}
}
std::unique_ptr<InternalIterator> range_del_iter(
table_reader->NewRangeTombstoneIterator(ro));
// We may need to adjust these key bounds, depending on whether any range
// deletion tombstones extend past them.
if (range_del_iter != nullptr) {
for (range_del_iter->SeekToFirst(); range_del_iter->Valid();
range_del_iter->Next()) {
Status pik_status =
ParseInternalKey(range_del_iter->key(), &key, allow_data_in_errors);
if (!pik_status.ok()) {
return Status::Corruption("Corrupted key in external file. ",
pik_status.getState());
}
if (key.sequence != 0) {
return Status::Corruption(
"External file has a range deletion with non zero sequence "
"number.");
}
RangeTombstone tombstone(key, range_del_iter->value());
file_range_checker_.MaybeUpdateRange(tombstone.SerializeKey(),
tombstone.SerializeEndKey(),
file_to_ingest);
}
}
const size_t ts_sz = ucmp_->timestamp_size();
Slice smallest = file_to_ingest->smallest_internal_key.user_key();
Slice largest = file_to_ingest->largest_internal_key.user_key();
if (ts_sz > 0) {
AppendUserKeyWithMaxTimestamp(&file_to_ingest->start_ukey, smallest, ts_sz);
AppendUserKeyWithMinTimestamp(&file_to_ingest->limit_ukey, largest, ts_sz);
} else {
file_to_ingest->start_ukey.assign(smallest.data(), smallest.size());
file_to_ingest->limit_ukey.assign(largest.data(), largest.size());
}
auto s =
GetSstInternalUniqueId(file_to_ingest->table_properties.db_id,
file_to_ingest->table_properties.db_session_id,
file_to_ingest->table_properties.orig_file_number,
&(file_to_ingest->unique_id));
if (!s.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to get SST unique id for file %s",
file_to_ingest->internal_file_path.c_str());
file_to_ingest->unique_id = kNullUniqueId64x2;
}
return status;
}
Status ExternalSstFileIngestionJob::AssignLevelAndSeqnoForIngestedFile(
SuperVersion* sv, bool force_global_seqno, CompactionStyle compaction_style,
SequenceNumber last_seqno, IngestedFileInfo* file_to_ingest,
SequenceNumber* assigned_seqno,
std::optional<int> prev_batch_uppermost_level) {
Status status;
*assigned_seqno = 0;
const size_t ts_sz = ucmp_->timestamp_size();
assert(!prev_batch_uppermost_level.has_value() ||
prev_batch_uppermost_level.value() < cfd_->NumberLevels());
bool must_assign_to_l0 = prev_batch_uppermost_level.has_value() &&
prev_batch_uppermost_level.value() == 0;
if (force_global_seqno || files_overlap_ ||
compaction_style == kCompactionStyleFIFO || must_assign_to_l0) {
*assigned_seqno = last_seqno + 1;
if (compaction_style == kCompactionStyleFIFO || must_assign_to_l0) {
assert(ts_sz == 0);
file_to_ingest->picked_level = 0;
if (ingestion_options_.fail_if_not_bottommost_level &&
cfd_->NumberLevels() > 1) {
status = Status::TryAgain(
"Files cannot be ingested to Lmax. Please make sure key range of "
"Lmax does not overlap with files to ingest.");
}
return status;
}
}
bool overlap_with_db = false;
Arena arena;
// TODO: plumb Env::IOActivity, Env::IOPriority
ReadOptions ro;
ro.fill_cache = ingestion_options_.fill_cache;
ro.total_order_seek = true;
int target_level = 0;
auto* vstorage = cfd_->current()->storage_info();
assert(!must_assign_to_l0);
int exclusive_end_level = prev_batch_uppermost_level.has_value()
? prev_batch_uppermost_level.value()
: cfd_->NumberLevels();
for (int lvl = 0; lvl < exclusive_end_level; lvl++) {
if (lvl > 0 && lvl < vstorage->base_level()) {
continue;
}
if (cfd_->RangeOverlapWithCompaction(file_to_ingest->start_ukey,
file_to_ingest->limit_ukey, lvl)) {
// We must use L0 or any level higher than `lvl` to be able to overwrite
// the compaction output keys that we overlap with in this level, We also
// need to assign this file a seqno to overwrite the compaction output
// keys in level `lvl`
overlap_with_db = true;
break;
} else if (vstorage->NumLevelFiles(lvl) > 0) {
bool overlap_with_level = false;
status = sv->current->OverlapWithLevelIterator(
ro, env_options_, file_to_ingest->start_ukey,
file_to_ingest->limit_ukey, lvl, &overlap_with_level);
if (!status.ok()) {
return status;
}
if (overlap_with_level) {
// We must use L0 or any level higher than `lvl` to be able to overwrite
// the keys that we overlap with in this level, We also need to assign
// this file a seqno to overwrite the existing keys in level `lvl`
overlap_with_db = true;
break;
}
}
// We don't overlap with any keys in this level, but we still need to check
// if our file can fit in it
if (IngestedFileFitInLevel(file_to_ingest, lvl)) {
target_level = lvl;
}
}
if (ingestion_options_.fail_if_not_bottommost_level &&
target_level < cfd_->NumberLevels() - 1) {
status = Status::TryAgain(
"Files cannot be ingested to Lmax. Please make sure key range of Lmax "
"and ongoing compaction's output to Lmax"
"does not overlap with files to ingest.");
return status;
}
TEST_SYNC_POINT_CALLBACK(
"ExternalSstFileIngestionJob::AssignLevelAndSeqnoForIngestedFile",
&overlap_with_db);
file_to_ingest->picked_level = target_level;
if (overlap_with_db) {
if (ts_sz > 0) {
status = Status::InvalidArgument(
"Column family enables user-defined timestamps, please make sure the "
"key range (without timestamp) of external file does not overlap "
"with key range (without timestamp) in the db");
return status;
}
if (*assigned_seqno == 0) {
*assigned_seqno = last_seqno + 1;
}
}
if (ingestion_options_.allow_db_generated_files && *assigned_seqno != 0) {
return Status::InvalidArgument(
"An ingested file is assigned to a non-zero sequence number, which is "
"incompatible with ingestion option allow_db_generated_files.");
}
return status;
}
Status ExternalSstFileIngestionJob::CheckLevelForIngestedBehindFile(
IngestedFileInfo* file_to_ingest) {
auto* vstorage = cfd_->current()->storage_info();
// First, check if new files fit in the last level
int last_lvl = cfd_->NumberLevels() - 1;
if (!IngestedFileFitInLevel(file_to_ingest, last_lvl)) {
return Status::InvalidArgument(
"Can't ingest_behind file as it doesn't fit "
"at the last level!");
}
// Second, check if despite allow_ingest_behind=true we still have 0 seqnums
// at some upper level
for (int lvl = 0; lvl < cfd_->NumberLevels() - 1; lvl++) {
for (auto file : vstorage->LevelFiles(lvl)) {
if (file->fd.smallest_seqno == 0) {
return Status::InvalidArgument(
"Can't ingest_behind file as despite allow_ingest_behind=true "
"there are files with 0 seqno in database at upper levels!");
}
}
}
file_to_ingest->picked_level = last_lvl;
return Status::OK();
}
Status ExternalSstFileIngestionJob::AssignGlobalSeqnoForIngestedFile(
IngestedFileInfo* file_to_ingest, SequenceNumber seqno) {
if (file_to_ingest->original_seqno == seqno) {
// This file already have the correct global seqno
return Status::OK();
} else if (!ingestion_options_.allow_global_seqno) {
return Status::InvalidArgument("Global seqno is required, but disabled");
} else if (ingestion_options_.write_global_seqno &&
file_to_ingest->global_seqno_offset == 0) {
return Status::InvalidArgument(
"Trying to set global seqno for a file that don't have a global seqno "
"field");
}
if (ingestion_options_.write_global_seqno) {
// Determine if we can write global_seqno to a given offset of file.
// If the file system does not support random write, then we should not.
// Otherwise we should.
std::unique_ptr<FSRandomRWFile> rwfile;
Status status = fs_->NewRandomRWFile(file_to_ingest->internal_file_path,
env_options_, &rwfile, nullptr);
TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::NewRandomRWFile",
&status);
if (status.ok()) {
FSRandomRWFilePtr fsptr(std::move(rwfile), io_tracer_,
file_to_ingest->internal_file_path);
std::string seqno_val;
PutFixed64(&seqno_val, seqno);
status = fsptr->Write(file_to_ingest->global_seqno_offset, seqno_val,
IOOptions(), nullptr);
if (status.ok()) {
TEST_SYNC_POINT("ExternalSstFileIngestionJob::BeforeSyncGlobalSeqno");
status = SyncIngestedFile(fsptr.get());
TEST_SYNC_POINT("ExternalSstFileIngestionJob::AfterSyncGlobalSeqno");
if (!status.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to sync ingested file %s after writing global "
"sequence number: %s",
file_to_ingest->internal_file_path.c_str(),
status.ToString().c_str());
}
}
if (!status.ok()) {
return status;
}
} else if (!status.IsNotSupported()) {
return status;
}
}
file_to_ingest->assigned_seqno = seqno;
return Status::OK();
}
IOStatus ExternalSstFileIngestionJob::GenerateChecksumForIngestedFile(
IngestedFileInfo* file_to_ingest) {
if (db_options_.file_checksum_gen_factory == nullptr ||
need_generate_file_checksum_ == false ||
ingestion_options_.write_global_seqno == false) {
// If file_checksum_gen_factory is not set, we are not able to generate
// the checksum. if write_global_seqno is false, it means we will use
// file checksum generated during Prepare(). This step will be skipped.
return IOStatus::OK();
}
std::string file_checksum;
std::string file_checksum_func_name;
std::string requested_checksum_func_name;
// TODO: rate limit file reads for checksum calculation during file ingestion.
// TODO: plumb Env::IOActivity
ReadOptions ro;
IOStatus io_s = GenerateOneFileChecksum(
fs_.get(), file_to_ingest->internal_file_path,
db_options_.file_checksum_gen_factory.get(), requested_checksum_func_name,
&file_checksum, &file_checksum_func_name,
ingestion_options_.verify_checksums_readahead_size,
db_options_.allow_mmap_reads, io_tracer_, db_options_.rate_limiter.get(),
ro, db_options_.stats, db_options_.clock);
if (!io_s.ok()) {
return io_s;
}
file_to_ingest->file_checksum = std::move(file_checksum);
file_to_ingest->file_checksum_func_name = std::move(file_checksum_func_name);
return IOStatus::OK();
}
bool ExternalSstFileIngestionJob::IngestedFileFitInLevel(
const IngestedFileInfo* file_to_ingest, int level) {
if (level == 0) {
// Files can always fit in L0
return true;
}
auto* vstorage = cfd_->current()->storage_info();
Slice file_smallest_user_key(file_to_ingest->start_ukey);
Slice file_largest_user_key(file_to_ingest->limit_ukey);
if (vstorage->OverlapInLevel(level, &file_smallest_user_key,
&file_largest_user_key)) {
// File overlap with another files in this level, we cannot
// add it to this level
return false;
}
// File did not overlap with level files, nor compaction output
return true;
}
template <typename TWritableFile>
Status ExternalSstFileIngestionJob::SyncIngestedFile(TWritableFile* file) {
assert(file != nullptr);
if (db_options_.use_fsync) {
return file->Fsync(IOOptions(), nullptr);
} else {
return file->Sync(IOOptions(), nullptr);
}
}
} // namespace ROCKSDB_NAMESPACE