rocksdb/db/db_basic_test.cc
Yanqin Jin 9bfd46d0d8 Let best-efforts recovery ignore CURRENT file (#6970)
Summary:
Best-efforts recovery does not check the content of CURRENT file to determine which MANIFEST to recover from. However, it still checks the presence of CURRENT file to determine whether to create a new DB during `open()`. Therefore, we can tweak the logic in `open()` a little bit so that best-efforts recovery does not rely on CURRENT file at all.

Test plan (dev server):
make check
./db_basic_test --gtest_filter=DBBasicTest.RecoverWithNoCurrentFile
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6970

Reviewed By: anand1976

Differential Revision: D22013990

Pulled By: riversand963

fbshipit-source-id: db552a1868c60ed70e1f7cd252a3a076eb8ea58f
2020-06-15 14:11:24 -07:00

3065 lines
100 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_test_util.h"
#include "port/stack_trace.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/utilities/debug.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/block_builder.h"
#include "test_util/fault_injection_test_env.h"
#if !defined(ROCKSDB_LITE)
#include "test_util/sync_point.h"
#endif
#include "utilities/merge_operators.h"
#include "utilities/merge_operators/string_append/stringappend.h"
namespace ROCKSDB_NAMESPACE {
class DBBasicTest : public DBTestBase {
public:
DBBasicTest() : DBTestBase("/db_basic_test") {}
};
TEST_F(DBBasicTest, OpenWhenOpen) {
Options options = CurrentOptions();
options.env = env_;
ROCKSDB_NAMESPACE::DB* db2 = nullptr;
ROCKSDB_NAMESPACE::Status s = DB::Open(options, dbname_, &db2);
ASSERT_EQ(Status::Code::kIOError, s.code());
ASSERT_EQ(Status::SubCode::kNone, s.subcode());
ASSERT_TRUE(strstr(s.getState(), "lock ") != nullptr);
delete db2;
}
TEST_F(DBBasicTest, UniqueSession) {
Options options = CurrentOptions();
std::string sid1, sid2, sid3, sid4;
db_->GetDbSessionId(sid1);
Reopen(options);
db_->GetDbSessionId(sid2);
ASSERT_OK(Put("foo", "v1"));
db_->GetDbSessionId(sid4);
Reopen(options);
db_->GetDbSessionId(sid3);
ASSERT_NE(sid1, sid2);
ASSERT_NE(sid1, sid3);
ASSERT_NE(sid2, sid3);
ASSERT_EQ(sid2, sid4);
#ifndef ROCKSDB_LITE
Close();
ASSERT_OK(ReadOnlyReopen(options));
db_->GetDbSessionId(sid1);
// Test uniqueness between readonly open (sid1) and regular open (sid3)
ASSERT_NE(sid1, sid3);
Close();
ASSERT_OK(ReadOnlyReopen(options));
db_->GetDbSessionId(sid2);
ASSERT_EQ("v1", Get("foo"));
db_->GetDbSessionId(sid3);
ASSERT_NE(sid1, sid2);
ASSERT_EQ(sid2, sid3);
#endif // ROCKSDB_LITE
CreateAndReopenWithCF({"goku"}, options);
db_->GetDbSessionId(sid1);
ASSERT_OK(Put("bar", "e1"));
db_->GetDbSessionId(sid2);
ASSERT_EQ("e1", Get("bar"));
db_->GetDbSessionId(sid3);
ReopenWithColumnFamilies({"default", "goku"}, options);
db_->GetDbSessionId(sid4);
ASSERT_EQ(sid1, sid2);
ASSERT_EQ(sid2, sid3);
ASSERT_NE(sid1, sid4);
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, ReadOnlyDB) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Close();
auto options = CurrentOptions();
assert(options.env == env_);
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
Iterator* iter = db_->NewIterator(ReadOptions());
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
++count;
}
ASSERT_EQ(count, 2);
delete iter;
Close();
// Reopen and flush memtable.
Reopen(options);
Flush();
Close();
// Now check keys in read only mode.
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_TRUE(db_->SyncWAL().IsNotSupported());
}
TEST_F(DBBasicTest, ReadOnlyDBWithWriteDBIdToManifestSet) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Close();
auto options = CurrentOptions();
options.write_dbid_to_manifest = true;
assert(options.env == env_);
ASSERT_OK(ReadOnlyReopen(options));
std::string db_id1;
db_->GetDbIdentity(db_id1);
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
Iterator* iter = db_->NewIterator(ReadOptions());
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
++count;
}
ASSERT_EQ(count, 2);
delete iter;
Close();
// Reopen and flush memtable.
Reopen(options);
Flush();
Close();
// Now check keys in read only mode.
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_TRUE(db_->SyncWAL().IsNotSupported());
std::string db_id2;
db_->GetDbIdentity(db_id2);
ASSERT_EQ(db_id1, db_id2);
}
TEST_F(DBBasicTest, CompactedDB) {
const uint64_t kFileSize = 1 << 20;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = kFileSize;
options.target_file_size_base = kFileSize;
options.max_bytes_for_level_base = 1 << 30;
options.compression = kNoCompression;
Reopen(options);
// 1 L0 file, use CompactedDB if max_open_files = -1
ASSERT_OK(Put("aaa", DummyString(kFileSize / 2, '1')));
Flush();
Close();
ASSERT_OK(ReadOnlyReopen(options));
Status s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported operation in read only mode.");
ASSERT_EQ(DummyString(kFileSize / 2, '1'), Get("aaa"));
Close();
options.max_open_files = -1;
ASSERT_OK(ReadOnlyReopen(options));
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported in compacted db mode.");
ASSERT_EQ(DummyString(kFileSize / 2, '1'), Get("aaa"));
Close();
Reopen(options);
// Add more L0 files
ASSERT_OK(Put("bbb", DummyString(kFileSize / 2, '2')));
Flush();
ASSERT_OK(Put("aaa", DummyString(kFileSize / 2, 'a')));
Flush();
ASSERT_OK(Put("bbb", DummyString(kFileSize / 2, 'b')));
ASSERT_OK(Put("eee", DummyString(kFileSize / 2, 'e')));
Flush();
Close();
ASSERT_OK(ReadOnlyReopen(options));
// Fallback to read-only DB
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported operation in read only mode.");
Close();
// Full compaction
Reopen(options);
// Add more keys
ASSERT_OK(Put("fff", DummyString(kFileSize / 2, 'f')));
ASSERT_OK(Put("hhh", DummyString(kFileSize / 2, 'h')));
ASSERT_OK(Put("iii", DummyString(kFileSize / 2, 'i')));
ASSERT_OK(Put("jjj", DummyString(kFileSize / 2, 'j')));
db_->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_EQ(3, NumTableFilesAtLevel(1));
Close();
// CompactedDB
ASSERT_OK(ReadOnlyReopen(options));
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported in compacted db mode.");
ASSERT_EQ("NOT_FOUND", Get("abc"));
ASSERT_EQ(DummyString(kFileSize / 2, 'a'), Get("aaa"));
ASSERT_EQ(DummyString(kFileSize / 2, 'b'), Get("bbb"));
ASSERT_EQ("NOT_FOUND", Get("ccc"));
ASSERT_EQ(DummyString(kFileSize / 2, 'e'), Get("eee"));
ASSERT_EQ(DummyString(kFileSize / 2, 'f'), Get("fff"));
ASSERT_EQ("NOT_FOUND", Get("ggg"));
ASSERT_EQ(DummyString(kFileSize / 2, 'h'), Get("hhh"));
ASSERT_EQ(DummyString(kFileSize / 2, 'i'), Get("iii"));
ASSERT_EQ(DummyString(kFileSize / 2, 'j'), Get("jjj"));
ASSERT_EQ("NOT_FOUND", Get("kkk"));
// MultiGet
std::vector<std::string> values;
std::vector<Status> status_list = dbfull()->MultiGet(
ReadOptions(),
std::vector<Slice>({Slice("aaa"), Slice("ccc"), Slice("eee"),
Slice("ggg"), Slice("iii"), Slice("kkk")}),
&values);
ASSERT_EQ(status_list.size(), static_cast<uint64_t>(6));
ASSERT_EQ(values.size(), static_cast<uint64_t>(6));
ASSERT_OK(status_list[0]);
ASSERT_EQ(DummyString(kFileSize / 2, 'a'), values[0]);
ASSERT_TRUE(status_list[1].IsNotFound());
ASSERT_OK(status_list[2]);
ASSERT_EQ(DummyString(kFileSize / 2, 'e'), values[2]);
ASSERT_TRUE(status_list[3].IsNotFound());
ASSERT_OK(status_list[4]);
ASSERT_EQ(DummyString(kFileSize / 2, 'i'), values[4]);
ASSERT_TRUE(status_list[5].IsNotFound());
Reopen(options);
// Add a key
ASSERT_OK(Put("fff", DummyString(kFileSize / 2, 'f')));
Close();
ASSERT_OK(ReadOnlyReopen(options));
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported operation in read only mode.");
}
TEST_F(DBBasicTest, LevelLimitReopen) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
const std::string value(1024 * 1024, ' ');
int i = 0;
while (NumTableFilesAtLevel(2, 1) == 0) {
ASSERT_OK(Put(1, Key(i++), value));
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
}
options.num_levels = 1;
options.max_bytes_for_level_multiplier_additional.resize(1, 1);
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ(s.IsInvalidArgument(), true);
ASSERT_EQ(s.ToString(),
"Invalid argument: db has more levels than options.num_levels");
options.num_levels = 10;
options.max_bytes_for_level_multiplier_additional.resize(10, 1);
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
#endif // ROCKSDB_LITE
TEST_F(DBBasicTest, PutDeleteGet) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_OK(Delete(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBBasicTest, PutSingleDeleteGet) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo2", "v2"));
ASSERT_EQ("v2", Get(1, "foo2"));
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
// Ski FIFO and universal compaction because they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBBasicTest, EmptyFlush) {
// It is possible to produce empty flushes when using single deletes. Tests
// whether empty flushes cause issues.
do {
Random rnd(301);
Options options = CurrentOptions();
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "a", Slice());
SingleDelete(1, "a");
ASSERT_OK(Flush(1));
ASSERT_EQ("[ ]", AllEntriesFor("a", 1));
// Skip FIFO and universal compaction as they do not apply to the test
// case. Skip MergePut because merges cannot be combined with single
// deletions.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBBasicTest, GetFromVersions) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(0, "foo"));
} while (ChangeOptions());
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, GetSnapshot) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
// Try with both a short key and a long key
for (int i = 0; i < 2; i++) {
std::string key = (i == 0) ? std::string("foo") : std::string(200, 'x');
ASSERT_OK(Put(1, key, "v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(Put(1, key, "v2"));
ASSERT_EQ("v2", Get(1, key));
ASSERT_EQ("v1", Get(1, key, s1));
ASSERT_OK(Flush(1));
ASSERT_EQ("v2", Get(1, key));
ASSERT_EQ("v1", Get(1, key, s1));
db_->ReleaseSnapshot(s1);
}
} while (ChangeOptions());
}
#endif // ROCKSDB_LITE
TEST_F(DBBasicTest, CheckLock) {
do {
DB* localdb;
Options options = CurrentOptions();
ASSERT_OK(TryReopen(options));
// second open should fail
Status s = DB::Open(options, dbname_, &localdb);
ASSERT_NOK(s);
#ifdef OS_LINUX
ASSERT_TRUE(s.ToString().find("lock hold by current process") !=
std::string::npos);
#endif // OS_LINUX
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, FlushMultipleMemtable) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
options.max_write_buffer_size_to_maintain = -1;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
ASSERT_OK(Flush(1));
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, FlushEmptyColumnFamily) {
// Block flush thread and disable compaction thread
env_->SetBackgroundThreads(1, Env::HIGH);
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
test::SleepingBackgroundTask sleeping_task_high;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_high, Env::Priority::HIGH);
Options options = CurrentOptions();
// disable compaction
options.disable_auto_compactions = true;
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 2;
options.min_write_buffer_number_to_merge = 1;
options.max_write_buffer_size_to_maintain =
static_cast<int64_t>(options.write_buffer_size);
CreateAndReopenWithCF({"pikachu"}, options);
// Compaction can still go through even if no thread can flush the
// mem table.
ASSERT_OK(Flush(0));
ASSERT_OK(Flush(1));
// Insert can go through
ASSERT_OK(dbfull()->Put(writeOpt, handles_[0], "foo", "v1"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ASSERT_EQ("v1", Get(0, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
sleeping_task_high.WakeUp();
sleeping_task_high.WaitUntilDone();
// Flush can still go through.
ASSERT_OK(Flush(0));
ASSERT_OK(Flush(1));
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBBasicTest, Flush) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
SetPerfLevel(kEnableTime);
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
// this will now also flush the last 2 writes
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
get_perf_context()->Reset();
Get(1, "foo");
ASSERT_TRUE((int)get_perf_context()->get_from_output_files_time > 0);
ASSERT_EQ(2, (int)get_perf_context()->get_read_bytes);
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v2"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v2"));
ASSERT_OK(Flush(1));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v2", Get(1, "bar"));
get_perf_context()->Reset();
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_TRUE((int)get_perf_context()->get_from_output_files_time > 0);
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v3"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v3"));
ASSERT_OK(Flush(1));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
// 'foo' should be there because its put
// has WAL enabled.
ASSERT_EQ("v3", Get(1, "foo"));
ASSERT_EQ("v3", Get(1, "bar"));
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, ManifestRollOver) {
do {
Options options;
options.max_manifest_file_size = 10; // 10 bytes
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, options);
{
ASSERT_OK(Put(1, "manifest_key1", std::string(1000, '1')));
ASSERT_OK(Put(1, "manifest_key2", std::string(1000, '2')));
ASSERT_OK(Put(1, "manifest_key3", std::string(1000, '3')));
uint64_t manifest_before_flush = dbfull()->TEST_Current_Manifest_FileNo();
ASSERT_OK(Flush(1)); // This should trigger LogAndApply.
uint64_t manifest_after_flush = dbfull()->TEST_Current_Manifest_FileNo();
ASSERT_GT(manifest_after_flush, manifest_before_flush);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_GT(dbfull()->TEST_Current_Manifest_FileNo(), manifest_after_flush);
// check if a new manifest file got inserted or not.
ASSERT_EQ(std::string(1000, '1'), Get(1, "manifest_key1"));
ASSERT_EQ(std::string(1000, '2'), Get(1, "manifest_key2"));
ASSERT_EQ(std::string(1000, '3'), Get(1, "manifest_key3"));
}
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, IdentityAcrossRestarts1) {
do {
std::string id1;
ASSERT_OK(db_->GetDbIdentity(id1));
Options options = CurrentOptions();
Reopen(options);
std::string id2;
ASSERT_OK(db_->GetDbIdentity(id2));
// id1 should match id2 because identity was not regenerated
ASSERT_EQ(id1.compare(id2), 0);
std::string idfilename = IdentityFileName(dbname_);
ASSERT_OK(env_->DeleteFile(idfilename));
Reopen(options);
std::string id3;
ASSERT_OK(db_->GetDbIdentity(id3));
if (options.write_dbid_to_manifest) {
ASSERT_EQ(id1.compare(id3), 0);
} else {
// id1 should NOT match id3 because identity was regenerated
ASSERT_NE(id1.compare(id3), 0);
}
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, IdentityAcrossRestarts2) {
do {
std::string id1;
ASSERT_OK(db_->GetDbIdentity(id1));
Options options = CurrentOptions();
options.write_dbid_to_manifest = true;
Reopen(options);
std::string id2;
ASSERT_OK(db_->GetDbIdentity(id2));
// id1 should match id2 because identity was not regenerated
ASSERT_EQ(id1.compare(id2), 0);
std::string idfilename = IdentityFileName(dbname_);
ASSERT_OK(env_->DeleteFile(idfilename));
Reopen(options);
std::string id3;
ASSERT_OK(db_->GetDbIdentity(id3));
// id1 should NOT match id3 because identity was regenerated
ASSERT_EQ(id1, id3);
} while (ChangeCompactOptions());
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, Snapshot) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
Put(0, "foo", "0v1");
Put(1, "foo", "1v1");
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_EQ(1U, GetNumSnapshots());
uint64_t time_snap1 = GetTimeOldestSnapshots();
ASSERT_GT(time_snap1, 0U);
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
Put(0, "foo", "0v2");
Put(1, "foo", "1v2");
env_->addon_time_.fetch_add(1);
const Snapshot* s2 = db_->GetSnapshot();
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
Put(0, "foo", "0v3");
Put(1, "foo", "1v3");
{
ManagedSnapshot s3(db_);
ASSERT_EQ(3U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
Put(0, "foo", "0v4");
Put(1, "foo", "1v4");
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v3", Get(0, "foo", s3.snapshot()));
ASSERT_EQ("1v3", Get(1, "foo", s3.snapshot()));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
}
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
ASSERT_EQ(1U, GetNumSnapshots());
ASSERT_LT(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s2->GetSequenceNumber());
db_->ReleaseSnapshot(s2);
ASSERT_EQ(0U, GetNumSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), 0);
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
} while (ChangeOptions());
}
#endif // ROCKSDB_LITE
TEST_F(DBBasicTest, CompactBetweenSnapshots) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
Options options = CurrentOptions(options_override);
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
FillLevels("a", "z", 1);
Put(1, "foo", "first");
const Snapshot* snapshot1 = db_->GetSnapshot();
Put(1, "foo", "second");
Put(1, "foo", "third");
Put(1, "foo", "fourth");
const Snapshot* snapshot2 = db_->GetSnapshot();
Put(1, "foo", "fifth");
Put(1, "foo", "sixth");
// All entries (including duplicates) exist
// before any compaction or flush is triggered.
ASSERT_EQ(AllEntriesFor("foo", 1),
"[ sixth, fifth, fourth, third, second, first ]");
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ("fourth", Get(1, "foo", snapshot2));
ASSERT_EQ("first", Get(1, "foo", snapshot1));
// After a flush, "second", "third" and "fifth" should
// be removed
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth, fourth, first ]");
// after we release the snapshot1, only two values left
db_->ReleaseSnapshot(snapshot1);
FillLevels("a", "z", 1);
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
// We have only one valid snapshot snapshot2. Since snapshot1 is
// not valid anymore, "first" should be removed by a compaction.
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ("fourth", Get(1, "foo", snapshot2));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth, fourth ]");
// after we release the snapshot2, only one value should be left
db_->ReleaseSnapshot(snapshot2);
FillLevels("a", "z", 1);
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth ]");
} while (ChangeOptions(kSkipFIFOCompaction));
}
TEST_F(DBBasicTest, DBOpen_Options) {
Options options = CurrentOptions();
Close();
Destroy(options);
// Does not exist, and create_if_missing == false: error
DB* db = nullptr;
options.create_if_missing = false;
Status s = DB::Open(options, dbname_, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does not exist, and create_if_missing == true: OK
options.create_if_missing = true;
s = DB::Open(options, dbname_, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
// Does exist, and error_if_exists == true: error
options.create_if_missing = false;
options.error_if_exists = true;
s = DB::Open(options, dbname_, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does exist, and error_if_exists == false: OK
options.create_if_missing = true;
options.error_if_exists = false;
s = DB::Open(options, dbname_, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
}
TEST_F(DBBasicTest, CompactOnFlush) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
Options options = CurrentOptions(options_override);
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "foo", "v1");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v1 ]");
// Write two new keys
Put(1, "a", "begin");
Put(1, "z", "end");
Flush(1);
// Case1: Delete followed by a put
Delete(1, "foo");
Put(1, "foo", "v2");
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, DEL, v1 ]");
// After the current memtable is flushed, the DEL should
// have been removed
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2 ]");
// Case 2: Delete followed by another delete
Delete(1, "foo");
Delete(1, "foo");
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, DEL, v2 ]");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v2 ]");
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 3: Put followed by a delete
Put(1, "foo", "v3");
Delete(1, "foo");
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v3 ]");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL ]");
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 4: Put followed by another Put
Put(1, "foo", "v4");
Put(1, "foo", "v5");
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v5, v4 ]");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v5 ]");
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v5 ]");
// clear database
Delete(1, "foo");
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 5: Put followed by snapshot followed by another Put
// Both puts should remain.
Put(1, "foo", "v6");
const Snapshot* snapshot = db_->GetSnapshot();
Put(1, "foo", "v7");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v7, v6 ]");
db_->ReleaseSnapshot(snapshot);
// clear database
Delete(1, "foo");
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 5: snapshot followed by a put followed by another Put
// Only the last put should remain.
const Snapshot* snapshot1 = db_->GetSnapshot();
Put(1, "foo", "v8");
Put(1, "foo", "v9");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v9 ]");
db_->ReleaseSnapshot(snapshot1);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, FlushOneColumnFamily) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
ASSERT_OK(Put(0, "Default", "Default"));
ASSERT_OK(Put(1, "pikachu", "pikachu"));
ASSERT_OK(Put(2, "ilya", "ilya"));
ASSERT_OK(Put(3, "muromec", "muromec"));
ASSERT_OK(Put(4, "dobrynia", "dobrynia"));
ASSERT_OK(Put(5, "nikitich", "nikitich"));
ASSERT_OK(Put(6, "alyosha", "alyosha"));
ASSERT_OK(Put(7, "popovich", "popovich"));
for (int i = 0; i < 8; ++i) {
Flush(i);
auto tables = ListTableFiles(env_, dbname_);
ASSERT_EQ(tables.size(), i + 1U);
}
}
TEST_F(DBBasicTest, MultiGetSimple) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k5", "v5"));
ASSERT_OK(Delete(1, "no_key"));
std::vector<Slice> keys({"k1", "k2", "k3", "k4", "k5", "no_key"});
std::vector<std::string> values(20, "Temporary data to be overwritten");
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
get_perf_context()->Reset();
std::vector<Status> s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(values[0], "v1");
ASSERT_EQ(values[1], "v2");
ASSERT_EQ(values[2], "v3");
ASSERT_EQ(values[4], "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(8, (int)get_perf_context()->multiget_read_bytes);
ASSERT_OK(s[0]);
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_TRUE(s[3].IsNotFound());
ASSERT_OK(s[4]);
ASSERT_TRUE(s[5].IsNotFound());
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, MultiGetEmpty) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
// Empty Key Set
std::vector<Slice> keys;
std::vector<std::string> values;
std::vector<ColumnFamilyHandle*> cfs;
std::vector<Status> s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(s.size(), 0U);
// Empty Database, Empty Key Set
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(s.size(), 0U);
// Empty Database, Search for Keys
keys.resize(2);
keys[0] = "a";
keys[1] = "b";
cfs.push_back(handles_[0]);
cfs.push_back(handles_[1]);
s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(static_cast<int>(s.size()), 2);
ASSERT_TRUE(s[0].IsNotFound() && s[1].IsNotFound());
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, ChecksumTest) {
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
// change when new checksum type added
int max_checksum = static_cast<int>(kxxHash64);
const int kNumPerFile = 2;
// generate one table with each type of checksum
for (int i = 0; i <= max_checksum; ++i) {
table_options.checksum = static_cast<ChecksumType>(i);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
for (int j = 0; j < kNumPerFile; ++j) {
ASSERT_OK(Put(Key(i * kNumPerFile + j), Key(i * kNumPerFile + j)));
}
ASSERT_OK(Flush());
}
// with each valid checksum type setting...
for (int i = 0; i <= max_checksum; ++i) {
table_options.checksum = static_cast<ChecksumType>(i);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
// verify every type of checksum (should be regardless of that setting)
for (int j = 0; j < (max_checksum + 1) * kNumPerFile; ++j) {
ASSERT_EQ(Key(j), Get(Key(j)));
}
}
}
// On Windows you can have either memory mapped file or a file
// with unbuffered access. So this asserts and does not make
// sense to run
#ifndef OS_WIN
TEST_F(DBBasicTest, MmapAndBufferOptions) {
if (!IsMemoryMappedAccessSupported()) {
return;
}
Options options = CurrentOptions();
options.use_direct_reads = true;
options.allow_mmap_reads = true;
ASSERT_NOK(TryReopen(options));
// All other combinations are acceptable
options.use_direct_reads = false;
ASSERT_OK(TryReopen(options));
if (IsDirectIOSupported()) {
options.use_direct_reads = true;
options.allow_mmap_reads = false;
ASSERT_OK(TryReopen(options));
}
options.use_direct_reads = false;
ASSERT_OK(TryReopen(options));
}
#endif
class TestEnv : public EnvWrapper {
public:
explicit TestEnv(Env* base_env) : EnvWrapper(base_env), close_count(0) {}
class TestLogger : public Logger {
public:
using Logger::Logv;
explicit TestLogger(TestEnv* env_ptr) : Logger() { env = env_ptr; }
~TestLogger() override {
if (!closed_) {
CloseHelper();
}
}
void Logv(const char* /*format*/, va_list /*ap*/) override {}
protected:
Status CloseImpl() override { return CloseHelper(); }
private:
Status CloseHelper() {
env->CloseCountInc();
;
return Status::IOError();
}
TestEnv* env;
};
void CloseCountInc() { close_count++; }
int GetCloseCount() { return close_count; }
Status NewLogger(const std::string& /*fname*/,
std::shared_ptr<Logger>* result) override {
result->reset(new TestLogger(this));
return Status::OK();
}
private:
int close_count;
};
TEST_F(DBBasicTest, DBClose) {
Options options = GetDefaultOptions();
std::string dbname = test::PerThreadDBPath("db_close_test");
ASSERT_OK(DestroyDB(dbname, options));
DB* db = nullptr;
TestEnv* env = new TestEnv(env_);
std::unique_ptr<TestEnv> local_env_guard(env);
options.create_if_missing = true;
options.env = env;
Status s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
s = db->Close();
ASSERT_EQ(env->GetCloseCount(), 1);
ASSERT_EQ(s, Status::IOError());
delete db;
ASSERT_EQ(env->GetCloseCount(), 1);
// Do not call DB::Close() and ensure our logger Close() still gets called
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
ASSERT_EQ(env->GetCloseCount(), 2);
// Provide our own logger and ensure DB::Close() does not close it
options.info_log.reset(new TestEnv::TestLogger(env));
options.create_if_missing = false;
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
s = db->Close();
ASSERT_EQ(s, Status::OK());
delete db;
ASSERT_EQ(env->GetCloseCount(), 2);
options.info_log.reset();
ASSERT_EQ(env->GetCloseCount(), 3);
}
TEST_F(DBBasicTest, DBCloseFlushError) {
std::unique_ptr<FaultInjectionTestEnv> fault_injection_env(
new FaultInjectionTestEnv(env_));
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.manual_wal_flush = true;
options.write_buffer_size = 100;
options.env = fault_injection_env.get();
Reopen(options);
ASSERT_OK(Put("key1", "value1"));
ASSERT_OK(Put("key2", "value2"));
ASSERT_OK(dbfull()->TEST_SwitchMemtable());
ASSERT_OK(Put("key3", "value3"));
fault_injection_env->SetFilesystemActive(false);
Status s = dbfull()->Close();
fault_injection_env->SetFilesystemActive(true);
ASSERT_NE(s, Status::OK());
Destroy(options);
}
class DBMultiGetTestWithParam : public DBBasicTest,
public testing::WithParamInterface<bool> {};
TEST_P(DBMultiGetTestWithParam, MultiGetMultiCF) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
// <CF, key, value> tuples
std::vector<std::tuple<int, std::string, std::string>> cf_kv_vec;
static const int num_keys = 24;
cf_kv_vec.reserve(num_keys);
for (int i = 0; i < num_keys; ++i) {
int cf = i / 3;
int cf_key = 1 % 3;
cf_kv_vec.emplace_back(std::make_tuple(
cf, "cf" + std::to_string(cf) + "_key_" + std::to_string(cf_key),
"cf" + std::to_string(cf) + "_val_" + std::to_string(cf_key)));
ASSERT_OK(Put(std::get<0>(cf_kv_vec[i]), std::get<1>(cf_kv_vec[i]),
std::get<2>(cf_kv_vec[i])));
}
int get_sv_count = 0;
ROCKSDB_NAMESPACE::DBImpl* db = reinterpret_cast<DBImpl*>(db_);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::AfterRefSV", [&](void* /*arg*/) {
if (++get_sv_count == 2) {
// After MultiGet refs a couple of CFs, flush all CFs so MultiGet
// is forced to repeat the process
for (int i = 0; i < num_keys; ++i) {
int cf = i / 3;
int cf_key = i % 8;
if (cf_key == 0) {
ASSERT_OK(Flush(cf));
}
ASSERT_OK(Put(std::get<0>(cf_kv_vec[i]), std::get<1>(cf_kv_vec[i]),
std::get<2>(cf_kv_vec[i]) + "_2"));
}
}
if (get_sv_count == 11) {
for (int i = 0; i < 8; ++i) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(
db->GetColumnFamilyHandle(i))
->cfd();
ASSERT_EQ(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<int> cfs;
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 0; i < num_keys; ++i) {
cfs.push_back(std::get<0>(cf_kv_vec[i]));
keys.push_back(std::get<1>(cf_kv_vec[i]));
}
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_EQ(values.size(), num_keys);
for (unsigned int j = 0; j < values.size(); ++j) {
ASSERT_EQ(values[j], std::get<2>(cf_kv_vec[j]) + "_2");
}
keys.clear();
cfs.clear();
cfs.push_back(std::get<0>(cf_kv_vec[0]));
keys.push_back(std::get<1>(cf_kv_vec[0]));
cfs.push_back(std::get<0>(cf_kv_vec[3]));
keys.push_back(std::get<1>(cf_kv_vec[3]));
cfs.push_back(std::get<0>(cf_kv_vec[4]));
keys.push_back(std::get<1>(cf_kv_vec[4]));
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_EQ(values[0], std::get<2>(cf_kv_vec[0]) + "_2");
ASSERT_EQ(values[1], std::get<2>(cf_kv_vec[3]) + "_2");
ASSERT_EQ(values[2], std::get<2>(cf_kv_vec[4]) + "_2");
keys.clear();
cfs.clear();
cfs.push_back(std::get<0>(cf_kv_vec[7]));
keys.push_back(std::get<1>(cf_kv_vec[7]));
cfs.push_back(std::get<0>(cf_kv_vec[6]));
keys.push_back(std::get<1>(cf_kv_vec[6]));
cfs.push_back(std::get<0>(cf_kv_vec[1]));
keys.push_back(std::get<1>(cf_kv_vec[1]));
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_EQ(values[0], std::get<2>(cf_kv_vec[7]) + "_2");
ASSERT_EQ(values[1], std::get<2>(cf_kv_vec[6]) + "_2");
ASSERT_EQ(values[2], std::get<2>(cf_kv_vec[1]) + "_2");
for (int cf = 0; cf < 8; ++cf) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(
reinterpret_cast<DBImpl*>(db_)->GetColumnFamilyHandle(cf))
->cfd();
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVObsolete);
}
}
TEST_P(DBMultiGetTestWithParam, MultiGetMultiCFMutex) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Put(i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val"));
}
int get_sv_count = 0;
int retries = 0;
bool last_try = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::LastTry", [&](void* /*arg*/) {
last_try = true;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::AfterRefSV", [&](void* /*arg*/) {
if (last_try) {
return;
}
if (++get_sv_count == 2) {
++retries;
get_sv_count = 0;
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Flush(i));
ASSERT_OK(Put(
i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val" + std::to_string(retries)));
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<int> cfs;
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 0; i < 8; ++i) {
cfs.push_back(i);
keys.push_back("cf" + std::to_string(i) + "_key");
}
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_TRUE(last_try);
ASSERT_EQ(values.size(), 8);
for (unsigned int j = 0; j < values.size(); ++j) {
ASSERT_EQ(values[j],
"cf" + std::to_string(j) + "_val" + std::to_string(retries));
}
for (int i = 0; i < 8; ++i) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(
reinterpret_cast<DBImpl*>(db_)->GetColumnFamilyHandle(i))
->cfd();
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
}
}
TEST_P(DBMultiGetTestWithParam, MultiGetMultiCFSnapshot) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Put(i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val"));
}
int get_sv_count = 0;
ROCKSDB_NAMESPACE::DBImpl* db = reinterpret_cast<DBImpl*>(db_);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::AfterRefSV", [&](void* /*arg*/) {
if (++get_sv_count == 2) {
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Flush(i));
ASSERT_OK(Put(i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val2"));
}
}
if (get_sv_count == 8) {
for (int i = 0; i < 8; ++i) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(
db->GetColumnFamilyHandle(i))
->cfd();
ASSERT_TRUE(
(cfd->TEST_GetLocalSV()->Get() == SuperVersion::kSVInUse) ||
(cfd->TEST_GetLocalSV()->Get() == SuperVersion::kSVObsolete));
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<int> cfs;
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 0; i < 8; ++i) {
cfs.push_back(i);
keys.push_back("cf" + std::to_string(i) + "_key");
}
const Snapshot* snapshot = db_->GetSnapshot();
values = MultiGet(cfs, keys, snapshot, GetParam());
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(values.size(), 8);
for (unsigned int j = 0; j < values.size(); ++j) {
ASSERT_EQ(values[j], "cf" + std::to_string(j) + "_val");
}
for (int i = 0; i < 8; ++i) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(
reinterpret_cast<DBImpl*>(db_)->GetColumnFamilyHandle(i))
->cfd();
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
}
}
INSTANTIATE_TEST_CASE_P(DBMultiGetTestWithParam, DBMultiGetTestWithParam,
testing::Bool());
TEST_F(DBBasicTest, MultiGetBatchedSimpleUnsorted) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k5", "v5"));
ASSERT_OK(Delete(1, "no_key"));
get_perf_context()->Reset();
std::vector<Slice> keys({"no_key", "k5", "k4", "k3", "k2", "k1"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), false);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[5].data(), values[5].size()), "v1");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v2");
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v3");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(8, (int)get_perf_context()->multiget_read_bytes);
ASSERT_TRUE(s[0].IsNotFound());
ASSERT_OK(s[1]);
ASSERT_TRUE(s[2].IsNotFound());
ASSERT_OK(s[3]);
ASSERT_OK(s[4]);
ASSERT_OK(s[5]);
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, MultiGetBatchedSortedMultiFile) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
// To expand the power of this test, generate > 1 table file and
// mix with memtable
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
Flush(1);
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
Flush(1);
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k5", "v5"));
ASSERT_OK(Delete(1, "no_key"));
get_perf_context()->Reset();
std::vector<Slice> keys({"k1", "k2", "k3", "k4", "k5", "no_key"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), true);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[0].data(), values[0].size()), "v1");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v2");
ASSERT_EQ(std::string(values[2].data(), values[2].size()), "v3");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(8, (int)get_perf_context()->multiget_read_bytes);
ASSERT_OK(s[0]);
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_TRUE(s[3].IsNotFound());
ASSERT_OK(s[4]);
ASSERT_TRUE(s[5].IsNotFound());
SetPerfLevel(kDisable);
} while (ChangeOptions());
}
TEST_F(DBBasicTest, MultiGetBatchedDuplicateKeys) {
Options opts = CurrentOptions();
opts.merge_operator = MergeOperators::CreateStringAppendOperator();
CreateAndReopenWithCF({"pikachu"}, opts);
SetPerfLevel(kEnableCount);
// To expand the power of this test, generate > 1 table file and
// mix with memtable
ASSERT_OK(Merge(1, "k1", "v1"));
ASSERT_OK(Merge(1, "k2", "v2"));
Flush(1);
MoveFilesToLevel(2, 1);
ASSERT_OK(Merge(1, "k3", "v3"));
ASSERT_OK(Merge(1, "k4", "v4"));
Flush(1);
MoveFilesToLevel(2, 1);
ASSERT_OK(Merge(1, "k4", "v4_2"));
ASSERT_OK(Merge(1, "k6", "v6"));
Flush(1);
MoveFilesToLevel(2, 1);
ASSERT_OK(Merge(1, "k7", "v7"));
ASSERT_OK(Merge(1, "k8", "v8"));
Flush(1);
MoveFilesToLevel(2, 1);
get_perf_context()->Reset();
std::vector<Slice> keys({"k8", "k8", "k8", "k4", "k4", "k1", "k3"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), false);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[0].data(), values[0].size()), "v8");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v8");
ASSERT_EQ(std::string(values[2].data(), values[2].size()), "v8");
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v4,v4_2");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v4,v4_2");
ASSERT_EQ(std::string(values[5].data(), values[5].size()), "v1");
ASSERT_EQ(std::string(values[6].data(), values[6].size()), "v3");
ASSERT_EQ(24, (int)get_perf_context()->multiget_read_bytes);
for (Status& status : s) {
ASSERT_OK(status);
}
SetPerfLevel(kDisable);
}
TEST_F(DBBasicTest, MultiGetBatchedMultiLevel) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
Reopen(options);
int num_keys = 0;
for (int i = 0; i < 128; ++i) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l2_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
MoveFilesToLevel(2);
for (int i = 0; i < 128; i += 3) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l1_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
MoveFilesToLevel(1);
for (int i = 0; i < 128; i += 5) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l0_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
ASSERT_EQ(0, num_keys);
for (int i = 0; i < 128; i += 9) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_mem_" + std::to_string(i)));
}
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 64; i < 80; ++i) {
keys.push_back("key_" + std::to_string(i));
}
values = MultiGet(keys, nullptr);
ASSERT_EQ(values.size(), 16);
for (unsigned int j = 0; j < values.size(); ++j) {
int key = j + 64;
if (key % 9 == 0) {
ASSERT_EQ(values[j], "val_mem_" + std::to_string(key));
} else if (key % 5 == 0) {
ASSERT_EQ(values[j], "val_l0_" + std::to_string(key));
} else if (key % 3 == 0) {
ASSERT_EQ(values[j], "val_l1_" + std::to_string(key));
} else {
ASSERT_EQ(values[j], "val_l2_" + std::to_string(key));
}
}
}
TEST_F(DBBasicTest, MultiGetBatchedMultiLevelMerge) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
Reopen(options);
int num_keys = 0;
for (int i = 0; i < 128; ++i) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l2_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
MoveFilesToLevel(2);
for (int i = 0; i < 128; i += 3) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l1_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
MoveFilesToLevel(1);
for (int i = 0; i < 128; i += 5) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l0_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
ASSERT_EQ(0, num_keys);
for (int i = 0; i < 128; i += 9) {
ASSERT_OK(
Merge("key_" + std::to_string(i), "val_mem_" + std::to_string(i)));
}
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 32; i < 80; ++i) {
keys.push_back("key_" + std::to_string(i));
}
values = MultiGet(keys, nullptr);
ASSERT_EQ(values.size(), keys.size());
for (unsigned int j = 0; j < 48; ++j) {
int key = j + 32;
std::string value;
value.append("val_l2_" + std::to_string(key));
if (key % 3 == 0) {
value.append(",");
value.append("val_l1_" + std::to_string(key));
}
if (key % 5 == 0) {
value.append(",");
value.append("val_l0_" + std::to_string(key));
}
if (key % 9 == 0) {
value.append(",");
value.append("val_mem_" + std::to_string(key));
}
ASSERT_EQ(values[j], value);
}
}
TEST_F(DBBasicTest, MultiGetBatchedValueSizeInMemory) {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v_1"));
ASSERT_OK(Put(1, "k2", "v_2"));
ASSERT_OK(Put(1, "k3", "v_3"));
ASSERT_OK(Put(1, "k4", "v_4"));
ASSERT_OK(Put(1, "k5", "v_5"));
ASSERT_OK(Put(1, "k6", "v_6"));
std::vector<Slice> keys = {"k1", "k2", "k3", "k4", "k5", "k6"};
std::vector<PinnableSlice> values(keys.size());
std::vector<Status> s(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
get_perf_context()->Reset();
ReadOptions ro;
ro.value_size_soft_limit = 11;
db_->MultiGet(ro, handles_[1], keys.size(), keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), keys.size());
for (unsigned int i = 0; i < 4; i++) {
ASSERT_EQ(std::string(values[i].data(), values[i].size()),
"v_" + std::to_string(i + 1));
}
for (unsigned int i = 4; i < 6; i++) {
ASSERT_TRUE(s[i].IsAborted());
}
ASSERT_EQ(12, (int)get_perf_context()->multiget_read_bytes);
SetPerfLevel(kDisable);
}
TEST_F(DBBasicTest, MultiGetBatchedValueSize) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k6", "v6"));
ASSERT_OK(Put(1, "k7", "v7_"));
ASSERT_OK(Put(1, "k3", "v3_"));
ASSERT_OK(Put(1, "k4", "v4"));
Flush(1);
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k11", "v11"));
ASSERT_OK(Delete(1, "no_key"));
ASSERT_OK(Put(1, "k8", "v8_"));
ASSERT_OK(Put(1, "k13", "v13"));
ASSERT_OK(Put(1, "k14", "v14"));
ASSERT_OK(Put(1, "k15", "v15"));
ASSERT_OK(Put(1, "k16", "v16"));
ASSERT_OK(Put(1, "k17", "v17"));
Flush(1);
ASSERT_OK(Put(1, "k1", "v1_"));
ASSERT_OK(Put(1, "k2", "v2_"));
ASSERT_OK(Put(1, "k5", "v5_"));
ASSERT_OK(Put(1, "k9", "v9_"));
ASSERT_OK(Put(1, "k10", "v10"));
ASSERT_OK(Delete(1, "k2"));
ASSERT_OK(Delete(1, "k6"));
get_perf_context()->Reset();
std::vector<Slice> keys({"k1", "k10", "k11", "k12", "k13", "k14", "k15",
"k16", "k17", "k2", "k3", "k4", "k5", "k6", "k7",
"k8", "k9", "no_key"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
ReadOptions ro;
ro.value_size_soft_limit = 20;
db_->MultiGet(ro, handles_[1], keys.size(), keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), keys.size());
// In memory keys
ASSERT_EQ(std::string(values[0].data(), values[0].size()), "v1_");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v10");
ASSERT_TRUE(s[9].IsNotFound()); // k2
ASSERT_EQ(std::string(values[12].data(), values[12].size()), "v5_");
ASSERT_TRUE(s[13].IsNotFound()); // k6
ASSERT_EQ(std::string(values[16].data(), values[16].size()), "v9_");
// In sst files
ASSERT_EQ(std::string(values[2].data(), values[1].size()), "v11");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v13");
ASSERT_EQ(std::string(values[5].data(), values[5].size()), "v14");
// Remaining aborted after value_size exceeds.
ASSERT_TRUE(s[3].IsAborted());
ASSERT_TRUE(s[6].IsAborted());
ASSERT_TRUE(s[7].IsAborted());
ASSERT_TRUE(s[8].IsAborted());
ASSERT_TRUE(s[10].IsAborted());
ASSERT_TRUE(s[11].IsAborted());
ASSERT_TRUE(s[14].IsAborted());
ASSERT_TRUE(s[15].IsAborted());
ASSERT_TRUE(s[17].IsAborted());
// 6 kv pairs * 3 bytes per value (i.e. 18)
ASSERT_EQ(21, (int)get_perf_context()->multiget_read_bytes);
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, MultiGetBatchedValueSizeMultiLevelMerge) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
Reopen(options);
int num_keys = 0;
for (int i = 0; i < 64; ++i) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l2_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
MoveFilesToLevel(2);
for (int i = 0; i < 64; i += 3) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l1_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
MoveFilesToLevel(1);
for (int i = 0; i < 64; i += 5) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l0_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
Flush();
num_keys = 0;
}
}
if (num_keys > 0) {
Flush();
num_keys = 0;
}
ASSERT_EQ(0, num_keys);
for (int i = 0; i < 64; i += 9) {
ASSERT_OK(
Merge("key_" + std::to_string(i), "val_mem_" + std::to_string(i)));
}
std::vector<std::string> keys_str;
for (int i = 10; i < 50; ++i) {
keys_str.push_back("key_" + std::to_string(i));
}
std::vector<Slice> keys(keys_str.size());
for (int i = 0; i < 40; i++) {
keys[i] = Slice(keys_str[i]);
}
std::vector<PinnableSlice> values(keys_str.size());
std::vector<Status> statuses(keys_str.size());
ReadOptions read_options;
read_options.verify_checksums = true;
read_options.value_size_soft_limit = 380;
db_->MultiGet(read_options, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data());
ASSERT_EQ(values.size(), keys.size());
uint64_t curr_value_size = 0;
for (unsigned int j = 0; j < 26; ++j) {
int key = j + 10;
std::string value;
value.append("val_l2_" + std::to_string(key));
if (key % 3 == 0) {
value.append(",");
value.append("val_l1_" + std::to_string(key));
}
if (key % 5 == 0) {
value.append(",");
value.append("val_l0_" + std::to_string(key));
}
if (key % 9 == 0) {
value.append(",");
value.append("val_mem_" + std::to_string(key));
}
curr_value_size += value.size();
ASSERT_EQ(values[j], value);
ASSERT_OK(statuses[j]);
}
// ASSERT_TRUE(curr_value_size <= read_options.value_size_hard_limit);
// All remaning keys status is set Status::Abort
for (unsigned int j = 26; j < 40; j++) {
ASSERT_TRUE(statuses[j].IsAborted());
}
}
// Test class for batched MultiGet with prefix extractor
// Param bool - If true, use partitioned filters
// If false, use full filter block
class MultiGetPrefixExtractorTest : public DBBasicTest,
public ::testing::WithParamInterface<bool> {
};
TEST_P(MultiGetPrefixExtractorTest, Batched) {
Options options = CurrentOptions();
options.prefix_extractor.reset(NewFixedPrefixTransform(2));
options.memtable_prefix_bloom_size_ratio = 10;
BlockBasedTableOptions bbto;
if (GetParam()) {
bbto.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
bbto.partition_filters = true;
}
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
bbto.cache_index_and_filter_blocks = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
Reopen(options);
SetPerfLevel(kEnableCount);
get_perf_context()->Reset();
// First key is not in the prefix_extractor domain
ASSERT_OK(Put("k", "v0"));
ASSERT_OK(Put("kk1", "v1"));
ASSERT_OK(Put("kk2", "v2"));
ASSERT_OK(Put("kk3", "v3"));
ASSERT_OK(Put("kk4", "v4"));
std::vector<std::string> mem_keys(
{"k", "kk1", "kk2", "kk3", "kk4", "rofl", "lmho"});
std::vector<std::string> inmem_values;
inmem_values = MultiGet(mem_keys, nullptr);
ASSERT_EQ(inmem_values[0], "v0");
ASSERT_EQ(inmem_values[1], "v1");
ASSERT_EQ(inmem_values[2], "v2");
ASSERT_EQ(inmem_values[3], "v3");
ASSERT_EQ(inmem_values[4], "v4");
ASSERT_EQ(get_perf_context()->bloom_memtable_miss_count, 2);
ASSERT_EQ(get_perf_context()->bloom_memtable_hit_count, 5);
ASSERT_OK(Flush());
std::vector<std::string> keys({"k", "kk1", "kk2", "kk3", "kk4"});
std::vector<std::string> values;
get_perf_context()->Reset();
values = MultiGet(keys, nullptr);
ASSERT_EQ(values[0], "v0");
ASSERT_EQ(values[1], "v1");
ASSERT_EQ(values[2], "v2");
ASSERT_EQ(values[3], "v3");
ASSERT_EQ(values[4], "v4");
// Filter hits for 4 in-domain keys
ASSERT_EQ(get_perf_context()->bloom_sst_hit_count, 4);
}
INSTANTIATE_TEST_CASE_P(MultiGetPrefix, MultiGetPrefixExtractorTest,
::testing::Bool());
#ifndef ROCKSDB_LITE
class DBMultiGetRowCacheTest : public DBBasicTest,
public ::testing::WithParamInterface<bool> {};
TEST_P(DBMultiGetRowCacheTest, MultiGetBatched) {
do {
option_config_ = kRowCache;
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
CreateAndReopenWithCF({"pikachu"}, options);
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
Flush(1);
ASSERT_OK(Put(1, "k5", "v5"));
const Snapshot* snap1 = dbfull()->GetSnapshot();
ASSERT_OK(Delete(1, "k4"));
Flush(1);
const Snapshot* snap2 = dbfull()->GetSnapshot();
get_perf_context()->Reset();
std::vector<Slice> keys({"no_key", "k5", "k4", "k3", "k1"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
ReadOptions ro;
bool use_snapshots = GetParam();
if (use_snapshots) {
ro.snapshot = snap2;
}
db_->MultiGet(ro, handles_[1], keys.size(), keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v1");
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v3");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(6, (int)get_perf_context()->multiget_read_bytes);
ASSERT_TRUE(s[0].IsNotFound());
ASSERT_OK(s[1]);
ASSERT_TRUE(s[2].IsNotFound());
ASSERT_OK(s[3]);
ASSERT_OK(s[4]);
// Call MultiGet() again with some intersection with the previous set of
// keys. Those should already be in the row cache.
keys.assign({"no_key", "k5", "k3", "k2"});
for (size_t i = 0; i < keys.size(); ++i) {
values[i].Reset();
s[i] = Status::OK();
}
get_perf_context()->Reset();
if (use_snapshots) {
ro.snapshot = snap1;
}
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), false);
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v2");
ASSERT_EQ(std::string(values[2].data(), values[2].size()), "v3");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(6, (int)get_perf_context()->multiget_read_bytes);
ASSERT_TRUE(s[0].IsNotFound());
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_OK(s[3]);
if (use_snapshots) {
// Only reads from the first SST file would have been cached, since
// snapshot seq no is > fd.largest_seqno
ASSERT_EQ(1, TestGetTickerCount(options, ROW_CACHE_HIT));
} else {
ASSERT_EQ(2, TestGetTickerCount(options, ROW_CACHE_HIT));
}
SetPerfLevel(kDisable);
dbfull()->ReleaseSnapshot(snap1);
dbfull()->ReleaseSnapshot(snap2);
} while (ChangeCompactOptions());
}
INSTANTIATE_TEST_CASE_P(DBMultiGetRowCacheTest, DBMultiGetRowCacheTest,
testing::Values(true, false));
TEST_F(DBBasicTest, GetAllKeyVersions) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_EQ(2, handles_.size());
const size_t kNumInserts = 4;
const size_t kNumDeletes = 4;
const size_t kNumUpdates = 4;
// Check default column family
for (size_t i = 0; i != kNumInserts; ++i) {
ASSERT_OK(Put(std::to_string(i), "value"));
}
for (size_t i = 0; i != kNumUpdates; ++i) {
ASSERT_OK(Put(std::to_string(i), "value1"));
}
for (size_t i = 0; i != kNumDeletes; ++i) {
ASSERT_OK(Delete(std::to_string(i)));
}
std::vector<KeyVersion> key_versions;
ASSERT_OK(ROCKSDB_NAMESPACE::GetAllKeyVersions(
db_, Slice(), Slice(), std::numeric_limits<size_t>::max(),
&key_versions));
ASSERT_EQ(kNumInserts + kNumDeletes + kNumUpdates, key_versions.size());
ASSERT_OK(ROCKSDB_NAMESPACE::GetAllKeyVersions(
db_, handles_[0], Slice(), Slice(), std::numeric_limits<size_t>::max(),
&key_versions));
ASSERT_EQ(kNumInserts + kNumDeletes + kNumUpdates, key_versions.size());
// Check non-default column family
for (size_t i = 0; i + 1 != kNumInserts; ++i) {
ASSERT_OK(Put(1, std::to_string(i), "value"));
}
for (size_t i = 0; i + 1 != kNumUpdates; ++i) {
ASSERT_OK(Put(1, std::to_string(i), "value1"));
}
for (size_t i = 0; i + 1 != kNumDeletes; ++i) {
ASSERT_OK(Delete(1, std::to_string(i)));
}
ASSERT_OK(ROCKSDB_NAMESPACE::GetAllKeyVersions(
db_, handles_[1], Slice(), Slice(), std::numeric_limits<size_t>::max(),
&key_versions));
ASSERT_EQ(kNumInserts + kNumDeletes + kNumUpdates - 3, key_versions.size());
}
#endif // !ROCKSDB_LITE
TEST_F(DBBasicTest, MultiGetIOBufferOverrun) {
Options options = CurrentOptions();
Random rnd(301);
BlockBasedTableOptions table_options;
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
table_options.block_size = 16 * 1024;
ASSERT_TRUE(table_options.block_size >
BlockBasedTable::kMultiGetReadStackBufSize);
options.table_factory.reset(new BlockBasedTableFactory(table_options));
Reopen(options);
std::string zero_str(128, '\0');
for (int i = 0; i < 100; ++i) {
// Make the value compressible. A purely random string doesn't compress
// and the resultant data block will not be compressed
std::string value(RandomString(&rnd, 128) + zero_str);
assert(Put(Key(i), value) == Status::OK());
}
Flush();
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
}
TEST_F(DBBasicTest, IncrementalRecoveryNoCorrupt) {
Options options = CurrentOptions();
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions write_opts;
write_opts.disableWAL = true;
for (size_t cf = 0; cf != num_cfs; ++cf) {
for (size_t i = 0; i != 10000; ++i) {
std::string key_str = Key(static_cast<int>(i));
std::string value_str = std::to_string(cf) + "_" + std::to_string(i);
ASSERT_OK(Put(static_cast<int>(cf), key_str, value_str));
if (0 == (i % 1000)) {
ASSERT_OK(Flush(static_cast<int>(cf)));
}
}
}
for (size_t cf = 0; cf != num_cfs; ++cf) {
ASSERT_OK(Flush(static_cast<int>(cf)));
}
Close();
options.best_efforts_recovery = true;
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu", "eevee"},
options);
num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
for (size_t cf = 0; cf != num_cfs; ++cf) {
for (int i = 0; i != 10000; ++i) {
std::string key_str = Key(static_cast<int>(i));
std::string expected_value_str =
std::to_string(cf) + "_" + std::to_string(i);
ASSERT_EQ(expected_value_str, Get(static_cast<int>(cf), key_str));
}
}
}
TEST_F(DBBasicTest, BestEffortsRecoveryWithVersionBuildingFailure) {
Options options = CurrentOptions();
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistencyBeforeReturn", [&](void* arg) {
ASSERT_NE(nullptr, arg);
*(reinterpret_cast<Status*>(arg)) =
Status::Corruption("Inject corruption");
});
SyncPoint::GetInstance()->EnableProcessing();
options.best_efforts_recovery = true;
Status s = TryReopen(options);
ASSERT_TRUE(s.IsCorruption());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
#ifndef ROCKSDB_LITE
namespace {
class TableFileListener : public EventListener {
public:
void OnTableFileCreated(const TableFileCreationInfo& info) override {
InstrumentedMutexLock lock(&mutex_);
cf_to_paths_[info.cf_name].push_back(info.file_path);
}
std::vector<std::string>& GetFiles(const std::string& cf_name) {
InstrumentedMutexLock lock(&mutex_);
return cf_to_paths_[cf_name];
}
private:
InstrumentedMutex mutex_;
std::unordered_map<std::string, std::vector<std::string>> cf_to_paths_;
};
} // namespace
TEST_F(DBBasicTest, RecoverWithMissingFiles) {
Options options = CurrentOptions();
DestroyAndReopen(options);
TableFileListener* listener = new TableFileListener();
// Disable auto compaction to simplify SST file name tracking.
options.disable_auto_compactions = true;
options.listeners.emplace_back(listener);
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
std::vector<std::string> all_cf_names = {kDefaultColumnFamilyName, "pikachu",
"eevee"};
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
for (size_t cf = 0; cf != num_cfs; ++cf) {
ASSERT_OK(Put(static_cast<int>(cf), "a", "0_value"));
ASSERT_OK(Flush(static_cast<int>(cf)));
ASSERT_OK(Put(static_cast<int>(cf), "b", "0_value"));
ASSERT_OK(Flush(static_cast<int>(cf)));
ASSERT_OK(Put(static_cast<int>(cf), "c", "0_value"));
ASSERT_OK(Flush(static_cast<int>(cf)));
}
// Delete and corrupt files
for (size_t i = 0; i < all_cf_names.size(); ++i) {
std::vector<std::string>& files = listener->GetFiles(all_cf_names[i]);
ASSERT_EQ(3, files.size());
std::string corrupted_data;
ASSERT_OK(ReadFileToString(env_, files[files.size() - 1], &corrupted_data));
ASSERT_OK(WriteStringToFile(
env_, corrupted_data.substr(0, corrupted_data.size() - 2),
files[files.size() - 1], /*should_sync=*/true));
for (int j = static_cast<int>(files.size() - 2); j >= static_cast<int>(i);
--j) {
ASSERT_OK(env_->DeleteFile(files[j]));
}
}
options.best_efforts_recovery = true;
ReopenWithColumnFamilies(all_cf_names, options);
// Verify data
ReadOptions read_opts;
read_opts.total_order_seek = true;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts, handles_[0]));
iter->SeekToFirst();
ASSERT_FALSE(iter->Valid());
iter.reset(db_->NewIterator(read_opts, handles_[1]));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
iter.reset(db_->NewIterator(read_opts, handles_[2]));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->key());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("b", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
}
}
TEST_F(DBBasicTest, BestEffortsRecoveryTryMultipleManifests) {
Options options = CurrentOptions();
options.env = env_;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value0"));
ASSERT_OK(Flush());
Close();
{
// Hack by adding a new MANIFEST with high file number
std::string garbage(10, '\0');
ASSERT_OK(WriteStringToFile(env_, garbage, dbname_ + "/MANIFEST-001000",
/*should_sync=*/true));
}
{
// Hack by adding a corrupted SST not referenced by any MANIFEST
std::string garbage(10, '\0');
ASSERT_OK(WriteStringToFile(env_, garbage, dbname_ + "/001001.sst",
/*should_sync=*/true));
}
options.best_efforts_recovery = true;
Reopen(options);
ASSERT_OK(Put("bar", "value"));
}
TEST_F(DBBasicTest, RecoverWithNoCurrentFile) {
Options options = CurrentOptions();
options.env = env_;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
options.best_efforts_recovery = true;
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
ASSERT_EQ(2, handles_.size());
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Put(1, "bar", "value"));
ASSERT_OK(Flush());
ASSERT_OK(Flush(1));
Close();
ASSERT_OK(env_->DeleteFile(CurrentFileName(dbname_)));
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
std::vector<std::string> cf_names;
ASSERT_OK(DB::ListColumnFamilies(DBOptions(options), dbname_, &cf_names));
ASSERT_EQ(2, cf_names.size());
for (const auto& name : cf_names) {
ASSERT_TRUE(name == kDefaultColumnFamilyName || name == "pikachu");
}
}
TEST_F(DBBasicTest, RecoverWithNoManifest) {
Options options = CurrentOptions();
options.env = env_;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Flush());
Close();
{
// Delete all MANIFEST.
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(dbname_, &files));
for (const auto& file : files) {
uint64_t number = 0;
FileType type = kLogFile;
if (ParseFileName(file, &number, &type) && type == kDescriptorFile) {
ASSERT_OK(env_->DeleteFile(dbname_ + "/" + file));
}
}
}
options.best_efforts_recovery = true;
options.create_if_missing = false;
Status s = TryReopen(options);
ASSERT_TRUE(s.IsInvalidArgument());
options.create_if_missing = true;
Reopen(options);
// Since no MANIFEST exists, best-efforts recovery creates a new, empty db.
ASSERT_EQ("NOT_FOUND", Get("foo"));
}
TEST_F(DBBasicTest, SkipWALIfMissingTableFiles) {
Options options = CurrentOptions();
DestroyAndReopen(options);
TableFileListener* listener = new TableFileListener();
options.listeners.emplace_back(listener);
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<std::string> kAllCfNames = {kDefaultColumnFamilyName, "pikachu"};
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
for (int cf = 0; cf < static_cast<int>(kAllCfNames.size()); ++cf) {
ASSERT_OK(Put(cf, "a", "0_value"));
ASSERT_OK(Flush(cf));
ASSERT_OK(Put(cf, "b", "0_value"));
}
// Delete files
for (size_t i = 0; i < kAllCfNames.size(); ++i) {
std::vector<std::string>& files = listener->GetFiles(kAllCfNames[i]);
ASSERT_EQ(1, files.size());
for (int j = static_cast<int>(files.size() - 1); j >= static_cast<int>(i);
--j) {
ASSERT_OK(env_->DeleteFile(files[j]));
}
}
options.best_efforts_recovery = true;
ReopenWithColumnFamilies(kAllCfNames, options);
// Verify WAL is not applied
ReadOptions read_opts;
read_opts.total_order_seek = true;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts, handles_[0]));
iter->SeekToFirst();
ASSERT_FALSE(iter->Valid());
iter.reset(db_->NewIterator(read_opts, handles_[1]));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
}
#endif // !ROCKSDB_LITE
class DBBasicTestMultiGet : public DBTestBase {
public:
DBBasicTestMultiGet(std::string test_dir, int num_cfs, bool compressed_cache,
bool uncompressed_cache, bool _compression_enabled,
bool _fill_cache, uint32_t compression_parallel_threads)
: DBTestBase(test_dir) {
compression_enabled_ = _compression_enabled;
fill_cache_ = _fill_cache;
if (compressed_cache) {
std::shared_ptr<Cache> cache = NewLRUCache(1048576);
compressed_cache_ = std::make_shared<MyBlockCache>(cache);
}
if (uncompressed_cache) {
std::shared_ptr<Cache> cache = NewLRUCache(1048576);
uncompressed_cache_ = std::make_shared<MyBlockCache>(cache);
}
env_->count_random_reads_ = true;
Options options = CurrentOptions();
Random rnd(301);
BlockBasedTableOptions table_options;
#ifndef ROCKSDB_LITE
if (compression_enabled_) {
std::vector<CompressionType> compression_types;
compression_types = GetSupportedCompressions();
// Not every platform may have compression libraries available, so
// dynamically pick based on what's available
CompressionType tmp_type = kNoCompression;
for (auto c_type : compression_types) {
if (c_type != kNoCompression) {
tmp_type = c_type;
break;
}
}
if (tmp_type != kNoCompression) {
options.compression = tmp_type;
} else {
compression_enabled_ = false;
}
}
#else
// GetSupportedCompressions() is not available in LITE build
if (!Snappy_Supported()) {
compression_enabled_ = false;
}
#endif // ROCKSDB_LITE
table_options.block_cache = uncompressed_cache_;
if (table_options.block_cache == nullptr) {
table_options.no_block_cache = true;
} else {
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
}
table_options.block_cache_compressed = compressed_cache_;
table_options.flush_block_policy_factory.reset(
new MyFlushBlockPolicyFactory());
options.table_factory.reset(new BlockBasedTableFactory(table_options));
if (!compression_enabled_) {
options.compression = kNoCompression;
} else {
options.compression_opts.parallel_threads = compression_parallel_threads;
}
Reopen(options);
if (num_cfs > 1) {
for (int cf = 0; cf < num_cfs; ++cf) {
cf_names_.emplace_back("cf" + std::to_string(cf));
}
CreateColumnFamilies(cf_names_, options);
cf_names_.emplace_back("default");
}
std::string zero_str(128, '\0');
for (int cf = 0; cf < num_cfs; ++cf) {
for (int i = 0; i < 100; ++i) {
// Make the value compressible. A purely random string doesn't compress
// and the resultant data block will not be compressed
values_.emplace_back(RandomString(&rnd, 128) + zero_str);
assert(((num_cfs == 1) ? Put(Key(i), values_[i])
: Put(cf, Key(i), values_[i])) == Status::OK());
}
if (num_cfs == 1) {
Flush();
} else {
dbfull()->Flush(FlushOptions(), handles_[cf]);
}
for (int i = 0; i < 100; ++i) {
// block cannot gain space by compression
uncompressable_values_.emplace_back(RandomString(&rnd, 256) + '\0');
std::string tmp_key = "a" + Key(i);
assert(((num_cfs == 1) ? Put(tmp_key, uncompressable_values_[i])
: Put(cf, tmp_key, uncompressable_values_[i])) ==
Status::OK());
}
if (num_cfs == 1) {
Flush();
} else {
dbfull()->Flush(FlushOptions(), handles_[cf]);
}
}
}
bool CheckValue(int i, const std::string& value) {
if (values_[i].compare(value) == 0) {
return true;
}
return false;
}
bool CheckUncompressableValue(int i, const std::string& value) {
if (uncompressable_values_[i].compare(value) == 0) {
return true;
}
return false;
}
const std::vector<std::string>& GetCFNames() const { return cf_names_; }
int num_lookups() { return uncompressed_cache_->num_lookups(); }
int num_found() { return uncompressed_cache_->num_found(); }
int num_inserts() { return uncompressed_cache_->num_inserts(); }
int num_lookups_compressed() { return compressed_cache_->num_lookups(); }
int num_found_compressed() { return compressed_cache_->num_found(); }
int num_inserts_compressed() { return compressed_cache_->num_inserts(); }
bool fill_cache() { return fill_cache_; }
bool compression_enabled() { return compression_enabled_; }
bool has_compressed_cache() { return compressed_cache_ != nullptr; }
bool has_uncompressed_cache() { return uncompressed_cache_ != nullptr; }
static void SetUpTestCase() {}
static void TearDownTestCase() {}
protected:
class MyFlushBlockPolicyFactory : public FlushBlockPolicyFactory {
public:
MyFlushBlockPolicyFactory() {}
virtual const char* Name() const override {
return "MyFlushBlockPolicyFactory";
}
virtual FlushBlockPolicy* NewFlushBlockPolicy(
const BlockBasedTableOptions& /*table_options*/,
const BlockBuilder& data_block_builder) const override {
return new MyFlushBlockPolicy(data_block_builder);
}
};
class MyFlushBlockPolicy : public FlushBlockPolicy {
public:
explicit MyFlushBlockPolicy(const BlockBuilder& data_block_builder)
: num_keys_(0), data_block_builder_(data_block_builder) {}
bool Update(const Slice& /*key*/, const Slice& /*value*/) override {
if (data_block_builder_.empty()) {
// First key in this block
num_keys_ = 1;
return false;
}
// Flush every 10 keys
if (num_keys_ == 10) {
num_keys_ = 1;
return true;
}
num_keys_++;
return false;
}
private:
int num_keys_;
const BlockBuilder& data_block_builder_;
};
class MyBlockCache : public CacheWrapper {
public:
explicit MyBlockCache(std::shared_ptr<Cache> target)
: CacheWrapper(target),
num_lookups_(0),
num_found_(0),
num_inserts_(0) {}
const char* Name() const override { return "MyBlockCache"; }
Status Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value),
Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
num_inserts_++;
return target_->Insert(key, value, charge, deleter, handle, priority);
}
Handle* Lookup(const Slice& key, Statistics* stats = nullptr) override {
num_lookups_++;
Handle* handle = target_->Lookup(key, stats);
if (handle != nullptr) {
num_found_++;
}
return handle;
}
int num_lookups() { return num_lookups_; }
int num_found() { return num_found_; }
int num_inserts() { return num_inserts_; }
private:
int num_lookups_;
int num_found_;
int num_inserts_;
};
std::shared_ptr<MyBlockCache> compressed_cache_;
std::shared_ptr<MyBlockCache> uncompressed_cache_;
bool compression_enabled_;
std::vector<std::string> values_;
std::vector<std::string> uncompressable_values_;
bool fill_cache_;
std::vector<std::string> cf_names_;
};
class DBBasicTestWithParallelIO
: public DBBasicTestMultiGet,
public testing::WithParamInterface<
std::tuple<bool, bool, bool, bool, uint32_t>> {
public:
DBBasicTestWithParallelIO()
: DBBasicTestMultiGet("/db_basic_test_with_parallel_io", 1,
std::get<0>(GetParam()), std::get<1>(GetParam()),
std::get<2>(GetParam()), std::get<3>(GetParam()),
std::get<4>(GetParam())) {}
};
TEST_P(DBBasicTestWithParallelIO, MultiGet) {
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
ro.fill_cache = fill_cache();
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(0, values[0].ToString()));
ASSERT_TRUE(CheckValue(50, values[1].ToString()));
int random_reads = env_->random_read_counter_.Read();
key_data[0] = Key(1);
key_data[1] = Key(51);
keys[0] = Slice(key_data[0]);
keys[1] = Slice(key_data[1]);
values[0].Reset();
values[1].Reset();
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(1, values[0].ToString()));
ASSERT_TRUE(CheckValue(51, values[1].ToString()));
bool read_from_cache = false;
if (fill_cache()) {
if (has_uncompressed_cache()) {
read_from_cache = true;
} else if (has_compressed_cache() && compression_enabled()) {
read_from_cache = true;
}
}
int expected_reads = random_reads + (read_from_cache ? 0 : 2);
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
keys.resize(10);
statuses.resize(10);
std::vector<int> key_ints{1, 2, 15, 16, 55, 81, 82, 83, 84, 85};
for (size_t i = 0; i < key_ints.size(); ++i) {
key_data[i] = Key(key_ints[i]);
keys[i] = Slice(key_data[i]);
statuses[i] = Status::OK();
values[i].Reset();
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
for (size_t i = 0; i < key_ints.size(); ++i) {
ASSERT_OK(statuses[i]);
ASSERT_TRUE(CheckValue(key_ints[i], values[i].ToString()));
}
if (compression_enabled() && !has_compressed_cache()) {
expected_reads += (read_from_cache ? 2 : 3);
} else {
expected_reads += (read_from_cache ? 2 : 4);
}
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
keys.resize(10);
statuses.resize(10);
std::vector<int> key_uncmp{1, 2, 15, 16, 55, 81, 82, 83, 84, 85};
for (size_t i = 0; i < key_uncmp.size(); ++i) {
key_data[i] = "a" + Key(key_uncmp[i]);
keys[i] = Slice(key_data[i]);
statuses[i] = Status::OK();
values[i].Reset();
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
for (size_t i = 0; i < key_uncmp.size(); ++i) {
ASSERT_OK(statuses[i]);
ASSERT_TRUE(CheckUncompressableValue(key_uncmp[i], values[i].ToString()));
}
if (compression_enabled() && !has_compressed_cache()) {
expected_reads += (read_from_cache ? 3 : 3);
} else {
expected_reads += (read_from_cache ? 4 : 4);
}
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
keys.resize(5);
statuses.resize(5);
std::vector<int> key_tr{1, 2, 15, 16, 55};
for (size_t i = 0; i < key_tr.size(); ++i) {
key_data[i] = "a" + Key(key_tr[i]);
keys[i] = Slice(key_data[i]);
statuses[i] = Status::OK();
values[i].Reset();
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
for (size_t i = 0; i < key_tr.size(); ++i) {
ASSERT_OK(statuses[i]);
ASSERT_TRUE(CheckUncompressableValue(key_tr[i], values[i].ToString()));
}
if (compression_enabled() && !has_compressed_cache()) {
expected_reads += (read_from_cache ? 0 : 2);
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
} else {
if (has_uncompressed_cache()) {
expected_reads += (read_from_cache ? 0 : 3);
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
} else {
// A rare case, even we enable the block compression but some of data
// blocks are not compressed due to content. If user only enable the
// compressed cache, the uncompressed blocks will not tbe cached, and
// block reads will be triggered. The number of reads is related to
// the compression algorithm.
ASSERT_TRUE(env_->random_read_counter_.Read() >= expected_reads);
}
}
}
TEST_P(DBBasicTestWithParallelIO, MultiGetWithChecksumMismatch) {
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
int read_count = 0;
ReadOptions ro;
ro.fill_cache = fill_cache();
SyncPoint::GetInstance()->SetCallBack(
"RetrieveMultipleBlocks:VerifyChecksum", [&](void* status) {
Status* s = static_cast<Status*>(status);
read_count++;
if (read_count == 2) {
*s = Status::Corruption();
}
});
SyncPoint::GetInstance()->EnableProcessing();
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(0, values[0].ToString()));
// ASSERT_TRUE(CheckValue(50, values[1].ToString()));
ASSERT_EQ(statuses[0], Status::OK());
ASSERT_EQ(statuses[1], Status::Corruption());
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBBasicTestWithParallelIO, MultiGetWithMissingFile) {
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
ro.fill_cache = fill_cache();
SyncPoint::GetInstance()->SetCallBack(
"TableCache::MultiGet:FindTable", [&](void* status) {
Status* s = static_cast<Status*>(status);
*s = Status::IOError();
});
// DB open will create table readers unless we reduce the table cache
// capacity.
// SanitizeOptions will set max_open_files to minimum of 20. Table cache
// is allocated with max_open_files - 10 as capacity. So override
// max_open_files to 11 so table cache capacity will become 1. This will
// prevent file open during DB open and force the file to be opened
// during MultiGet
SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = (int*)arg;
*max_open_files = 11;
});
SyncPoint::GetInstance()->EnableProcessing();
Reopen(CurrentOptions());
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_EQ(statuses[0], Status::IOError());
ASSERT_EQ(statuses[1], Status::IOError());
SyncPoint::GetInstance()->DisableProcessing();
}
INSTANTIATE_TEST_CASE_P(ParallelIO, DBBasicTestWithParallelIO,
// Params are as follows -
// Param 0 - Compressed cache enabled
// Param 1 - Uncompressed cache enabled
// Param 2 - Data compression enabled
// Param 3 - ReadOptions::fill_cache
// Param 4 - CompressionOptions::parallel_threads
::testing::Combine(::testing::Bool(), ::testing::Bool(),
::testing::Bool(), ::testing::Bool(),
::testing::Values(1, 4)));
// A test class for intercepting random reads and injecting artificial
// delays. Used for testing the deadline/timeout feature
class DBBasicTestMultiGetDeadline : public DBBasicTestMultiGet {
public:
DBBasicTestMultiGetDeadline()
: DBBasicTestMultiGet("db_basic_test_multiget_deadline" /*Test dir*/,
10 /*# of column families*/,
false /*compressed cache enabled*/,
true /*uncompressed cache enabled*/,
true /*compression enabled*/,
true /*ReadOptions.fill_cache*/,
1 /*# of parallel compression threads*/) {}
// Forward declaration
class DeadlineFS;
class DeadlineRandomAccessFile : public FSRandomAccessFileWrapper {
public:
DeadlineRandomAccessFile(DeadlineFS& fs, SpecialEnv* env,
std::unique_ptr<FSRandomAccessFile>& file)
: FSRandomAccessFileWrapper(file.get()),
fs_(fs),
file_(std::move(file)),
env_(env) {}
IOStatus Read(uint64_t offset, size_t len, const IOOptions& opts,
Slice* result, char* scratch, IODebugContext* dbg) const override {
int delay;
const std::chrono::microseconds deadline = fs_.GetDeadline();
if (deadline.count()) {
AssertDeadline(deadline, opts);
}
if (fs_.ShouldDelay(&delay)) {
env_->SleepForMicroseconds(delay);
}
return FSRandomAccessFileWrapper::Read(offset, len, opts, result, scratch,
dbg);
}
IOStatus MultiRead(FSReadRequest* reqs, size_t num_reqs,
const IOOptions& options, IODebugContext* dbg) override {
int delay;
const std::chrono::microseconds deadline = fs_.GetDeadline();
if (deadline.count()) {
AssertDeadline(deadline, options);
}
if (fs_.ShouldDelay(&delay)) {
env_->SleepForMicroseconds(delay);
}
return FSRandomAccessFileWrapper::MultiRead(reqs, num_reqs, options, dbg);
}
private:
void AssertDeadline(const std::chrono::microseconds deadline,
const IOOptions& opts) const {
// Give a leeway of +- 10us as it can take some time for the Get/
// MultiGet call to reach here, in order to avoid false alarms
std::chrono::microseconds now =
std::chrono::microseconds(env_->NowMicros());
ASSERT_EQ(deadline - now, opts.timeout);
}
DeadlineFS& fs_;
std::unique_ptr<FSRandomAccessFile> file_;
SpecialEnv* env_;
};
class DeadlineFS : public FileSystemWrapper {
public:
DeadlineFS(SpecialEnv* env)
: FileSystemWrapper(FileSystem::Default()),
delay_idx_(0),
deadline_(std::chrono::microseconds::zero()),
env_(env) {}
~DeadlineFS() = default;
IOStatus NewRandomAccessFile(const std::string& fname,
const FileOptions& opts,
std::unique_ptr<FSRandomAccessFile>* result,
IODebugContext* dbg) override {
std::unique_ptr<FSRandomAccessFile> file;
IOStatus s;
s = target()->NewRandomAccessFile(fname, opts, &file, dbg);
result->reset(new DeadlineRandomAccessFile(*this, env_, file));
return s;
}
// Set a vector of {IO counter, delay in microseconds} pairs that control
// when to inject a delay and duration of the delay
void SetDelaySequence(const std::chrono::microseconds deadline,
const std::vector<std::pair<int, int>>&& seq) {
int total_delay = 0;
for (auto& seq_iter : seq) {
// Ensure no individual delay is > 500ms
ASSERT_LT(seq_iter.second, 500000);
total_delay += seq_iter.second;
}
// ASSERT total delay is < 1s. This is mainly to keep the test from
// timing out in CI test frameworks
ASSERT_LT(total_delay, 1000000);
delay_seq_ = seq;
delay_idx_ = 0;
io_count_ = 0;
deadline_ = deadline;
}
// Increment the IO counter and return a delay in microseconds
bool ShouldDelay(int* delay) {
if (delay_idx_ < delay_seq_.size() &&
delay_seq_[delay_idx_].first == io_count_++) {
*delay = delay_seq_[delay_idx_].second;
delay_idx_++;
return true;
}
return false;
}
const std::chrono::microseconds GetDeadline() { return deadline_; }
private:
std::vector<std::pair<int, int>> delay_seq_;
size_t delay_idx_;
int io_count_;
std::chrono::microseconds deadline_;
SpecialEnv* env_;
};
inline void CheckStatus(std::vector<Status>& statuses, size_t num_ok) {
for (size_t i = 0; i < statuses.size(); ++i) {
if (i < num_ok) {
EXPECT_OK(statuses[i]);
} else {
EXPECT_EQ(statuses[i], Status::TimedOut());
}
}
}
};
TEST_F(DBBasicTestMultiGetDeadline, MultiGetDeadlineExceeded) {
std::shared_ptr<DBBasicTestMultiGetDeadline::DeadlineFS> fs(
new DBBasicTestMultiGetDeadline::DeadlineFS(env_));
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
Options options = CurrentOptions();
env_->SetTimeElapseOnlySleep(&options);
std::shared_ptr<Cache> cache = NewLRUCache(1048576);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.env = env.get();
ReopenWithColumnFamilies(GetCFNames(), options);
// Test the non-batched version of MultiGet with multiple column
// families
std::vector<std::string> key_str;
size_t i;
for (i = 0; i < 5; ++i) {
key_str.emplace_back(Key(static_cast<int>(i)));
}
std::vector<ColumnFamilyHandle*> cfs(key_str.size());
;
std::vector<Slice> keys(key_str.size());
std::vector<std::string> values(key_str.size());
for (i = 0; i < key_str.size(); ++i) {
cfs[i] = handles_[i];
keys[i] = Slice(key_str[i].data(), key_str[i].size());
}
ReadOptions ro;
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
// Delay the first IO by 200ms
fs->SetDelaySequence(ro.deadline, {{0, 20000}});
std::vector<Status> statuses = dbfull()->MultiGet(ro, cfs, keys, &values);
// The first key is successful because we check after the lookup, but
// subsequent keys fail due to deadline exceeded
CheckStatus(statuses, 1);
// Clear the cache
cache->SetCapacity(0);
cache->SetCapacity(1048576);
// Test non-batched Multiget with multiple column families and
// introducing an IO delay in one of the middle CFs
key_str.clear();
for (i = 0; i < 10; ++i) {
key_str.emplace_back(Key(static_cast<int>(i)));
}
cfs.resize(key_str.size());
keys.resize(key_str.size());
values.resize(key_str.size());
for (i = 0; i < key_str.size(); ++i) {
// 2 keys per CF
cfs[i] = handles_[i / 2];
keys[i] = Slice(key_str[i].data(), key_str[i].size());
}
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelaySequence(ro.deadline, {{1, 20000}});
statuses = dbfull()->MultiGet(ro, cfs, keys, &values);
CheckStatus(statuses, 3);
// Test batched MultiGet with an IO delay in the first data block read.
// Both keys in the first CF should succeed as they're in the same data
// block and would form one batch, and we check for deadline between
// batches.
std::vector<PinnableSlice> pin_values(keys.size());
cache->SetCapacity(0);
cache->SetCapacity(1048576);
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelaySequence(ro.deadline, {{0, 20000}});
dbfull()->MultiGet(ro, keys.size(), cfs.data(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 2);
// Similar to the previous one, but an IO delay in the third CF data block
// read
for (PinnableSlice& value : pin_values) {
value.Reset();
}
cache->SetCapacity(0);
cache->SetCapacity(1048576);
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelaySequence(ro.deadline, {{2, 20000}});
dbfull()->MultiGet(ro, keys.size(), cfs.data(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 6);
// Similar to the previous one, but an IO delay in the last but one CF
for (PinnableSlice& value : pin_values) {
value.Reset();
}
cache->SetCapacity(0);
cache->SetCapacity(1048576);
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelaySequence(ro.deadline, {{3, 20000}});
dbfull()->MultiGet(ro, keys.size(), cfs.data(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 8);
// Test batched MultiGet with single CF and lots of keys. Inject delay
// into the second batch of keys. As each batch is 32, the first 64 keys,
// i.e first two batches, should succeed and the rest should time out
for (PinnableSlice& value : pin_values) {
value.Reset();
}
cache->SetCapacity(0);
cache->SetCapacity(1048576);
key_str.clear();
for (i = 0; i < 100; ++i) {
key_str.emplace_back(Key(static_cast<int>(i)));
}
keys.resize(key_str.size());
pin_values.clear();
pin_values.resize(key_str.size());
for (i = 0; i < key_str.size(); ++i) {
keys[i] = Slice(key_str[i].data(), key_str[i].size());
}
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelaySequence(ro.deadline, {{1, 20000}});
dbfull()->MultiGet(ro, handles_[0], keys.size(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 64);
Close();
}
} // namespace ROCKSDB_NAMESPACE
#ifdef ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
extern "C" {
void RegisterCustomObjects(int argc, char** argv);
}
#else
void RegisterCustomObjects(int /*argc*/, char** /*argv*/) {}
#endif // !ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}