rocksdb/db/inlineskiplist_test.cc
Nathan Bronson 78812ec6bf InlineSkipList - part 1/3
Summary:
This diff is 1/3 in a sequence that introduces a skip list optimized for
a key that is a freshly-allocated const char*.  The diff is broken into
pieces to make it easier to review.  This piece only introduces the new
type by copying the existing SkipList, with mechanical naming changes
and reformatting.

Test Plan: new unit test

Reviewers: igor, sdong

Reviewed By: sdong

Subscribers: dhruba

Differential Revision: https://reviews.facebook.net/D51279
2015-11-24 14:30:22 -08:00

374 lines
10 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/inlineskiplist.h"
#include <set>
#include "rocksdb/env.h"
#include "util/arena.h"
#include "util/hash.h"
#include "util/random.h"
#include "util/testharness.h"
namespace rocksdb {
typedef uint64_t Key;
struct TestComparator {
int operator()(const Key& a, const Key& b) const {
if (a < b) {
return -1;
} else if (a > b) {
return +1;
} else {
return 0;
}
}
};
class InlineSkipTest : public testing::Test {};
TEST_F(InlineSkipTest, Empty) {
Arena arena;
TestComparator cmp;
InlineSkipList<Key, TestComparator> list(cmp, &arena);
ASSERT_TRUE(!list.Contains(10));
InlineSkipList<Key, TestComparator>::Iterator iter(&list);
ASSERT_TRUE(!iter.Valid());
iter.SeekToFirst();
ASSERT_TRUE(!iter.Valid());
iter.Seek(100);
ASSERT_TRUE(!iter.Valid());
iter.SeekToLast();
ASSERT_TRUE(!iter.Valid());
}
TEST_F(InlineSkipTest, InsertAndLookup) {
const int N = 2000;
const int R = 5000;
Random rnd(1000);
std::set<Key> keys;
Arena arena;
TestComparator cmp;
InlineSkipList<Key, TestComparator> list(cmp, &arena);
for (int i = 0; i < N; i++) {
Key key = rnd.Next() % R;
if (keys.insert(key).second) {
list.Insert(key);
}
}
for (int i = 0; i < R; i++) {
if (list.Contains(i)) {
ASSERT_EQ(keys.count(i), 1U);
} else {
ASSERT_EQ(keys.count(i), 0U);
}
}
// Simple iterator tests
{
InlineSkipList<Key, TestComparator>::Iterator iter(&list);
ASSERT_TRUE(!iter.Valid());
iter.Seek(0);
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.begin()), iter.key());
iter.SeekToFirst();
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.begin()), iter.key());
iter.SeekToLast();
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.rbegin()), iter.key());
}
// Forward iteration test
for (int i = 0; i < R; i++) {
InlineSkipList<Key, TestComparator>::Iterator iter(&list);
iter.Seek(i);
// Compare against model iterator
std::set<Key>::iterator model_iter = keys.lower_bound(i);
for (int j = 0; j < 3; j++) {
if (model_iter == keys.end()) {
ASSERT_TRUE(!iter.Valid());
break;
} else {
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*model_iter, iter.key());
++model_iter;
iter.Next();
}
}
}
// Backward iteration test
{
InlineSkipList<Key, TestComparator>::Iterator iter(&list);
iter.SeekToLast();
// Compare against model iterator
for (std::set<Key>::reverse_iterator model_iter = keys.rbegin();
model_iter != keys.rend(); ++model_iter) {
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*model_iter, iter.key());
iter.Prev();
}
ASSERT_TRUE(!iter.Valid());
}
}
// We want to make sure that with a single writer and multiple
// concurrent readers (with no synchronization other than when a
// reader's iterator is created), the reader always observes all the
// data that was present in the skip list when the iterator was
// constructor. Because insertions are happening concurrently, we may
// also observe new values that were inserted since the iterator was
// constructed, but we should never miss any values that were present
// at iterator construction time.
//
// We generate multi-part keys:
// <key,gen,hash>
// where:
// key is in range [0..K-1]
// gen is a generation number for key
// hash is hash(key,gen)
//
// The insertion code picks a random key, sets gen to be 1 + the last
// generation number inserted for that key, and sets hash to Hash(key,gen).
//
// At the beginning of a read, we snapshot the last inserted
// generation number for each key. We then iterate, including random
// calls to Next() and Seek(). For every key we encounter, we
// check that it is either expected given the initial snapshot or has
// been concurrently added since the iterator started.
class ConcurrentTest {
private:
static const uint32_t K = 4;
static uint64_t key(Key key) { return (key >> 40); }
static uint64_t gen(Key key) { return (key >> 8) & 0xffffffffu; }
static uint64_t hash(Key key) { return key & 0xff; }
static uint64_t HashNumbers(uint64_t k, uint64_t g) {
uint64_t data[2] = {k, g};
return Hash(reinterpret_cast<char*>(data), sizeof(data), 0);
}
static Key MakeKey(uint64_t k, uint64_t g) {
assert(sizeof(Key) == sizeof(uint64_t));
assert(k <= K); // We sometimes pass K to seek to the end of the skiplist
assert(g <= 0xffffffffu);
return ((k << 40) | (g << 8) | (HashNumbers(k, g) & 0xff));
}
static bool IsValidKey(Key k) {
return hash(k) == (HashNumbers(key(k), gen(k)) & 0xff);
}
static Key RandomTarget(Random* rnd) {
switch (rnd->Next() % 10) {
case 0:
// Seek to beginning
return MakeKey(0, 0);
case 1:
// Seek to end
return MakeKey(K, 0);
default:
// Seek to middle
return MakeKey(rnd->Next() % K, 0);
}
}
// Per-key generation
struct State {
std::atomic<int> generation[K];
void Set(int k, int v) {
generation[k].store(v, std::memory_order_release);
}
int Get(int k) { return generation[k].load(std::memory_order_acquire); }
State() {
for (unsigned int k = 0; k < K; k++) {
Set(k, 0);
}
}
};
// Current state of the test
State current_;
Arena arena_;
// InlineSkipList is not protected by mu_. We just use a single writer
// thread to modify it.
InlineSkipList<Key, TestComparator> list_;
public:
ConcurrentTest() : list_(TestComparator(), &arena_) {}
// REQUIRES: External synchronization
void WriteStep(Random* rnd) {
const uint32_t k = rnd->Next() % K;
const int g = current_.Get(k) + 1;
const Key new_key = MakeKey(k, g);
list_.Insert(new_key);
current_.Set(k, g);
}
void ReadStep(Random* rnd) {
// Remember the initial committed state of the skiplist.
State initial_state;
for (unsigned int k = 0; k < K; k++) {
initial_state.Set(k, current_.Get(k));
}
Key pos = RandomTarget(rnd);
InlineSkipList<Key, TestComparator>::Iterator iter(&list_);
iter.Seek(pos);
while (true) {
Key current;
if (!iter.Valid()) {
current = MakeKey(K, 0);
} else {
current = iter.key();
ASSERT_TRUE(IsValidKey(current)) << current;
}
ASSERT_LE(pos, current) << "should not go backwards";
// Verify that everything in [pos,current) was not present in
// initial_state.
while (pos < current) {
ASSERT_LT(key(pos), K) << pos;
// Note that generation 0 is never inserted, so it is ok if
// <*,0,*> is missing.
ASSERT_TRUE((gen(pos) == 0U) ||
(gen(pos) > static_cast<uint64_t>(initial_state.Get(
static_cast<int>(key(pos))))))
<< "key: " << key(pos) << "; gen: " << gen(pos)
<< "; initgen: " << initial_state.Get(static_cast<int>(key(pos)));
// Advance to next key in the valid key space
if (key(pos) < key(current)) {
pos = MakeKey(key(pos) + 1, 0);
} else {
pos = MakeKey(key(pos), gen(pos) + 1);
}
}
if (!iter.Valid()) {
break;
}
if (rnd->Next() % 2) {
iter.Next();
pos = MakeKey(key(pos), gen(pos) + 1);
} else {
Key new_target = RandomTarget(rnd);
if (new_target > pos) {
pos = new_target;
iter.Seek(new_target);
}
}
}
}
};
const uint32_t ConcurrentTest::K;
// Simple test that does single-threaded testing of the ConcurrentTest
// scaffolding.
TEST_F(InlineSkipTest, ConcurrentWithoutThreads) {
ConcurrentTest test;
Random rnd(test::RandomSeed());
for (int i = 0; i < 10000; i++) {
test.ReadStep(&rnd);
test.WriteStep(&rnd);
}
}
class TestState {
public:
ConcurrentTest t_;
int seed_;
std::atomic<bool> quit_flag_;
enum ReaderState { STARTING, RUNNING, DONE };
explicit TestState(int s)
: seed_(s), quit_flag_(false), state_(STARTING), state_cv_(&mu_) {}
void Wait(ReaderState s) {
mu_.Lock();
while (state_ != s) {
state_cv_.Wait();
}
mu_.Unlock();
}
void Change(ReaderState s) {
mu_.Lock();
state_ = s;
state_cv_.Signal();
mu_.Unlock();
}
private:
port::Mutex mu_;
ReaderState state_;
port::CondVar state_cv_;
};
static void ConcurrentReader(void* arg) {
TestState* state = reinterpret_cast<TestState*>(arg);
Random rnd(state->seed_);
int64_t reads = 0;
state->Change(TestState::RUNNING);
while (!state->quit_flag_.load(std::memory_order_acquire)) {
state->t_.ReadStep(&rnd);
++reads;
}
state->Change(TestState::DONE);
}
static void RunConcurrent(int run) {
const int seed = test::RandomSeed() + (run * 100);
Random rnd(seed);
const int N = 1000;
const int kSize = 1000;
for (int i = 0; i < N; i++) {
if ((i % 100) == 0) {
fprintf(stderr, "Run %d of %d\n", i, N);
}
TestState state(seed + 1);
Env::Default()->Schedule(ConcurrentReader, &state);
state.Wait(TestState::RUNNING);
for (int k = 0; k < kSize; k++) {
state.t_.WriteStep(&rnd);
}
state.quit_flag_.store(true, std::memory_order_release);
state.Wait(TestState::DONE);
}
}
TEST_F(InlineSkipTest, Concurrent1) { RunConcurrent(1); }
TEST_F(InlineSkipTest, Concurrent2) { RunConcurrent(2); }
TEST_F(InlineSkipTest, Concurrent3) { RunConcurrent(3); }
TEST_F(InlineSkipTest, Concurrent4) { RunConcurrent(4); }
TEST_F(InlineSkipTest, Concurrent5) { RunConcurrent(5); }
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}