rocksdb/table/merger.cc

405 lines
12 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/merger.h"
#include <string>
#include <vector>
#include "db/pinned_iterators_manager.h"
#include "rocksdb/comparator.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "table/internal_iterator.h"
#include "table/iter_heap.h"
#include "table/iterator_wrapper.h"
#include "util/arena.h"
#include "util/autovector.h"
#include "util/heap.h"
#include "util/perf_context_imp.h"
#include "util/stop_watch.h"
#include "util/sync_point.h"
namespace rocksdb {
// Without anonymous namespace here, we fail the warning -Wmissing-prototypes
namespace {
typedef BinaryHeap<IteratorWrapper*, MaxIteratorComparator> MergerMaxIterHeap;
typedef BinaryHeap<IteratorWrapper*, MinIteratorComparator> MergerMinIterHeap;
} // namespace
const size_t kNumIterReserve = 4;
class MergingIterator : public InternalIterator {
public:
MergingIterator(const Comparator* comparator, InternalIterator** children,
int n, bool is_arena_mode, bool prefix_seek_mode)
: is_arena_mode_(is_arena_mode),
comparator_(comparator),
current_(nullptr),
direction_(kForward),
minHeap_(comparator_),
prefix_seek_mode_(prefix_seek_mode),
pinned_iters_mgr_(nullptr) {
children_.resize(n);
for (int i = 0; i < n; i++) {
children_[i].Set(children[i]);
}
for (auto& child : children_) {
if (child.Valid()) {
minHeap_.push(&child);
}
}
current_ = CurrentForward();
}
virtual void AddIterator(InternalIterator* iter) {
assert(direction_ == kForward);
children_.emplace_back(iter);
if (pinned_iters_mgr_) {
iter->SetPinnedItersMgr(pinned_iters_mgr_);
}
auto new_wrapper = children_.back();
if (new_wrapper.Valid()) {
minHeap_.push(&new_wrapper);
current_ = CurrentForward();
}
}
virtual ~MergingIterator() {
for (auto& child : children_) {
child.DeleteIter(is_arena_mode_);
}
}
virtual bool Valid() const override { return (current_ != nullptr); }
virtual void SeekToFirst() override {
ClearHeaps();
for (auto& child : children_) {
child.SeekToFirst();
if (child.Valid()) {
minHeap_.push(&child);
}
}
direction_ = kForward;
current_ = CurrentForward();
}
virtual void SeekToLast() override {
ClearHeaps();
InitMaxHeap();
for (auto& child : children_) {
child.SeekToLast();
if (child.Valid()) {
maxHeap_->push(&child);
}
}
direction_ = kReverse;
current_ = CurrentReverse();
}
virtual void Seek(const Slice& target) override {
ClearHeaps();
for (auto& child : children_) {
{
PERF_TIMER_GUARD(seek_child_seek_time);
child.Seek(target);
}
PERF_COUNTER_ADD(seek_child_seek_count, 1);
if (child.Valid()) {
PERF_TIMER_GUARD(seek_min_heap_time);
minHeap_.push(&child);
}
}
direction_ = kForward;
{
PERF_TIMER_GUARD(seek_min_heap_time);
current_ = CurrentForward();
}
}
virtual void SeekForPrev(const Slice& target) override {
ClearHeaps();
InitMaxHeap();
for (auto& child : children_) {
{
PERF_TIMER_GUARD(seek_child_seek_time);
child.SeekForPrev(target);
}
PERF_COUNTER_ADD(seek_child_seek_count, 1);
if (child.Valid()) {
PERF_TIMER_GUARD(seek_max_heap_time);
maxHeap_->push(&child);
}
}
direction_ = kReverse;
{
PERF_TIMER_GUARD(seek_max_heap_time);
current_ = CurrentReverse();
}
}
virtual void Next() override {
assert(Valid());
// Ensure that all children are positioned after key().
// If we are moving in the forward direction, it is already
// true for all of the non-current children since current_ is
// the smallest child and key() == current_->key().
if (direction_ != kForward) {
// Otherwise, advance the non-current children. We advance current_
// just after the if-block.
ClearHeaps();
for (auto& child : children_) {
if (&child != current_) {
child.Seek(key());
if (child.Valid() && comparator_->Equal(key(), child.key())) {
child.Next();
}
}
if (child.Valid()) {
minHeap_.push(&child);
}
}
direction_ = kForward;
// The loop advanced all non-current children to be > key() so current_
// should still be strictly the smallest key.
assert(current_ == CurrentForward());
}
// For the heap modifications below to be correct, current_ must be the
// current top of the heap.
assert(current_ == CurrentForward());
// as the current points to the current record. move the iterator forward.
current_->Next();
if (current_->Valid()) {
// current is still valid after the Next() call above. Call
// replace_top() to restore the heap property. When the same child
// iterator yields a sequence of keys, this is cheap.
minHeap_.replace_top(current_);
} else {
// current stopped being valid, remove it from the heap.
minHeap_.pop();
}
current_ = CurrentForward();
}
virtual void Prev() override {
assert(Valid());
// Ensure that all children are positioned before key().
// If we are moving in the reverse direction, it is already
// true for all of the non-current children since current_ is
// the largest child and key() == current_->key().
if (direction_ != kReverse) {
// Otherwise, retreat the non-current children. We retreat current_
// just after the if-block.
ClearHeaps();
InitMaxHeap();
for (auto& child : children_) {
if (&child != current_) {
if (!prefix_seek_mode_) {
child.Seek(key());
if (child.Valid()) {
// Child is at first entry >= key(). Step back one to be < key()
TEST_SYNC_POINT_CALLBACK("MergeIterator::Prev:BeforePrev",
&child);
child.Prev();
} else {
// Child has no entries >= key(). Position at last entry.
TEST_SYNC_POINT("MergeIterator::Prev:BeforeSeekToLast");
child.SeekToLast();
}
} else {
child.SeekForPrev(key());
if (child.Valid() && comparator_->Equal(key(), child.key())) {
child.Prev();
}
}
}
if (child.Valid()) {
maxHeap_->push(&child);
}
}
direction_ = kReverse;
if (!prefix_seek_mode_) {
// Note that we don't do assert(current_ == CurrentReverse()) here
// because it is possible to have some keys larger than the seek-key
// inserted between Seek() and SeekToLast(), which makes current_ not
// equal to CurrentReverse().
current_ = CurrentReverse();
}
// The loop advanced all non-current children to be < key() so current_
// should still be strictly the smallest key.
assert(current_ == CurrentReverse());
}
// For the heap modifications below to be correct, current_ must be the
// current top of the heap.
assert(current_ == CurrentReverse());
current_->Prev();
if (current_->Valid()) {
// current is still valid after the Prev() call above. Call
// replace_top() to restore the heap property. When the same child
// iterator yields a sequence of keys, this is cheap.
maxHeap_->replace_top(current_);
} else {
// current stopped being valid, remove it from the heap.
maxHeap_->pop();
}
current_ = CurrentReverse();
}
virtual Slice key() const override {
assert(Valid());
return current_->key();
}
virtual Slice value() const override {
assert(Valid());
return current_->value();
}
virtual Status status() const override {
Status s;
for (auto& child : children_) {
s = child.status();
if (!s.ok()) {
break;
}
}
return s;
}
virtual void SetPinnedItersMgr(
PinnedIteratorsManager* pinned_iters_mgr) override {
pinned_iters_mgr_ = pinned_iters_mgr;
for (auto& child : children_) {
child.SetPinnedItersMgr(pinned_iters_mgr);
}
}
virtual bool IsKeyPinned() const override {
assert(Valid());
return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
current_->IsKeyPinned();
}
virtual bool IsValuePinned() const override {
assert(Valid());
return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
current_->IsValuePinned();
}
private:
// Clears heaps for both directions, used when changing direction or seeking
void ClearHeaps();
// Ensures that maxHeap_ is initialized when starting to go in the reverse
// direction
void InitMaxHeap();
bool is_arena_mode_;
const Comparator* comparator_;
autovector<IteratorWrapper, kNumIterReserve> children_;
// Cached pointer to child iterator with the current key, or nullptr if no
// child iterators are valid. This is the top of minHeap_ or maxHeap_
// depending on the direction.
IteratorWrapper* current_;
// Which direction is the iterator moving?
enum Direction {
kForward,
kReverse
};
Direction direction_;
MergerMinIterHeap minHeap_;
bool prefix_seek_mode_;
// Max heap is used for reverse iteration, which is way less common than
// forward. Lazily initialize it to save memory.
std::unique_ptr<MergerMaxIterHeap> maxHeap_;
PinnedIteratorsManager* pinned_iters_mgr_;
IteratorWrapper* CurrentForward() const {
assert(direction_ == kForward);
return !minHeap_.empty() ? minHeap_.top() : nullptr;
}
IteratorWrapper* CurrentReverse() const {
assert(direction_ == kReverse);
assert(maxHeap_);
return !maxHeap_->empty() ? maxHeap_->top() : nullptr;
}
};
void MergingIterator::ClearHeaps() {
minHeap_.clear();
if (maxHeap_) {
maxHeap_->clear();
}
}
void MergingIterator::InitMaxHeap() {
if (!maxHeap_) {
maxHeap_.reset(new MergerMaxIterHeap(comparator_));
}
}
InternalIterator* NewMergingIterator(const Comparator* cmp,
InternalIterator** list, int n,
Arena* arena, bool prefix_seek_mode) {
assert(n >= 0);
if (n == 0) {
return NewEmptyInternalIterator(arena);
} else if (n == 1) {
return list[0];
} else {
if (arena == nullptr) {
return new MergingIterator(cmp, list, n, false, prefix_seek_mode);
} else {
auto mem = arena->AllocateAligned(sizeof(MergingIterator));
return new (mem) MergingIterator(cmp, list, n, true, prefix_seek_mode);
}
}
}
MergeIteratorBuilder::MergeIteratorBuilder(const Comparator* comparator,
Arena* a, bool prefix_seek_mode)
: first_iter(nullptr), use_merging_iter(false), arena(a) {
auto mem = arena->AllocateAligned(sizeof(MergingIterator));
merge_iter =
new (mem) MergingIterator(comparator, nullptr, 0, true, prefix_seek_mode);
}
void MergeIteratorBuilder::AddIterator(InternalIterator* iter) {
if (!use_merging_iter && first_iter != nullptr) {
merge_iter->AddIterator(first_iter);
use_merging_iter = true;
}
if (use_merging_iter) {
merge_iter->AddIterator(iter);
} else {
first_iter = iter;
}
}
InternalIterator* MergeIteratorBuilder::Finish() {
if (!use_merging_iter) {
return first_iter;
} else {
auto ret = merge_iter;
merge_iter = nullptr;
return ret;
}
}
} // namespace rocksdb