mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-29 18:33:58 +00:00
60af964372
Summary: Added experimental public API for Ribbon filter: NewExperimentalRibbonFilterPolicy(). This experimental API will take a "Bloom equivalent" bits per key, and configure the Ribbon filter for the same FP rate as Bloom would have but ~30% space savings. (Note: optimize_filters_for_memory is not yet implemented for Ribbon filter. That can be added with no effect on schema.) Internally, the Ribbon filter is configured using a "one_in_fp_rate" value, which is 1 over desired FP rate. For example, use 100 for 1% FP rate. I'm expecting this will be used in the future for configuring Bloom-like filters, as I expect people to more commonly hold constant the filter accuracy and change the space vs. time trade-off, rather than hold constant the space (per key) and change the accuracy vs. time trade-off, though we might make that available. ### Benchmarking ``` $ ./filter_bench -impl=2 -quick -m_keys_total_max=200 -average_keys_per_filter=100000 -net_includes_hashing Building... Build avg ns/key: 34.1341 Number of filters: 1993 Total size (MB): 238.488 Reported total allocated memory (MB): 262.875 Reported internal fragmentation: 10.2255% Bits/key stored: 10.0029 ---------------------------- Mixed inside/outside queries... Single filter net ns/op: 18.7508 Random filter net ns/op: 258.246 Average FP rate %: 0.968672 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -impl=3 -quick -m_keys_total_max=200 -average_keys_per_filter=100000 -net_includes_hashing Building... Build avg ns/key: 130.851 Number of filters: 1993 Total size (MB): 168.166 Reported total allocated memory (MB): 183.211 Reported internal fragmentation: 8.94626% Bits/key stored: 7.05341 ---------------------------- Mixed inside/outside queries... Single filter net ns/op: 58.4523 Random filter net ns/op: 363.717 Average FP rate %: 0.952978 ---------------------------- Done. (For more info, run with -legend or -help.) ``` 168.166 / 238.488 = 0.705 -> 29.5% space reduction 130.851 / 34.1341 = 3.83x construction time for this Ribbon filter vs. lastest Bloom filter (could make that as little as about 2.5x for less space reduction) ### Working around a hashing "flaw" bloom_test discovered a flaw in the simple hashing applied in StandardHasher when num_starts == 1 (num_slots == 128), showing an excessively high FP rate. The problem is that when many entries, on the order of number of hash bits or kCoeffBits, are associated with the same start location, the correlation between the CoeffRow and ResultRow (for efficiency) can lead to a solution that is "universal," or nearly so, for entries mapping to that start location. (Normally, variance in start location breaks the effective association between CoeffRow and ResultRow; the same value for CoeffRow is effectively different if start locations are different.) Without kUseSmash and with num_starts > 1 (thus num_starts ~= num_slots), this flaw should be completely irrelevant. Even with 10M slots, the chances of a single slot having just 16 (or more) entries map to it--not enough to cause an FP problem, which would be local to that slot if it happened--is 1 in millions. This spreadsheet formula shows that: =1/(10000000*(1 - POISSON(15, 1, TRUE))) As kUseSmash==false (the setting for Standard128RibbonBitsBuilder) is intended for CPU efficiency of filters with many more entries/slots than kCoeffBits, a very reasonable work-around is to disallow num_starts==1 when !kUseSmash, by making the minimum non-zero number of slots 2*kCoeffBits. This is the work-around I've applied. This also means that the new Ribbon filter schema (Standard128RibbonBitsBuilder) is not space-efficient for less than a few hundred entries. Because of this, I have made it fall back on constructing a Bloom filter, under existing schema, when that is more space efficient for small filters. (We can change this in the future if we want.) TODO: better unit tests for this case in ribbon_test, and probably update StandardHasher for kUseSmash case so that it can scale nicely to small filters. ### Other related changes * Add Ribbon filter to stress/crash test * Add Ribbon filter to filter_bench as -impl=3 * Add option string support, as in "filter_policy=experimental_ribbon:5.678;" where 5.678 is the Bloom equivalent bits per key. * Rename internal mode BloomFilterPolicy::kAuto to kAutoBloom * Add a general BuiltinFilterBitsBuilder::CalculateNumEntry based on binary searching CalculateSpace (inefficient), so that subclasses (especially experimental ones) don't have to provide an efficient implementation inverting CalculateSpace. * Minor refactor FastLocalBloomBitsBuilder for new base class XXH3pFilterBitsBuilder shared with new Standard128RibbonBitsBuilder, which allows the latter to fall back on Bloom construction in some extreme cases. * Mostly updated bloom_test for Ribbon filter, though a test like FullBloomTest::Schema is a next TODO to ensure schema stability (in case this becomes production-ready schema as it is). * Add some APIs to ribbon_impl.h for configuring Ribbon filters. Although these are reasonably covered by bloom_test, TODO more unit tests in ribbon_test * Added a "tool" FindOccupancyForSuccessRate to ribbon_test to get data for constructing the linear approximations in GetNumSlotsFor95PctSuccess. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7658 Test Plan: Some unit tests updated but other testing is left TODO. This is considered experimental but laying down schema compatibility as early as possible in case it proves production-quality. Also tested in stress/crash test. Reviewed By: jay-zhuang Differential Revision: D24899349 Pulled By: pdillinger fbshipit-source-id: 9715f3e6371c959d923aea8077c9423c7a9f82b8
932 lines
33 KiB
C++
932 lines
33 KiB
C++
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include <cmath>
|
|
|
|
#include "test_util/testharness.h"
|
|
#include "util/bloom_impl.h"
|
|
#include "util/coding.h"
|
|
#include "util/hash.h"
|
|
#include "util/ribbon_impl.h"
|
|
#include "util/stop_watch.h"
|
|
|
|
#ifndef GFLAGS
|
|
uint32_t FLAGS_thoroughness = 5;
|
|
bool FLAGS_find_occ = false;
|
|
double FLAGS_find_next_factor = 1.414;
|
|
double FLAGS_find_success = 0.95;
|
|
double FLAGS_find_delta_start = 0.01;
|
|
double FLAGS_find_delta_end = 0.0001;
|
|
double FLAGS_find_delta_shrink = 0.99;
|
|
uint32_t FLAGS_find_min_slots = 128;
|
|
uint32_t FLAGS_find_max_slots = 12800000;
|
|
#else
|
|
#include "util/gflags_compat.h"
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
// Using 500 is a good test when you have time to be thorough.
|
|
// Default is for general RocksDB regression test runs.
|
|
DEFINE_uint32(thoroughness, 5, "iterations per configuration");
|
|
|
|
// Options for FindOccupancyForSuccessRate, which is more of a tool
|
|
// than a test.
|
|
DEFINE_bool(find_occ, false,
|
|
"whether to run the FindOccupancyForSuccessRate tool");
|
|
DEFINE_double(find_next_factor, 1.414,
|
|
"target success rate for FindOccupancyForSuccessRate");
|
|
DEFINE_double(find_success, 0.95,
|
|
"target success rate for FindOccupancyForSuccessRate");
|
|
DEFINE_double(find_delta_start, 0.01, " for FindOccupancyForSuccessRate");
|
|
DEFINE_double(find_delta_end, 0.0001, " for FindOccupancyForSuccessRate");
|
|
DEFINE_double(find_delta_shrink, 0.99, " for FindOccupancyForSuccessRate");
|
|
DEFINE_uint32(find_min_slots, 128,
|
|
"number of slots for FindOccupancyForSuccessRate");
|
|
DEFINE_uint32(find_max_slots, 12800000,
|
|
"number of slots for FindOccupancyForSuccessRate");
|
|
#endif // GFLAGS
|
|
|
|
template <typename TypesAndSettings>
|
|
class RibbonTypeParamTest : public ::testing::Test {};
|
|
|
|
class RibbonTest : public ::testing::Test {};
|
|
|
|
namespace {
|
|
|
|
// Different ways of generating keys for testing
|
|
|
|
// Generate semi-sequential keys
|
|
struct StandardKeyGen {
|
|
StandardKeyGen(const std::string& prefix, uint64_t id)
|
|
: id_(id), str_(prefix) {
|
|
ROCKSDB_NAMESPACE::PutFixed64(&str_, /*placeholder*/ 0);
|
|
}
|
|
|
|
// Prefix (only one required)
|
|
StandardKeyGen& operator++() {
|
|
++id_;
|
|
return *this;
|
|
}
|
|
|
|
StandardKeyGen& operator+=(uint64_t i) {
|
|
id_ += i;
|
|
return *this;
|
|
}
|
|
|
|
const std::string& operator*() {
|
|
// Use multiplication to mix things up a little in the key
|
|
ROCKSDB_NAMESPACE::EncodeFixed64(&str_[str_.size() - 8],
|
|
id_ * uint64_t{0x1500000001});
|
|
return str_;
|
|
}
|
|
|
|
bool operator==(const StandardKeyGen& other) {
|
|
// Same prefix is assumed
|
|
return id_ == other.id_;
|
|
}
|
|
bool operator!=(const StandardKeyGen& other) {
|
|
// Same prefix is assumed
|
|
return id_ != other.id_;
|
|
}
|
|
|
|
uint64_t id_;
|
|
std::string str_;
|
|
};
|
|
|
|
// Generate small sequential keys, that can misbehave with sequential seeds
|
|
// as in https://github.com/Cyan4973/xxHash/issues/469.
|
|
// These keys are only heuristically unique, but that's OK with 64 bits,
|
|
// for testing purposes.
|
|
struct SmallKeyGen {
|
|
SmallKeyGen(const std::string& prefix, uint64_t id) : id_(id) {
|
|
// Hash the prefix for a heuristically unique offset
|
|
id_ += ROCKSDB_NAMESPACE::GetSliceHash64(prefix);
|
|
ROCKSDB_NAMESPACE::PutFixed64(&str_, id_);
|
|
}
|
|
|
|
// Prefix (only one required)
|
|
SmallKeyGen& operator++() {
|
|
++id_;
|
|
return *this;
|
|
}
|
|
|
|
SmallKeyGen& operator+=(uint64_t i) {
|
|
id_ += i;
|
|
return *this;
|
|
}
|
|
|
|
const std::string& operator*() {
|
|
ROCKSDB_NAMESPACE::EncodeFixed64(&str_[str_.size() - 8], id_);
|
|
return str_;
|
|
}
|
|
|
|
bool operator==(const SmallKeyGen& other) { return id_ == other.id_; }
|
|
bool operator!=(const SmallKeyGen& other) { return id_ != other.id_; }
|
|
|
|
uint64_t id_;
|
|
std::string str_;
|
|
};
|
|
|
|
template <typename KeyGen>
|
|
struct Hash32KeyGenWrapper : public KeyGen {
|
|
Hash32KeyGenWrapper(const std::string& prefix, uint64_t id)
|
|
: KeyGen(prefix, id) {}
|
|
uint32_t operator*() {
|
|
auto& key = *static_cast<KeyGen&>(*this);
|
|
// unseeded
|
|
return ROCKSDB_NAMESPACE::GetSliceHash(key);
|
|
}
|
|
};
|
|
|
|
template <typename KeyGen>
|
|
struct Hash64KeyGenWrapper : public KeyGen {
|
|
Hash64KeyGenWrapper(const std::string& prefix, uint64_t id)
|
|
: KeyGen(prefix, id) {}
|
|
uint64_t operator*() {
|
|
auto& key = *static_cast<KeyGen&>(*this);
|
|
// unseeded
|
|
return ROCKSDB_NAMESPACE::GetSliceHash64(key);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
using ROCKSDB_NAMESPACE::ribbon::ExpectedCollisionFpRate;
|
|
using ROCKSDB_NAMESPACE::ribbon::StandardHasher;
|
|
using ROCKSDB_NAMESPACE::ribbon::StandardRehasherAdapter;
|
|
|
|
struct DefaultTypesAndSettings {
|
|
using CoeffRow = ROCKSDB_NAMESPACE::Unsigned128;
|
|
using ResultRow = uint8_t;
|
|
using Index = uint32_t;
|
|
using Hash = uint64_t;
|
|
using Seed = uint32_t;
|
|
using Key = ROCKSDB_NAMESPACE::Slice;
|
|
static constexpr bool kIsFilter = true;
|
|
static constexpr bool kFirstCoeffAlwaysOne = true;
|
|
static constexpr bool kUseSmash = false;
|
|
static constexpr bool kAllowZeroStarts = false;
|
|
static Hash HashFn(const Key& key, uint64_t raw_seed) {
|
|
// This version 0.7.2 preview of XXH3 (a.k.a. XXH3p) function does
|
|
// not pass SmallKeyGen tests below without some seed premixing from
|
|
// StandardHasher. See https://github.com/Cyan4973/xxHash/issues/469
|
|
return ROCKSDB_NAMESPACE::Hash64(key.data(), key.size(), raw_seed);
|
|
}
|
|
// For testing
|
|
using KeyGen = StandardKeyGen;
|
|
};
|
|
|
|
using TypesAndSettings_Coeff128 = DefaultTypesAndSettings;
|
|
struct TypesAndSettings_Coeff128Smash : public DefaultTypesAndSettings {
|
|
static constexpr bool kUseSmash = true;
|
|
};
|
|
struct TypesAndSettings_Coeff64 : public DefaultTypesAndSettings {
|
|
using CoeffRow = uint64_t;
|
|
};
|
|
struct TypesAndSettings_Coeff64Smash1 : public DefaultTypesAndSettings {
|
|
using CoeffRow = uint64_t;
|
|
static constexpr bool kUseSmash = true;
|
|
};
|
|
struct TypesAndSettings_Coeff64Smash0 : public TypesAndSettings_Coeff64Smash1 {
|
|
static constexpr bool kFirstCoeffAlwaysOne = false;
|
|
};
|
|
struct TypesAndSettings_Result16 : public DefaultTypesAndSettings {
|
|
using ResultRow = uint16_t;
|
|
};
|
|
struct TypesAndSettings_Result32 : public DefaultTypesAndSettings {
|
|
using ResultRow = uint32_t;
|
|
};
|
|
struct TypesAndSettings_IndexSizeT : public DefaultTypesAndSettings {
|
|
using Index = size_t;
|
|
};
|
|
struct TypesAndSettings_Hash32 : public DefaultTypesAndSettings {
|
|
using Hash = uint32_t;
|
|
static Hash HashFn(const Key& key, Hash raw_seed) {
|
|
// This MurmurHash1 function does not pass tests below without the
|
|
// seed premixing from StandardHasher. In fact, it needs more than
|
|
// just a multiplication mixer on the ordinal seed.
|
|
return ROCKSDB_NAMESPACE::Hash(key.data(), key.size(), raw_seed);
|
|
}
|
|
};
|
|
struct TypesAndSettings_Hash32_Result16 : public TypesAndSettings_Hash32 {
|
|
using ResultRow = uint16_t;
|
|
};
|
|
struct TypesAndSettings_KeyString : public DefaultTypesAndSettings {
|
|
using Key = std::string;
|
|
};
|
|
struct TypesAndSettings_Seed8 : public DefaultTypesAndSettings {
|
|
// This is not a generally recommended configuration. With the configured
|
|
// hash function, it would fail with SmallKeyGen due to insufficient
|
|
// independence among the seeds.
|
|
using Seed = uint8_t;
|
|
};
|
|
struct TypesAndSettings_NoAlwaysOne : public DefaultTypesAndSettings {
|
|
static constexpr bool kFirstCoeffAlwaysOne = false;
|
|
};
|
|
struct TypesAndSettings_AllowZeroStarts : public DefaultTypesAndSettings {
|
|
static constexpr bool kAllowZeroStarts = true;
|
|
};
|
|
struct TypesAndSettings_Seed64 : public DefaultTypesAndSettings {
|
|
using Seed = uint64_t;
|
|
};
|
|
struct TypesAndSettings_Rehasher
|
|
: public StandardRehasherAdapter<DefaultTypesAndSettings> {
|
|
using KeyGen = Hash64KeyGenWrapper<StandardKeyGen>;
|
|
};
|
|
struct TypesAndSettings_Rehasher_Result16 : public TypesAndSettings_Rehasher {
|
|
using ResultRow = uint16_t;
|
|
};
|
|
struct TypesAndSettings_Rehasher_Result32 : public TypesAndSettings_Rehasher {
|
|
using ResultRow = uint32_t;
|
|
};
|
|
struct TypesAndSettings_Rehasher_Seed64
|
|
: public StandardRehasherAdapter<TypesAndSettings_Seed64> {
|
|
using KeyGen = Hash64KeyGenWrapper<StandardKeyGen>;
|
|
// Note: 64-bit seed with Rehasher gives slightly better average reseeds
|
|
};
|
|
struct TypesAndSettings_Rehasher32
|
|
: public StandardRehasherAdapter<TypesAndSettings_Hash32> {
|
|
using KeyGen = Hash32KeyGenWrapper<StandardKeyGen>;
|
|
};
|
|
struct TypesAndSettings_Rehasher32_Coeff64
|
|
: public TypesAndSettings_Rehasher32 {
|
|
using CoeffRow = uint64_t;
|
|
};
|
|
struct TypesAndSettings_SmallKeyGen : public DefaultTypesAndSettings {
|
|
// SmallKeyGen stresses the independence of different hash seeds
|
|
using KeyGen = SmallKeyGen;
|
|
};
|
|
struct TypesAndSettings_Hash32_SmallKeyGen : public TypesAndSettings_Hash32 {
|
|
// SmallKeyGen stresses the independence of different hash seeds
|
|
using KeyGen = SmallKeyGen;
|
|
};
|
|
|
|
using TestTypesAndSettings = ::testing::Types<
|
|
TypesAndSettings_Coeff128, TypesAndSettings_Coeff128Smash,
|
|
TypesAndSettings_Coeff64, TypesAndSettings_Coeff64Smash0,
|
|
TypesAndSettings_Coeff64Smash1, TypesAndSettings_Result16,
|
|
TypesAndSettings_Result32, TypesAndSettings_IndexSizeT,
|
|
TypesAndSettings_Hash32, TypesAndSettings_Hash32_Result16,
|
|
TypesAndSettings_KeyString, TypesAndSettings_Seed8,
|
|
TypesAndSettings_NoAlwaysOne, TypesAndSettings_AllowZeroStarts,
|
|
TypesAndSettings_Seed64, TypesAndSettings_Rehasher,
|
|
TypesAndSettings_Rehasher_Result16, TypesAndSettings_Rehasher_Result32,
|
|
TypesAndSettings_Rehasher_Seed64, TypesAndSettings_Rehasher32,
|
|
TypesAndSettings_Rehasher32_Coeff64, TypesAndSettings_SmallKeyGen,
|
|
TypesAndSettings_Hash32_SmallKeyGen>;
|
|
TYPED_TEST_CASE(RibbonTypeParamTest, TestTypesAndSettings);
|
|
|
|
namespace {
|
|
|
|
// For testing Poisson-distributed (or similar) statistics, get value for
|
|
// `stddevs_allowed` standard deviations above expected mean
|
|
// `expected_count`.
|
|
// (Poisson approximates Binomial only if probability of a trial being
|
|
// in the count is low.)
|
|
uint64_t PoissonUpperBound(double expected_count, double stddevs_allowed) {
|
|
return static_cast<uint64_t>(
|
|
expected_count + stddevs_allowed * std::sqrt(expected_count) + 1.0);
|
|
}
|
|
|
|
uint64_t PoissonLowerBound(double expected_count, double stddevs_allowed) {
|
|
return static_cast<uint64_t>(std::max(
|
|
0.0, expected_count - stddevs_allowed * std::sqrt(expected_count)));
|
|
}
|
|
|
|
uint64_t FrequentPoissonUpperBound(double expected_count) {
|
|
// Allow up to 5.0 standard deviations for frequently checked statistics
|
|
return PoissonUpperBound(expected_count, 5.0);
|
|
}
|
|
|
|
uint64_t FrequentPoissonLowerBound(double expected_count) {
|
|
return PoissonLowerBound(expected_count, 5.0);
|
|
}
|
|
|
|
uint64_t InfrequentPoissonUpperBound(double expected_count) {
|
|
// Allow up to 3 standard deviations for infrequently checked statistics
|
|
return PoissonUpperBound(expected_count, 3.0);
|
|
}
|
|
|
|
uint64_t InfrequentPoissonLowerBound(double expected_count) {
|
|
return PoissonLowerBound(expected_count, 3.0);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TYPED_TEST(RibbonTypeParamTest, CompactnessAndBacktrackAndFpRate) {
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
|
|
IMPORT_RIBBON_IMPL_TYPES(TypeParam);
|
|
using KeyGen = typename TypeParam::KeyGen;
|
|
|
|
// For testing FP rate etc.
|
|
constexpr Index kNumToCheck = 100000;
|
|
|
|
const auto log2_thoroughness =
|
|
static_cast<Hash>(ROCKSDB_NAMESPACE::FloorLog2(FLAGS_thoroughness));
|
|
|
|
// With overhead of just 2%, expect ~50% encoding success per
|
|
// seed with ~5k keys on 64-bit ribbon, or ~150k keys on 128-bit ribbon.
|
|
const double kFactor = 1.02;
|
|
|
|
uint64_t total_reseeds = 0;
|
|
uint64_t total_single_failures = 0;
|
|
uint64_t total_batch_successes = 0;
|
|
uint64_t total_fp_count = 0;
|
|
uint64_t total_added = 0;
|
|
|
|
uint64_t soln_query_nanos = 0;
|
|
uint64_t soln_query_count = 0;
|
|
uint64_t bloom_query_nanos = 0;
|
|
uint64_t isoln_query_nanos = 0;
|
|
uint64_t isoln_query_count = 0;
|
|
|
|
// Take different samples if you change thoroughness
|
|
ROCKSDB_NAMESPACE::Random32 rnd(FLAGS_thoroughness);
|
|
|
|
for (uint32_t i = 0; i < FLAGS_thoroughness; ++i) {
|
|
uint32_t num_to_add =
|
|
sizeof(CoeffRow) == 16 ? 130000 : TypeParam::kUseSmash ? 5500 : 2500;
|
|
|
|
// Use different values between that number and 50% of that number
|
|
num_to_add -= rnd.Uniformish(num_to_add / 2);
|
|
|
|
total_added += num_to_add;
|
|
|
|
// Most of the time, test the Interleaved solution storage, but when
|
|
// we do we have to make num_slots a multiple of kCoeffBits. So
|
|
// sometimes we want to test without that limitation.
|
|
bool test_interleaved = (i % 7) != 6;
|
|
|
|
Index num_slots = static_cast<Index>(num_to_add * kFactor);
|
|
if (test_interleaved) {
|
|
// Round to supported number of slots
|
|
num_slots = InterleavedSoln::RoundUpNumSlots(num_slots);
|
|
// Re-adjust num_to_add to get as close as possible to kFactor
|
|
num_to_add = static_cast<uint32_t>(num_slots / kFactor);
|
|
}
|
|
|
|
std::string prefix;
|
|
ROCKSDB_NAMESPACE::PutFixed32(&prefix, rnd.Next());
|
|
|
|
// Batch that must be added
|
|
std::string added_str = prefix + "added";
|
|
KeyGen keys_begin(added_str, 0);
|
|
KeyGen keys_end(added_str, num_to_add);
|
|
|
|
// A couple more that will probably be added
|
|
KeyGen one_more(prefix + "more", 1);
|
|
KeyGen two_more(prefix + "more", 2);
|
|
|
|
// Batch that may or may not be added
|
|
const Index kBatchSize =
|
|
sizeof(CoeffRow) == 16 ? 300 : TypeParam::kUseSmash ? 20 : 10;
|
|
std::string batch_str = prefix + "batch";
|
|
KeyGen batch_begin(batch_str, 0);
|
|
KeyGen batch_end(batch_str, kBatchSize);
|
|
|
|
// Batch never (successfully) added, but used for querying FP rate
|
|
std::string not_str = prefix + "not";
|
|
KeyGen other_keys_begin(not_str, 0);
|
|
KeyGen other_keys_end(not_str, kNumToCheck);
|
|
|
|
// Vary bytes for InterleavedSoln to use number of solution columns
|
|
// from 0 to max allowed by ResultRow type (and used by SimpleSoln).
|
|
// Specifically include 0 and max, and otherwise skew toward max.
|
|
uint32_t max_ibytes = static_cast<uint32_t>(sizeof(ResultRow) * num_slots);
|
|
size_t ibytes;
|
|
if (i == 0) {
|
|
ibytes = 0;
|
|
} else if (i == 1) {
|
|
ibytes = max_ibytes;
|
|
} else {
|
|
// Skewed
|
|
ibytes = std::max(rnd.Uniformish(max_ibytes), rnd.Uniformish(max_ibytes));
|
|
}
|
|
std::unique_ptr<char[]> idata(new char[ibytes]);
|
|
InterleavedSoln isoln(idata.get(), ibytes);
|
|
|
|
SimpleSoln soln;
|
|
Hasher hasher;
|
|
bool first_single;
|
|
bool second_single;
|
|
bool batch_success;
|
|
{
|
|
Banding banding;
|
|
// Traditional solve for a fixed set.
|
|
ASSERT_TRUE(
|
|
banding.ResetAndFindSeedToSolve(num_slots, keys_begin, keys_end));
|
|
|
|
// Now to test backtracking, starting with guaranteed fail. By using
|
|
// the keys that will be used to test FP rate, we are then doing an
|
|
// extra check that after backtracking there are no remnants (e.g. in
|
|
// result side of banding) of these entries.
|
|
Index occupied_count = banding.GetOccupiedCount();
|
|
banding.EnsureBacktrackSize(kNumToCheck);
|
|
EXPECT_FALSE(
|
|
banding.AddRangeOrRollBack(other_keys_begin, other_keys_end));
|
|
EXPECT_EQ(occupied_count, banding.GetOccupiedCount());
|
|
|
|
// Check that we still have a good chance of adding a couple more
|
|
// individually
|
|
first_single = banding.Add(*one_more);
|
|
second_single = banding.Add(*two_more);
|
|
Index more_added = (first_single ? 1 : 0) + (second_single ? 1 : 0);
|
|
total_single_failures += 2U - more_added;
|
|
|
|
// Or as a batch
|
|
batch_success = banding.AddRangeOrRollBack(batch_begin, batch_end);
|
|
if (batch_success) {
|
|
more_added += kBatchSize;
|
|
++total_batch_successes;
|
|
}
|
|
EXPECT_LE(banding.GetOccupiedCount(), occupied_count + more_added);
|
|
|
|
// Also verify that redundant adds are OK (no effect)
|
|
ASSERT_TRUE(
|
|
banding.AddRange(keys_begin, KeyGen(added_str, num_to_add / 8)));
|
|
EXPECT_LE(banding.GetOccupiedCount(), occupied_count + more_added);
|
|
|
|
// Now back-substitution
|
|
soln.BackSubstFrom(banding);
|
|
if (test_interleaved) {
|
|
isoln.BackSubstFrom(banding);
|
|
}
|
|
|
|
Seed reseeds = banding.GetOrdinalSeed();
|
|
total_reseeds += reseeds;
|
|
|
|
EXPECT_LE(reseeds, 8 + log2_thoroughness);
|
|
if (reseeds > log2_thoroughness + 1) {
|
|
fprintf(
|
|
stderr, "%s high reseeds at %u, %u/%u: %u\n",
|
|
reseeds > log2_thoroughness + 8 ? "ERROR Extremely" : "Somewhat",
|
|
static_cast<unsigned>(i), static_cast<unsigned>(num_to_add),
|
|
static_cast<unsigned>(num_slots), static_cast<unsigned>(reseeds));
|
|
}
|
|
hasher.SetOrdinalSeed(reseeds);
|
|
}
|
|
// soln and hasher now independent of Banding object
|
|
|
|
// Verify keys added
|
|
KeyGen cur = keys_begin;
|
|
while (cur != keys_end) {
|
|
ASSERT_TRUE(soln.FilterQuery(*cur, hasher));
|
|
ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*cur, hasher));
|
|
++cur;
|
|
}
|
|
// We (maybe) snuck these in!
|
|
if (first_single) {
|
|
ASSERT_TRUE(soln.FilterQuery(*one_more, hasher));
|
|
ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*one_more, hasher));
|
|
}
|
|
if (second_single) {
|
|
ASSERT_TRUE(soln.FilterQuery(*two_more, hasher));
|
|
ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*two_more, hasher));
|
|
}
|
|
if (batch_success) {
|
|
cur = batch_begin;
|
|
while (cur != batch_end) {
|
|
ASSERT_TRUE(soln.FilterQuery(*cur, hasher));
|
|
ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*cur, hasher));
|
|
++cur;
|
|
}
|
|
}
|
|
|
|
// Check FP rate (depends only on number of result bits == solution columns)
|
|
Index fp_count = 0;
|
|
cur = other_keys_begin;
|
|
{
|
|
ROCKSDB_NAMESPACE::StopWatchNano timer(ROCKSDB_NAMESPACE::Env::Default(),
|
|
true);
|
|
while (cur != other_keys_end) {
|
|
bool fp = soln.FilterQuery(*cur, hasher);
|
|
fp_count += fp ? 1 : 0;
|
|
++cur;
|
|
}
|
|
soln_query_nanos += timer.ElapsedNanos();
|
|
soln_query_count += kNumToCheck;
|
|
}
|
|
{
|
|
double expected_fp_count = soln.ExpectedFpRate() * kNumToCheck;
|
|
// For expected FP rate, also include false positives due to collisions
|
|
// in Hash value. (Negligible for 64-bit, can matter for 32-bit.)
|
|
double correction =
|
|
kNumToCheck * ExpectedCollisionFpRate(hasher, num_to_add);
|
|
EXPECT_LE(fp_count,
|
|
FrequentPoissonUpperBound(expected_fp_count + correction));
|
|
EXPECT_GE(fp_count,
|
|
FrequentPoissonLowerBound(expected_fp_count + correction));
|
|
}
|
|
total_fp_count += fp_count;
|
|
|
|
// And also check FP rate for isoln
|
|
if (test_interleaved) {
|
|
Index ifp_count = 0;
|
|
cur = other_keys_begin;
|
|
ROCKSDB_NAMESPACE::StopWatchNano timer(ROCKSDB_NAMESPACE::Env::Default(),
|
|
true);
|
|
while (cur != other_keys_end) {
|
|
ifp_count += isoln.FilterQuery(*cur, hasher) ? 1 : 0;
|
|
++cur;
|
|
}
|
|
isoln_query_nanos += timer.ElapsedNanos();
|
|
isoln_query_count += kNumToCheck;
|
|
{
|
|
double expected_fp_count = isoln.ExpectedFpRate() * kNumToCheck;
|
|
// For expected FP rate, also include false positives due to collisions
|
|
// in Hash value. (Negligible for 64-bit, can matter for 32-bit.)
|
|
double correction =
|
|
kNumToCheck * ExpectedCollisionFpRate(hasher, num_to_add);
|
|
EXPECT_LE(ifp_count,
|
|
FrequentPoissonUpperBound(expected_fp_count + correction));
|
|
EXPECT_GE(ifp_count,
|
|
FrequentPoissonLowerBound(expected_fp_count + correction));
|
|
}
|
|
// Since the bits used in isoln are a subset of the bits used in soln,
|
|
// it cannot have fewer FPs
|
|
EXPECT_GE(ifp_count, fp_count);
|
|
}
|
|
|
|
// And compare to Bloom time, for fun
|
|
if (ibytes >= /* minimum Bloom impl bytes*/ 64) {
|
|
Index bfp_count = 0;
|
|
cur = other_keys_begin;
|
|
ROCKSDB_NAMESPACE::StopWatchNano timer(ROCKSDB_NAMESPACE::Env::Default(),
|
|
true);
|
|
while (cur != other_keys_end) {
|
|
uint64_t h = hasher.GetHash(*cur);
|
|
uint32_t h1 = ROCKSDB_NAMESPACE::Lower32of64(h);
|
|
uint32_t h2 = sizeof(Hash) >= 8 ? ROCKSDB_NAMESPACE::Upper32of64(h)
|
|
: h1 * 0x9e3779b9;
|
|
bfp_count += ROCKSDB_NAMESPACE::FastLocalBloomImpl::HashMayMatch(
|
|
h1, h2, static_cast<uint32_t>(ibytes), 6, idata.get())
|
|
? 1
|
|
: 0;
|
|
++cur;
|
|
}
|
|
bloom_query_nanos += timer.ElapsedNanos();
|
|
// ensure bfp_count is used
|
|
ASSERT_LT(bfp_count, kNumToCheck);
|
|
}
|
|
}
|
|
|
|
// "outside" == key not in original set so either negative or false positive
|
|
fprintf(stderr, "Simple outside query, hot, incl hashing, ns/key: %g\n",
|
|
1.0 * soln_query_nanos / soln_query_count);
|
|
fprintf(stderr, "Interleaved outside query, hot, incl hashing, ns/key: %g\n",
|
|
1.0 * isoln_query_nanos / isoln_query_count);
|
|
fprintf(stderr, "Bloom outside query, hot, incl hashing, ns/key: %g\n",
|
|
1.0 * bloom_query_nanos / soln_query_count);
|
|
|
|
{
|
|
double average_reseeds = 1.0 * total_reseeds / FLAGS_thoroughness;
|
|
fprintf(stderr, "Average re-seeds: %g\n", average_reseeds);
|
|
// Values above were chosen to target around 50% chance of encoding success
|
|
// rate (average of 1.0 re-seeds) or slightly better. But 1.15 is also close
|
|
// enough.
|
|
EXPECT_LE(total_reseeds,
|
|
InfrequentPoissonUpperBound(1.15 * FLAGS_thoroughness));
|
|
// Would use 0.85 here instead of 0.75, but
|
|
// TypesAndSettings_Hash32_SmallKeyGen can "beat the odds" because of
|
|
// sequential keys with a small, cheap hash function. We accept that
|
|
// there are surely inputs that are somewhat bad for this setup, but
|
|
// these somewhat good inputs are probably more likely.
|
|
EXPECT_GE(total_reseeds,
|
|
InfrequentPoissonLowerBound(0.75 * FLAGS_thoroughness));
|
|
}
|
|
|
|
{
|
|
uint64_t total_singles = 2 * FLAGS_thoroughness;
|
|
double single_failure_rate = 1.0 * total_single_failures / total_singles;
|
|
fprintf(stderr, "Add'l single, failure rate: %g\n", single_failure_rate);
|
|
// A rough bound (one sided) based on nothing in particular
|
|
double expected_single_failures =
|
|
1.0 * total_singles /
|
|
(sizeof(CoeffRow) == 16 ? 128 : TypeParam::kUseSmash ? 64 : 32);
|
|
EXPECT_LE(total_single_failures,
|
|
InfrequentPoissonUpperBound(expected_single_failures));
|
|
}
|
|
|
|
{
|
|
// Counting successes here for Poisson to approximate the Binomial
|
|
// distribution.
|
|
// A rough bound (one sided) based on nothing in particular.
|
|
double expected_batch_successes = 1.0 * FLAGS_thoroughness / 2;
|
|
uint64_t lower_bound =
|
|
InfrequentPoissonLowerBound(expected_batch_successes);
|
|
fprintf(stderr, "Add'l batch, success rate: %g (>= %g)\n",
|
|
1.0 * total_batch_successes / FLAGS_thoroughness,
|
|
1.0 * lower_bound / FLAGS_thoroughness);
|
|
EXPECT_GE(total_batch_successes, lower_bound);
|
|
}
|
|
|
|
{
|
|
uint64_t total_checked = uint64_t{kNumToCheck} * FLAGS_thoroughness;
|
|
double expected_total_fp_count =
|
|
total_checked * std::pow(0.5, 8U * sizeof(ResultRow));
|
|
// For expected FP rate, also include false positives due to collisions
|
|
// in Hash value. (Negligible for 64-bit, can matter for 32-bit.)
|
|
double average_added = 1.0 * total_added / FLAGS_thoroughness;
|
|
expected_total_fp_count +=
|
|
total_checked * ExpectedCollisionFpRate(Hasher(), average_added);
|
|
|
|
uint64_t upper_bound = InfrequentPoissonUpperBound(expected_total_fp_count);
|
|
uint64_t lower_bound = InfrequentPoissonLowerBound(expected_total_fp_count);
|
|
fprintf(stderr, "Average FP rate: %g (~= %g, <= %g, >= %g)\n",
|
|
1.0 * total_fp_count / total_checked,
|
|
expected_total_fp_count / total_checked,
|
|
1.0 * upper_bound / total_checked,
|
|
1.0 * lower_bound / total_checked);
|
|
EXPECT_LE(total_fp_count, upper_bound);
|
|
EXPECT_GE(total_fp_count, lower_bound);
|
|
}
|
|
}
|
|
|
|
TYPED_TEST(RibbonTypeParamTest, Extremes) {
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
|
|
IMPORT_RIBBON_IMPL_TYPES(TypeParam);
|
|
using KeyGen = typename TypeParam::KeyGen;
|
|
|
|
size_t bytes = 128 * 1024;
|
|
std::unique_ptr<char[]> buf(new char[bytes]);
|
|
InterleavedSoln isoln(buf.get(), bytes);
|
|
SimpleSoln soln;
|
|
Hasher hasher;
|
|
Banding banding;
|
|
|
|
// ########################################
|
|
// Add zero keys to minimal number of slots
|
|
KeyGen begin_and_end("foo", 123);
|
|
ASSERT_TRUE(banding.ResetAndFindSeedToSolve(
|
|
/*slots*/ kCoeffBits, begin_and_end, begin_and_end, /*first seed*/ 0,
|
|
/* seed mask*/ 0));
|
|
|
|
soln.BackSubstFrom(banding);
|
|
isoln.BackSubstFrom(banding);
|
|
|
|
// Because there's plenty of memory, we expect the interleaved solution to
|
|
// use maximum supported columns (same as simple solution)
|
|
ASSERT_EQ(isoln.GetUpperNumColumns(), 8U * sizeof(ResultRow));
|
|
ASSERT_EQ(isoln.GetUpperStartBlock(), 0U);
|
|
|
|
// Somewhat oddly, we expect same FP rate as if we had essentially filled
|
|
// up the slots.
|
|
constexpr Index kNumToCheck = 100000;
|
|
KeyGen other_keys_begin("not", 0);
|
|
KeyGen other_keys_end("not", kNumToCheck);
|
|
|
|
Index fp_count = 0;
|
|
KeyGen cur = other_keys_begin;
|
|
while (cur != other_keys_end) {
|
|
bool isoln_query_result = isoln.FilterQuery(*cur, hasher);
|
|
bool soln_query_result = soln.FilterQuery(*cur, hasher);
|
|
// Solutions are equivalent
|
|
ASSERT_EQ(isoln_query_result, soln_query_result);
|
|
// And in fact we only expect an FP when ResultRow is 0
|
|
// CHANGE: no longer true because of filling some unused slots
|
|
// with pseudorandom values.
|
|
// ASSERT_EQ(soln_query_result, hasher.GetResultRowFromHash(
|
|
// hasher.GetHash(*cur)) == ResultRow{0});
|
|
fp_count += soln_query_result ? 1 : 0;
|
|
++cur;
|
|
}
|
|
{
|
|
ASSERT_EQ(isoln.ExpectedFpRate(), soln.ExpectedFpRate());
|
|
double expected_fp_count = isoln.ExpectedFpRate() * kNumToCheck;
|
|
EXPECT_LE(fp_count, InfrequentPoissonUpperBound(expected_fp_count));
|
|
EXPECT_GE(fp_count, InfrequentPoissonLowerBound(expected_fp_count));
|
|
}
|
|
|
|
// ######################################################
|
|
// Use zero bytes for interleaved solution (key(s) added)
|
|
|
|
// Add one key
|
|
KeyGen key_begin("added", 0);
|
|
KeyGen key_end("added", 1);
|
|
ASSERT_TRUE(banding.ResetAndFindSeedToSolve(
|
|
/*slots*/ kCoeffBits, key_begin, key_end, /*first seed*/ 0,
|
|
/* seed mask*/ 0));
|
|
|
|
InterleavedSoln isoln2(nullptr, /*bytes*/ 0);
|
|
|
|
isoln2.BackSubstFrom(banding);
|
|
|
|
ASSERT_EQ(isoln2.GetUpperNumColumns(), 0U);
|
|
ASSERT_EQ(isoln2.GetUpperStartBlock(), 0U);
|
|
|
|
// All queries return true
|
|
ASSERT_TRUE(isoln2.FilterQuery(*other_keys_begin, hasher));
|
|
ASSERT_EQ(isoln2.ExpectedFpRate(), 1.0);
|
|
}
|
|
|
|
TEST(RibbonTest, AllowZeroStarts) {
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings_AllowZeroStarts);
|
|
IMPORT_RIBBON_IMPL_TYPES(TypesAndSettings_AllowZeroStarts);
|
|
using KeyGen = StandardKeyGen;
|
|
|
|
InterleavedSoln isoln(nullptr, /*bytes*/ 0);
|
|
SimpleSoln soln;
|
|
Hasher hasher;
|
|
Banding banding;
|
|
|
|
KeyGen begin("foo", 0);
|
|
KeyGen end("foo", 1);
|
|
// Can't add 1 entry
|
|
ASSERT_FALSE(banding.ResetAndFindSeedToSolve(/*slots*/ 0, begin, end));
|
|
|
|
KeyGen begin_and_end("foo", 123);
|
|
// Can add 0 entries
|
|
ASSERT_TRUE(banding.ResetAndFindSeedToSolve(/*slots*/ 0, begin_and_end,
|
|
begin_and_end));
|
|
|
|
Seed reseeds = banding.GetOrdinalSeed();
|
|
ASSERT_EQ(reseeds, 0U);
|
|
hasher.SetOrdinalSeed(reseeds);
|
|
|
|
// Can construct 0-slot solutions
|
|
isoln.BackSubstFrom(banding);
|
|
soln.BackSubstFrom(banding);
|
|
|
|
// Should always return false
|
|
ASSERT_FALSE(isoln.FilterQuery(*begin, hasher));
|
|
ASSERT_FALSE(soln.FilterQuery(*begin, hasher));
|
|
|
|
// And report that in FP rate
|
|
ASSERT_EQ(isoln.ExpectedFpRate(), 0.0);
|
|
ASSERT_EQ(soln.ExpectedFpRate(), 0.0);
|
|
}
|
|
|
|
TEST(RibbonTest, RawAndOrdinalSeeds) {
|
|
StandardHasher<TypesAndSettings_Seed64> hasher64;
|
|
StandardHasher<DefaultTypesAndSettings> hasher64_32;
|
|
StandardHasher<TypesAndSettings_Hash32> hasher32;
|
|
StandardHasher<TypesAndSettings_Seed8> hasher8;
|
|
|
|
for (uint32_t limit : {0xffU, 0xffffU}) {
|
|
std::vector<bool> seen(limit + 1);
|
|
for (uint32_t i = 0; i < limit; ++i) {
|
|
hasher64.SetOrdinalSeed(i);
|
|
auto raw64 = hasher64.GetRawSeed();
|
|
hasher32.SetOrdinalSeed(i);
|
|
auto raw32 = hasher32.GetRawSeed();
|
|
hasher8.SetOrdinalSeed(static_cast<uint8_t>(i));
|
|
auto raw8 = hasher8.GetRawSeed();
|
|
{
|
|
hasher64_32.SetOrdinalSeed(i);
|
|
auto raw64_32 = hasher64_32.GetRawSeed();
|
|
ASSERT_EQ(raw64_32, raw32); // Same size seed
|
|
}
|
|
if (i == 0) {
|
|
// Documented that ordinal seed 0 == raw seed 0
|
|
ASSERT_EQ(raw64, 0U);
|
|
ASSERT_EQ(raw32, 0U);
|
|
ASSERT_EQ(raw8, 0U);
|
|
} else {
|
|
// Extremely likely that upper bits are set
|
|
ASSERT_GT(raw64, raw32);
|
|
ASSERT_GT(raw32, raw8);
|
|
}
|
|
// Hashers agree on lower bits
|
|
ASSERT_EQ(static_cast<uint32_t>(raw64), raw32);
|
|
ASSERT_EQ(static_cast<uint8_t>(raw32), raw8);
|
|
|
|
// The translation is one-to-one for this size prefix
|
|
uint32_t v = static_cast<uint32_t>(raw32 & limit);
|
|
ASSERT_EQ(raw64 & limit, v);
|
|
ASSERT_FALSE(seen[v]);
|
|
seen[v] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct PhsfInputGen {
|
|
PhsfInputGen(const std::string& prefix, uint64_t id) : id_(id) {
|
|
val_.first = prefix;
|
|
ROCKSDB_NAMESPACE::PutFixed64(&val_.first, /*placeholder*/ 0);
|
|
}
|
|
|
|
// Prefix (only one required)
|
|
PhsfInputGen& operator++() {
|
|
++id_;
|
|
return *this;
|
|
}
|
|
|
|
const std::pair<std::string, uint8_t>& operator*() {
|
|
// Use multiplication to mix things up a little in the key
|
|
ROCKSDB_NAMESPACE::EncodeFixed64(&val_.first[val_.first.size() - 8],
|
|
id_ * uint64_t{0x1500000001});
|
|
// Occasionally repeat values etc.
|
|
val_.second = static_cast<uint8_t>(id_ * 7 / 8);
|
|
return val_;
|
|
}
|
|
|
|
const std::pair<std::string, uint8_t>* operator->() { return &**this; }
|
|
|
|
bool operator==(const PhsfInputGen& other) {
|
|
// Same prefix is assumed
|
|
return id_ == other.id_;
|
|
}
|
|
bool operator!=(const PhsfInputGen& other) {
|
|
// Same prefix is assumed
|
|
return id_ != other.id_;
|
|
}
|
|
|
|
uint64_t id_;
|
|
std::pair<std::string, uint8_t> val_;
|
|
};
|
|
|
|
struct PhsfTypesAndSettings : public DefaultTypesAndSettings {
|
|
static constexpr bool kIsFilter = false;
|
|
};
|
|
} // namespace
|
|
|
|
TEST(RibbonTest, PhsfBasic) {
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(PhsfTypesAndSettings);
|
|
IMPORT_RIBBON_IMPL_TYPES(PhsfTypesAndSettings);
|
|
|
|
Index num_slots = 12800;
|
|
Index num_to_add = static_cast<Index>(num_slots / 1.02);
|
|
|
|
PhsfInputGen begin("in", 0);
|
|
PhsfInputGen end("in", num_to_add);
|
|
|
|
std::unique_ptr<char[]> idata(new char[/*bytes*/ num_slots]);
|
|
InterleavedSoln isoln(idata.get(), /*bytes*/ num_slots);
|
|
SimpleSoln soln;
|
|
Hasher hasher;
|
|
|
|
{
|
|
Banding banding;
|
|
ASSERT_TRUE(banding.ResetAndFindSeedToSolve(num_slots, begin, end));
|
|
|
|
soln.BackSubstFrom(banding);
|
|
isoln.BackSubstFrom(banding);
|
|
|
|
hasher.SetOrdinalSeed(banding.GetOrdinalSeed());
|
|
}
|
|
|
|
for (PhsfInputGen cur = begin; cur != end; ++cur) {
|
|
ASSERT_EQ(cur->second, soln.PhsfQuery(cur->first, hasher));
|
|
ASSERT_EQ(cur->second, isoln.PhsfQuery(cur->first, hasher));
|
|
}
|
|
}
|
|
|
|
// Not a real test, but a tool used to build GetNumSlotsFor95PctSuccess
|
|
TYPED_TEST(RibbonTypeParamTest, FindOccupancyForSuccessRate) {
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
|
|
IMPORT_RIBBON_IMPL_TYPES(TypeParam);
|
|
using KeyGen = typename TypeParam::KeyGen;
|
|
|
|
if (!FLAGS_find_occ) {
|
|
fprintf(stderr, "Tool disabled during unit test runs\n");
|
|
return;
|
|
}
|
|
|
|
KeyGen cur("blah", 0);
|
|
|
|
Banding banding;
|
|
Index num_slots = InterleavedSoln::RoundUpNumSlots(FLAGS_find_min_slots);
|
|
while (num_slots < FLAGS_find_max_slots) {
|
|
double factor = 0.95;
|
|
double delta = FLAGS_find_delta_start;
|
|
while (delta > FLAGS_find_delta_end) {
|
|
Index num_to_add = static_cast<Index>(factor * num_slots);
|
|
KeyGen end = cur;
|
|
end += num_to_add;
|
|
bool success = banding.ResetAndFindSeedToSolve(num_slots, cur, end, 0, 0);
|
|
cur = end; // fresh keys
|
|
if (success) {
|
|
factor += delta * (1.0 - FLAGS_find_success);
|
|
factor = std::min(factor, 1.0);
|
|
} else {
|
|
factor -= delta * FLAGS_find_success;
|
|
factor = std::max(factor, 0.0);
|
|
}
|
|
delta *= FLAGS_find_delta_shrink;
|
|
fprintf(stderr,
|
|
"slots: %u log2_slots: %g target_success: %g ->overhead: %g\r",
|
|
static_cast<unsigned>(num_slots),
|
|
std::log(num_slots * 1.0) / std::log(2.0), FLAGS_find_success,
|
|
1.0 / factor);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
|
|
num_slots = std::max(
|
|
num_slots + 1, static_cast<Index>(num_slots * FLAGS_find_next_factor));
|
|
num_slots = InterleavedSoln::RoundUpNumSlots(num_slots);
|
|
}
|
|
}
|
|
|
|
// TODO: unit tests for configuration APIs
|
|
// TODO: unit tests for small filter FP rates
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
#ifdef GFLAGS
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
#endif // GFLAGS
|
|
return RUN_ALL_TESTS();
|
|
}
|