mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-25 22:44:05 +00:00
966be1cc4e
Summary: * JemallocNodumpAllocator was passing a size_t to FastRange32, which could cause compilation errors or warnings (seen with clang) * Fixed the order of arguments to match what would be used with modulo operator (%), for clarity. Fixes https://github.com/facebook/rocksdb/issues/11006 Pull Request resolved: https://github.com/facebook/rocksdb/pull/11707 Test Plan: no functional change, existing tests Reviewed By: ajkr Differential Revision: D48435149 Pulled By: pdillinger fbshipit-source-id: e6e8b107ded4eceda37db20df59985c846a2546b
490 lines
21 KiB
C++
490 lines
21 KiB
C++
// Copyright (c) 2019-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Implementation details of various Bloom filter implementations used in
|
|
// RocksDB. (DynamicBloom is in a separate file for now because it
|
|
// supports concurrent write.)
|
|
|
|
#pragma once
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <cmath>
|
|
|
|
#include "port/port.h" // for PREFETCH
|
|
#include "rocksdb/slice.h"
|
|
#include "util/hash.h"
|
|
|
|
#ifdef __AVX2__
|
|
#include <immintrin.h>
|
|
#endif
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
class BloomMath {
|
|
public:
|
|
// False positive rate of a standard Bloom filter, for given ratio of
|
|
// filter memory bits to added keys, and number of probes per operation.
|
|
// (The false positive rate is effectively independent of scale, assuming
|
|
// the implementation scales OK.)
|
|
static double StandardFpRate(double bits_per_key, int num_probes) {
|
|
// Standard very-good-estimate formula. See
|
|
// https://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives
|
|
return std::pow(1.0 - std::exp(-num_probes / bits_per_key), num_probes);
|
|
}
|
|
|
|
// False positive rate of a "blocked"/"shareded"/"cache-local" Bloom filter,
|
|
// for given ratio of filter memory bits to added keys, number of probes per
|
|
// operation (all within the given block or cache line size), and block or
|
|
// cache line size.
|
|
static double CacheLocalFpRate(double bits_per_key, int num_probes,
|
|
int cache_line_bits) {
|
|
if (bits_per_key <= 0.0) {
|
|
// Fix a discontinuity
|
|
return 1.0;
|
|
}
|
|
double keys_per_cache_line = cache_line_bits / bits_per_key;
|
|
// A reasonable estimate is the average of the FP rates for one standard
|
|
// deviation above and below the mean bucket occupancy. See
|
|
// https://github.com/facebook/rocksdb/wiki/RocksDB-Bloom-Filter#the-math
|
|
double keys_stddev = std::sqrt(keys_per_cache_line);
|
|
double crowded_fp = StandardFpRate(
|
|
cache_line_bits / (keys_per_cache_line + keys_stddev), num_probes);
|
|
double uncrowded_fp = StandardFpRate(
|
|
cache_line_bits / (keys_per_cache_line - keys_stddev), num_probes);
|
|
return (crowded_fp + uncrowded_fp) / 2;
|
|
}
|
|
|
|
// False positive rate of querying a new item against `num_keys` items, all
|
|
// hashed to `fingerprint_bits` bits. (This assumes the fingerprint hashes
|
|
// themselves are stored losslessly. See Section 4 of
|
|
// http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf)
|
|
static double FingerprintFpRate(size_t num_keys, int fingerprint_bits) {
|
|
double inv_fingerprint_space = std::pow(0.5, fingerprint_bits);
|
|
// Base estimate assumes each key maps to a unique fingerprint.
|
|
// Could be > 1 in extreme cases.
|
|
double base_estimate = num_keys * inv_fingerprint_space;
|
|
// To account for potential overlap, we choose between two formulas
|
|
if (base_estimate > 0.0001) {
|
|
// A very good formula assuming we don't construct a floating point
|
|
// number extremely close to 1. Always produces a probability < 1.
|
|
return 1.0 - std::exp(-base_estimate);
|
|
} else {
|
|
// A very good formula when base_estimate is far below 1. (Subtract
|
|
// away the integral-approximated sum that some key has same hash as
|
|
// one coming before it in a list.)
|
|
return base_estimate - (base_estimate * base_estimate * 0.5);
|
|
}
|
|
}
|
|
|
|
// Returns the probably of either of two independent(-ish) events
|
|
// happening, given their probabilities. (This is useful for combining
|
|
// results from StandardFpRate or CacheLocalFpRate with FingerprintFpRate
|
|
// for a hash-efficient Bloom filter's FP rate. See Section 4 of
|
|
// http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf)
|
|
static double IndependentProbabilitySum(double rate1, double rate2) {
|
|
// Use formula that avoids floating point extremely close to 1 if
|
|
// rates are extremely small.
|
|
return rate1 + rate2 - (rate1 * rate2);
|
|
}
|
|
};
|
|
|
|
// A fast, flexible, and accurate cache-local Bloom implementation with
|
|
// SIMD-optimized query performance (currently using AVX2 on Intel). Write
|
|
// performance and non-SIMD read are very good, benefiting from FastRange32
|
|
// used in place of % and single-cycle multiplication on recent processors.
|
|
//
|
|
// Most other SIMD Bloom implementations sacrifice flexibility and/or
|
|
// accuracy by requiring num_probes to be a power of two and restricting
|
|
// where each probe can occur in a cache line. This implementation sacrifices
|
|
// SIMD-optimization for add (might still be possible, especially with AVX512)
|
|
// in favor of allowing any num_probes, not crossing cache line boundary,
|
|
// and accuracy close to theoretical best accuracy for a cache-local Bloom.
|
|
// E.g. theoretical best for 10 bits/key, num_probes=6, and 512-bit bucket
|
|
// (Intel cache line size) is 0.9535% FP rate. This implementation yields
|
|
// about 0.957%. (Compare to LegacyLocalityBloomImpl<false> at 1.138%, or
|
|
// about 0.951% for 1024-bit buckets, cache line size for some ARM CPUs.)
|
|
//
|
|
// This implementation can use a 32-bit hash (let h2 be h1 * 0x9e3779b9) or
|
|
// a 64-bit hash (split into two uint32s). With many millions of keys, the
|
|
// false positive rate associated with using a 32-bit hash can dominate the
|
|
// false positive rate of the underlying filter. At 10 bits/key setting, the
|
|
// inflection point is about 40 million keys, so 32-bit hash is a bad idea
|
|
// with 10s of millions of keys or more.
|
|
//
|
|
// Despite accepting a 64-bit hash, this implementation uses 32-bit fastrange
|
|
// to pick a cache line, which can be faster than 64-bit in some cases.
|
|
// This only hurts accuracy as you get into 10s of GB for a single filter,
|
|
// and accuracy abruptly breaks down at 256GB (2^32 cache lines). Switch to
|
|
// 64-bit fastrange if you need filters so big. ;)
|
|
//
|
|
// Using only a 32-bit input hash within each cache line has negligible
|
|
// impact for any reasonable cache line / bucket size, for arbitrary filter
|
|
// size, and potentially saves intermediate data size in some cases vs.
|
|
// tracking full 64 bits. (Even in an implementation using 64-bit arithmetic
|
|
// to generate indices, I might do the same, as a single multiplication
|
|
// suffices to generate a sufficiently mixed 64 bits from 32 bits.)
|
|
//
|
|
// This implementation is currently tied to Intel cache line size, 64 bytes ==
|
|
// 512 bits. If there's sufficient demand for other cache line sizes, this is
|
|
// a pretty good implementation to extend, but slight performance enhancements
|
|
// are possible with an alternate implementation (probably not very compatible
|
|
// with SIMD):
|
|
// (1) Use rotation in addition to multiplication for remixing
|
|
// (like murmur hash). (Using multiplication alone *slightly* hurts accuracy
|
|
// because lower bits never depend on original upper bits.)
|
|
// (2) Extract more than one bit index from each re-mix. (Only if rotation
|
|
// or similar is part of remix, because otherwise you're making the
|
|
// multiplication-only problem worse.)
|
|
// (3) Re-mix full 64 bit hash, to get maximum number of bit indices per
|
|
// re-mix.
|
|
//
|
|
class FastLocalBloomImpl {
|
|
public:
|
|
// NOTE: this has only been validated to enough accuracy for producing
|
|
// reasonable warnings / user feedback, not for making functional decisions.
|
|
static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes,
|
|
int hash_bits) {
|
|
return BloomMath::IndependentProbabilitySum(
|
|
BloomMath::CacheLocalFpRate(8.0 * bytes / keys, num_probes,
|
|
/*cache line bits*/ 512),
|
|
BloomMath::FingerprintFpRate(keys, hash_bits));
|
|
}
|
|
|
|
static inline int ChooseNumProbes(int millibits_per_key) {
|
|
// Since this implementation can (with AVX2) make up to 8 probes
|
|
// for the same cost, we pick the most accurate num_probes, based
|
|
// on actual tests of the implementation. Note that for higher
|
|
// bits/key, the best choice for cache-local Bloom can be notably
|
|
// smaller than standard bloom, e.g. 9 instead of 11 @ 16 b/k.
|
|
if (millibits_per_key <= 2080) {
|
|
return 1;
|
|
} else if (millibits_per_key <= 3580) {
|
|
return 2;
|
|
} else if (millibits_per_key <= 5100) {
|
|
return 3;
|
|
} else if (millibits_per_key <= 6640) {
|
|
return 4;
|
|
} else if (millibits_per_key <= 8300) {
|
|
return 5;
|
|
} else if (millibits_per_key <= 10070) {
|
|
return 6;
|
|
} else if (millibits_per_key <= 11720) {
|
|
return 7;
|
|
} else if (millibits_per_key <= 14001) {
|
|
// Would be something like <= 13800 but sacrificing *slightly* for
|
|
// more settings using <= 8 probes.
|
|
return 8;
|
|
} else if (millibits_per_key <= 16050) {
|
|
return 9;
|
|
} else if (millibits_per_key <= 18300) {
|
|
return 10;
|
|
} else if (millibits_per_key <= 22001) {
|
|
return 11;
|
|
} else if (millibits_per_key <= 25501) {
|
|
return 12;
|
|
} else if (millibits_per_key > 50000) {
|
|
// Top out at 24 probes (three sets of 8)
|
|
return 24;
|
|
} else {
|
|
// Roughly optimal choices for remaining range
|
|
// e.g.
|
|
// 28000 -> 12, 28001 -> 13
|
|
// 50000 -> 23, 50001 -> 24
|
|
return (millibits_per_key - 1) / 2000 - 1;
|
|
}
|
|
}
|
|
|
|
static inline void AddHash(uint32_t h1, uint32_t h2, uint32_t len_bytes,
|
|
int num_probes, char *data) {
|
|
uint32_t bytes_to_cache_line = FastRange32(h1, len_bytes >> 6) << 6;
|
|
AddHashPrepared(h2, num_probes, data + bytes_to_cache_line);
|
|
}
|
|
|
|
static inline void AddHashPrepared(uint32_t h2, int num_probes,
|
|
char *data_at_cache_line) {
|
|
uint32_t h = h2;
|
|
for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) {
|
|
// 9-bit address within 512 bit cache line
|
|
int bitpos = h >> (32 - 9);
|
|
data_at_cache_line[bitpos >> 3] |= (uint8_t{1} << (bitpos & 7));
|
|
}
|
|
}
|
|
|
|
static inline void PrepareHash(uint32_t h1, uint32_t len_bytes,
|
|
const char *data,
|
|
uint32_t /*out*/ *byte_offset) {
|
|
uint32_t bytes_to_cache_line = FastRange32(h1, len_bytes >> 6) << 6;
|
|
PREFETCH(data + bytes_to_cache_line, 0 /* rw */, 1 /* locality */);
|
|
PREFETCH(data + bytes_to_cache_line + 63, 0 /* rw */, 1 /* locality */);
|
|
*byte_offset = bytes_to_cache_line;
|
|
}
|
|
|
|
static inline bool HashMayMatch(uint32_t h1, uint32_t h2, uint32_t len_bytes,
|
|
int num_probes, const char *data) {
|
|
uint32_t bytes_to_cache_line = FastRange32(h1, len_bytes >> 6) << 6;
|
|
return HashMayMatchPrepared(h2, num_probes, data + bytes_to_cache_line);
|
|
}
|
|
|
|
static inline bool HashMayMatchPrepared(uint32_t h2, int num_probes,
|
|
const char *data_at_cache_line) {
|
|
uint32_t h = h2;
|
|
#ifdef __AVX2__
|
|
int rem_probes = num_probes;
|
|
|
|
// NOTE: For better performance for num_probes in {1, 2, 9, 10, 17, 18,
|
|
// etc.} one can insert specialized code for rem_probes <= 2, bypassing
|
|
// the SIMD code in those cases. There is a detectable but minor overhead
|
|
// applied to other values of num_probes (when not statically determined),
|
|
// but smoother performance curve vs. num_probes. But for now, when
|
|
// in doubt, don't add unnecessary code.
|
|
|
|
// Powers of 32-bit golden ratio, mod 2**32.
|
|
const __m256i multipliers =
|
|
_mm256_setr_epi32(0x00000001, 0x9e3779b9, 0xe35e67b1, 0x734297e9,
|
|
0x35fbe861, 0xdeb7c719, 0x448b211, 0x3459b749);
|
|
|
|
for (;;) {
|
|
// Eight copies of hash
|
|
__m256i hash_vector = _mm256_set1_epi32(h);
|
|
|
|
// Same effect as repeated multiplication by 0x9e3779b9 thanks to
|
|
// associativity of multiplication.
|
|
hash_vector = _mm256_mullo_epi32(hash_vector, multipliers);
|
|
|
|
// Now the top 9 bits of each of the eight 32-bit values in
|
|
// hash_vector are bit addresses for probes within the cache line.
|
|
// While the platform-independent code uses byte addressing (6 bits
|
|
// to pick a byte + 3 bits to pick a bit within a byte), here we work
|
|
// with 32-bit words (4 bits to pick a word + 5 bits to pick a bit
|
|
// within a word) because that works well with AVX2 and is equivalent
|
|
// under little-endian.
|
|
|
|
// Shift each right by 28 bits to get 4-bit word addresses.
|
|
const __m256i word_addresses = _mm256_srli_epi32(hash_vector, 28);
|
|
|
|
// Gather 32-bit values spread over 512 bits by 4-bit address. In
|
|
// essence, we are dereferencing eight pointers within the cache
|
|
// line.
|
|
//
|
|
// Option 1: AVX2 gather (seems to be a little slow - understandable)
|
|
// const __m256i value_vector =
|
|
// _mm256_i32gather_epi32(static_cast<const int
|
|
// *>(data_at_cache_line),
|
|
// word_addresses,
|
|
// /*bytes / i32*/ 4);
|
|
// END Option 1
|
|
// Potentially unaligned as we're not *always* cache-aligned -> loadu
|
|
const __m256i *mm_data =
|
|
reinterpret_cast<const __m256i *>(data_at_cache_line);
|
|
__m256i lower = _mm256_loadu_si256(mm_data);
|
|
__m256i upper = _mm256_loadu_si256(mm_data + 1);
|
|
// Option 2: AVX512VL permute hack
|
|
// Only negligibly faster than Option 3, so not yet worth supporting
|
|
// const __m256i value_vector =
|
|
// _mm256_permutex2var_epi32(lower, word_addresses, upper);
|
|
// END Option 2
|
|
// Option 3: AVX2 permute+blend hack
|
|
// Use lowest three bits to order probing values, as if all from same
|
|
// 256 bit piece.
|
|
lower = _mm256_permutevar8x32_epi32(lower, word_addresses);
|
|
upper = _mm256_permutevar8x32_epi32(upper, word_addresses);
|
|
// Just top 1 bit of address, to select between lower and upper.
|
|
const __m256i upper_lower_selector = _mm256_srai_epi32(hash_vector, 31);
|
|
// Finally: the next 8 probed 32-bit values, in probing sequence order.
|
|
const __m256i value_vector =
|
|
_mm256_blendv_epi8(lower, upper, upper_lower_selector);
|
|
// END Option 3
|
|
|
|
// We might not need to probe all 8, so build a mask for selecting only
|
|
// what we need. (The k_selector(s) could be pre-computed but that
|
|
// doesn't seem to make a noticeable performance difference.)
|
|
const __m256i zero_to_seven = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
|
// Subtract rem_probes from each of those constants
|
|
__m256i k_selector =
|
|
_mm256_sub_epi32(zero_to_seven, _mm256_set1_epi32(rem_probes));
|
|
// Negative after subtract -> use/select
|
|
// Keep only high bit (logical shift right each by 31).
|
|
k_selector = _mm256_srli_epi32(k_selector, 31);
|
|
|
|
// Strip off the 4 bit word address (shift left)
|
|
__m256i bit_addresses = _mm256_slli_epi32(hash_vector, 4);
|
|
// And keep only 5-bit (32 - 27) bit-within-32-bit-word addresses.
|
|
bit_addresses = _mm256_srli_epi32(bit_addresses, 27);
|
|
// Build a bit mask
|
|
const __m256i bit_mask = _mm256_sllv_epi32(k_selector, bit_addresses);
|
|
|
|
// Like ((~value_vector) & bit_mask) == 0)
|
|
bool match = _mm256_testc_si256(value_vector, bit_mask) != 0;
|
|
|
|
// This check first so that it's easy for branch predictor to optimize
|
|
// num_probes <= 8 case, making it free of unpredictable branches.
|
|
if (rem_probes <= 8) {
|
|
return match;
|
|
} else if (!match) {
|
|
return false;
|
|
}
|
|
// otherwise
|
|
// Need another iteration. 0xab25f4c1 == golden ratio to the 8th power
|
|
h *= 0xab25f4c1;
|
|
rem_probes -= 8;
|
|
}
|
|
#else
|
|
for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) {
|
|
// 9-bit address within 512 bit cache line
|
|
int bitpos = h >> (32 - 9);
|
|
if ((data_at_cache_line[bitpos >> 3] & (char(1) << (bitpos & 7))) == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// A legacy Bloom filter implementation with no locality of probes (slow).
|
|
// It uses double hashing to generate a sequence of hash values.
|
|
// Asymptotic analysis is in [Kirsch,Mitzenmacher 2006], but known to have
|
|
// subtle accuracy flaws for practical sizes [Dillinger,Manolios 2004].
|
|
//
|
|
// DO NOT REUSE
|
|
//
|
|
class LegacyNoLocalityBloomImpl {
|
|
public:
|
|
static inline int ChooseNumProbes(int bits_per_key) {
|
|
// We intentionally round down to reduce probing cost a little bit
|
|
int num_probes = static_cast<int>(bits_per_key * 0.69); // 0.69 =~ ln(2)
|
|
if (num_probes < 1) num_probes = 1;
|
|
if (num_probes > 30) num_probes = 30;
|
|
return num_probes;
|
|
}
|
|
|
|
static inline void AddHash(uint32_t h, uint32_t total_bits, int num_probes,
|
|
char *data) {
|
|
const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
|
|
for (int i = 0; i < num_probes; i++) {
|
|
const uint32_t bitpos = h % total_bits;
|
|
data[bitpos / 8] |= (1 << (bitpos % 8));
|
|
h += delta;
|
|
}
|
|
}
|
|
|
|
static inline bool HashMayMatch(uint32_t h, uint32_t total_bits,
|
|
int num_probes, const char *data) {
|
|
const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
|
|
for (int i = 0; i < num_probes; i++) {
|
|
const uint32_t bitpos = h % total_bits;
|
|
if ((data[bitpos / 8] & (1 << (bitpos % 8))) == 0) {
|
|
return false;
|
|
}
|
|
h += delta;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// A legacy Bloom filter implementation with probes local to a single
|
|
// cache line (fast). Because SST files might be transported between
|
|
// platforms, the cache line size is a parameter rather than hard coded.
|
|
// (But if specified as a constant parameter, an optimizing compiler
|
|
// should take advantage of that.)
|
|
//
|
|
// When ExtraRotates is false, this implementation is notably deficient in
|
|
// accuracy. Specifically, it uses double hashing with a 1/512 chance of the
|
|
// increment being zero (when cache line size is 512 bits). Thus, there's a
|
|
// 1/512 chance of probing only one index, which we'd expect to incur about
|
|
// a 1/2 * 1/512 or absolute 0.1% FP rate penalty. More detail at
|
|
// https://github.com/facebook/rocksdb/issues/4120
|
|
//
|
|
// DO NOT REUSE
|
|
//
|
|
template <bool ExtraRotates>
|
|
class LegacyLocalityBloomImpl {
|
|
private:
|
|
static inline uint32_t GetLine(uint32_t h, uint32_t num_lines) {
|
|
uint32_t offset_h = ExtraRotates ? (h >> 11) | (h << 21) : h;
|
|
return offset_h % num_lines;
|
|
}
|
|
|
|
public:
|
|
// NOTE: this has only been validated to enough accuracy for producing
|
|
// reasonable warnings / user feedback, not for making functional decisions.
|
|
static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes) {
|
|
double bits_per_key = 8.0 * bytes / keys;
|
|
double filter_rate = BloomMath::CacheLocalFpRate(bits_per_key, num_probes,
|
|
/*cache line bits*/ 512);
|
|
if (!ExtraRotates) {
|
|
// Good estimate of impact of flaw in index computation.
|
|
// Adds roughly 0.002 around 50 bits/key and 0.001 around 100 bits/key.
|
|
// The + 22 shifts it nicely to fit for lower bits/key.
|
|
filter_rate += 0.1 / (bits_per_key * 0.75 + 22);
|
|
} else {
|
|
// Not yet validated
|
|
assert(false);
|
|
}
|
|
// Always uses 32-bit hash
|
|
double fingerprint_rate = BloomMath::FingerprintFpRate(keys, 32);
|
|
return BloomMath::IndependentProbabilitySum(filter_rate, fingerprint_rate);
|
|
}
|
|
|
|
static inline void AddHash(uint32_t h, uint32_t num_lines, int num_probes,
|
|
char *data, int log2_cache_line_bytes) {
|
|
const int log2_cache_line_bits = log2_cache_line_bytes + 3;
|
|
|
|
char *data_at_offset =
|
|
data + (GetLine(h, num_lines) << log2_cache_line_bytes);
|
|
const uint32_t delta = (h >> 17) | (h << 15);
|
|
for (int i = 0; i < num_probes; ++i) {
|
|
// Mask to bit-within-cache-line address
|
|
const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1);
|
|
data_at_offset[bitpos / 8] |= (1 << (bitpos % 8));
|
|
if (ExtraRotates) {
|
|
h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits));
|
|
}
|
|
h += delta;
|
|
}
|
|
}
|
|
|
|
static inline void PrepareHashMayMatch(uint32_t h, uint32_t num_lines,
|
|
const char *data,
|
|
uint32_t /*out*/ *byte_offset,
|
|
int log2_cache_line_bytes) {
|
|
uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes;
|
|
PREFETCH(data + b, 0 /* rw */, 1 /* locality */);
|
|
PREFETCH(data + b + ((1 << log2_cache_line_bytes) - 1), 0 /* rw */,
|
|
1 /* locality */);
|
|
*byte_offset = b;
|
|
}
|
|
|
|
static inline bool HashMayMatch(uint32_t h, uint32_t num_lines,
|
|
int num_probes, const char *data,
|
|
int log2_cache_line_bytes) {
|
|
uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes;
|
|
return HashMayMatchPrepared(h, num_probes, data + b, log2_cache_line_bytes);
|
|
}
|
|
|
|
static inline bool HashMayMatchPrepared(uint32_t h, int num_probes,
|
|
const char *data_at_offset,
|
|
int log2_cache_line_bytes) {
|
|
const int log2_cache_line_bits = log2_cache_line_bytes + 3;
|
|
|
|
const uint32_t delta = (h >> 17) | (h << 15);
|
|
for (int i = 0; i < num_probes; ++i) {
|
|
// Mask to bit-within-cache-line address
|
|
const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1);
|
|
if (((data_at_offset[bitpos / 8]) & (1 << (bitpos % 8))) == 0) {
|
|
return false;
|
|
}
|
|
if (ExtraRotates) {
|
|
h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits));
|
|
}
|
|
h += delta;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|