rocksdb/cache/lru_cache_test.cc

1856 lines
68 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "cache/lru_cache.h"
#include <string>
#include <vector>
#include "cache/cache_key.h"
#include "db/db_test_util.h"
#include "file/sst_file_manager_impl.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/io_status.h"
#include "rocksdb/sst_file_manager.h"
#include "rocksdb/utilities/cache_dump_load.h"
#include "test_util/testharness.h"
#include "util/coding.h"
#include "util/random.h"
#include "utilities/cache_dump_load_impl.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
class LRUCacheTest : public testing::Test {
public:
LRUCacheTest() {}
~LRUCacheTest() override { DeleteCache(); }
void DeleteCache() {
if (cache_ != nullptr) {
cache_->~LRUCacheShard();
port::cacheline_aligned_free(cache_);
cache_ = nullptr;
}
}
void NewCache(size_t capacity, double high_pri_pool_ratio = 0.0,
bool use_adaptive_mutex = kDefaultToAdaptiveMutex) {
DeleteCache();
cache_ = reinterpret_cast<LRUCacheShard*>(
port::cacheline_aligned_alloc(sizeof(LRUCacheShard)));
new (cache_) LRUCacheShard(
capacity, false /*strict_capcity_limit*/, high_pri_pool_ratio,
use_adaptive_mutex, kDontChargeCacheMetadata,
24 /*max_upper_hash_bits*/, nullptr /*secondary_cache*/);
}
void Insert(const std::string& key,
Cache::Priority priority = Cache::Priority::LOW) {
EXPECT_OK(cache_->Insert(key, 0 /*hash*/, nullptr /*value*/, 1 /*charge*/,
nullptr /*deleter*/, nullptr /*handle*/,
priority));
}
void Insert(char key, Cache::Priority priority = Cache::Priority::LOW) {
Insert(std::string(1, key), priority);
}
bool Lookup(const std::string& key) {
auto handle = cache_->Lookup(key, 0 /*hash*/);
if (handle) {
cache_->Release(handle);
return true;
}
return false;
}
bool Lookup(char key) { return Lookup(std::string(1, key)); }
void Erase(const std::string& key) { cache_->Erase(key, 0 /*hash*/); }
void ValidateLRUList(std::vector<std::string> keys,
size_t num_high_pri_pool_keys = 0) {
LRUHandle* lru;
LRUHandle* lru_low_pri;
cache_->TEST_GetLRUList(&lru, &lru_low_pri);
LRUHandle* iter = lru;
bool in_high_pri_pool = false;
size_t high_pri_pool_keys = 0;
if (iter == lru_low_pri) {
in_high_pri_pool = true;
}
for (const auto& key : keys) {
iter = iter->next;
ASSERT_NE(lru, iter);
ASSERT_EQ(key, iter->key().ToString());
ASSERT_EQ(in_high_pri_pool, iter->InHighPriPool());
if (in_high_pri_pool) {
high_pri_pool_keys++;
}
if (iter == lru_low_pri) {
ASSERT_FALSE(in_high_pri_pool);
in_high_pri_pool = true;
}
}
ASSERT_EQ(lru, iter->next);
ASSERT_TRUE(in_high_pri_pool);
ASSERT_EQ(num_high_pri_pool_keys, high_pri_pool_keys);
}
private:
LRUCacheShard* cache_ = nullptr;
};
TEST_F(LRUCacheTest, BasicLRU) {
NewCache(5);
for (char ch = 'a'; ch <= 'e'; ch++) {
Insert(ch);
}
ValidateLRUList({"a", "b", "c", "d", "e"});
for (char ch = 'x'; ch <= 'z'; ch++) {
Insert(ch);
}
ValidateLRUList({"d", "e", "x", "y", "z"});
ASSERT_FALSE(Lookup("b"));
ValidateLRUList({"d", "e", "x", "y", "z"});
ASSERT_TRUE(Lookup("e"));
ValidateLRUList({"d", "x", "y", "z", "e"});
ASSERT_TRUE(Lookup("z"));
ValidateLRUList({"d", "x", "y", "e", "z"});
Erase("x");
ValidateLRUList({"d", "y", "e", "z"});
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"y", "e", "z", "d"});
Insert("u");
ValidateLRUList({"y", "e", "z", "d", "u"});
Insert("v");
ValidateLRUList({"e", "z", "d", "u", "v"});
}
TEST_F(LRUCacheTest, MidpointInsertion) {
// Allocate 2 cache entries to high-pri pool.
NewCache(5, 0.45);
Insert("a", Cache::Priority::LOW);
Insert("b", Cache::Priority::LOW);
Insert("c", Cache::Priority::LOW);
Insert("x", Cache::Priority::HIGH);
Insert("y", Cache::Priority::HIGH);
ValidateLRUList({"a", "b", "c", "x", "y"}, 2);
// Low-pri entries inserted to the tail of low-pri list (the midpoint).
// After lookup, it will move to the tail of the full list.
Insert("d", Cache::Priority::LOW);
ValidateLRUList({"b", "c", "d", "x", "y"}, 2);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"b", "c", "x", "y", "d"}, 2);
// High-pri entries will be inserted to the tail of full list.
Insert("z", Cache::Priority::HIGH);
ValidateLRUList({"c", "x", "y", "d", "z"}, 2);
}
TEST_F(LRUCacheTest, EntriesWithPriority) {
// Allocate 2 cache entries to high-pri pool.
NewCache(5, 0.45);
Insert("a", Cache::Priority::LOW);
Insert("b", Cache::Priority::LOW);
Insert("c", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c"}, 0);
// Low-pri entries can take high-pri pool capacity if available
Insert("u", Cache::Priority::LOW);
Insert("v", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c", "u", "v"}, 0);
Insert("X", Cache::Priority::HIGH);
Insert("Y", Cache::Priority::HIGH);
ValidateLRUList({"c", "u", "v", "X", "Y"}, 2);
// High-pri entries can overflow to low-pri pool.
Insert("Z", Cache::Priority::HIGH);
ValidateLRUList({"u", "v", "X", "Y", "Z"}, 2);
// Low-pri entries will be inserted to head of low-pri pool.
Insert("a", Cache::Priority::LOW);
ValidateLRUList({"v", "X", "a", "Y", "Z"}, 2);
// Low-pri entries will be inserted to head of high-pri pool after lookup.
ASSERT_TRUE(Lookup("v"));
ValidateLRUList({"X", "a", "Y", "Z", "v"}, 2);
// High-pri entries will be inserted to the head of the list after lookup.
ASSERT_TRUE(Lookup("X"));
ValidateLRUList({"a", "Y", "Z", "v", "X"}, 2);
ASSERT_TRUE(Lookup("Z"));
ValidateLRUList({"a", "Y", "v", "X", "Z"}, 2);
Erase("Y");
ValidateLRUList({"a", "v", "X", "Z"}, 2);
Erase("X");
ValidateLRUList({"a", "v", "Z"}, 1);
Insert("d", Cache::Priority::LOW);
Insert("e", Cache::Priority::LOW);
ValidateLRUList({"a", "v", "d", "e", "Z"}, 1);
Insert("f", Cache::Priority::LOW);
Insert("g", Cache::Priority::LOW);
ValidateLRUList({"d", "e", "f", "g", "Z"}, 1);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"e", "f", "g", "Z", "d"}, 2);
}
class TestSecondaryCache : public SecondaryCache {
public:
// Specifies what action to take on a lookup for a particular key
enum ResultType {
SUCCESS,
// Fail lookup immediately
FAIL,
// Defer the result. It will returned after Wait/WaitAll is called
DEFER,
// Defer the result and eventually return failure
DEFER_AND_FAIL
};
using ResultMap = std::unordered_map<std::string, ResultType>;
explicit TestSecondaryCache(size_t capacity)
: num_inserts_(0), num_lookups_(0), inject_failure_(false) {
cache_ = NewLRUCache(capacity, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
}
~TestSecondaryCache() override { cache_.reset(); }
const char* Name() const override { return "TestSecondaryCache"; }
void InjectFailure() { inject_failure_ = true; }
void ResetInjectFailure() { inject_failure_ = false; }
void SetDbSessionId(const std::string& db_session_id) {
// NOTE: we assume the file is smaller than kMaxFileSizeStandardEncoding
// for this to work, but that's safe in a test.
auto base = OffsetableCacheKey("unknown", db_session_id, 1, 1);
ckey_prefix_ = base.CommonPrefixSlice().ToString();
}
Status Insert(const Slice& key, void* value,
const Cache::CacheItemHelper* helper) override {
if (inject_failure_) {
return Status::Corruption("Insertion Data Corrupted");
}
EXPECT_TRUE(IsDbSessionLowerAsKeyPrefix(key));
size_t size;
char* buf;
Status s;
num_inserts_++;
size = (*helper->size_cb)(value);
buf = new char[size + sizeof(uint64_t)];
EncodeFixed64(buf, size);
s = (*helper->saveto_cb)(value, 0, size, buf + sizeof(uint64_t));
if (!s.ok()) {
delete[] buf;
return s;
}
return cache_->Insert(key, buf, size,
[](const Slice& /*key*/, void* val) -> void {
delete[] static_cast<char*>(val);
});
}
std::unique_ptr<SecondaryCacheResultHandle> Lookup(
const Slice& key, const Cache::CreateCallback& create_cb, bool /*wait*/,
bool& is_in_sec_cache) override {
std::string key_str = key.ToString();
TEST_SYNC_POINT_CALLBACK("TestSecondaryCache::Lookup", &key_str);
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle;
is_in_sec_cache = false;
ResultType type = ResultType::SUCCESS;
auto iter = result_map_.find(key.ToString());
if (iter != result_map_.end()) {
type = iter->second;
}
if (type == ResultType::FAIL) {
return secondary_handle;
}
Cache::Handle* handle = cache_->Lookup(key);
num_lookups_++;
if (handle) {
void* value = nullptr;
size_t charge = 0;
Status s;
if (type != ResultType::DEFER_AND_FAIL) {
char* ptr = (char*)cache_->Value(handle);
size_t size = DecodeFixed64(ptr);
ptr += sizeof(uint64_t);
s = create_cb(ptr, size, &value, &charge);
}
if (s.ok()) {
secondary_handle.reset(new TestSecondaryCacheResultHandle(
cache_.get(), handle, value, charge, type));
is_in_sec_cache = true;
} else {
cache_->Release(handle);
}
}
return secondary_handle;
}
void Erase(const Slice& /*key*/) override {}
void WaitAll(std::vector<SecondaryCacheResultHandle*> handles) override {
for (SecondaryCacheResultHandle* handle : handles) {
TestSecondaryCacheResultHandle* sec_handle =
static_cast<TestSecondaryCacheResultHandle*>(handle);
sec_handle->SetReady();
}
}
std::string GetPrintableOptions() const override { return ""; }
void SetResultMap(ResultMap&& map) { result_map_ = std::move(map); }
uint32_t num_inserts() { return num_inserts_; }
uint32_t num_lookups() { return num_lookups_; }
bool IsDbSessionLowerAsKeyPrefix(const Slice& key) {
return key.starts_with(ckey_prefix_);
}
private:
class TestSecondaryCacheResultHandle : public SecondaryCacheResultHandle {
public:
TestSecondaryCacheResultHandle(Cache* cache, Cache::Handle* handle,
void* value, size_t size, ResultType type)
: cache_(cache),
handle_(handle),
value_(value),
size_(size),
is_ready_(true) {
if (type != ResultType::SUCCESS) {
is_ready_ = false;
}
}
~TestSecondaryCacheResultHandle() override { cache_->Release(handle_); }
bool IsReady() override { return is_ready_; }
void Wait() override {}
void* Value() override {
assert(is_ready_);
return value_;
}
size_t Size() override { return Value() ? size_ : 0; }
void SetReady() { is_ready_ = true; }
private:
Cache* cache_;
Cache::Handle* handle_;
void* value_;
size_t size_;
bool is_ready_;
};
std::shared_ptr<Cache> cache_;
uint32_t num_inserts_;
uint32_t num_lookups_;
bool inject_failure_;
std::string ckey_prefix_;
ResultMap result_map_;
};
class DBSecondaryCacheTest : public DBTestBase {
public:
DBSecondaryCacheTest()
: DBTestBase("db_secondary_cache_test", /*env_do_fsync=*/true) {
fault_fs_.reset(new FaultInjectionTestFS(env_->GetFileSystem()));
fault_env_.reset(new CompositeEnvWrapper(env_, fault_fs_));
}
std::shared_ptr<FaultInjectionTestFS> fault_fs_;
std::unique_ptr<Env> fault_env_;
};
class LRUCacheSecondaryCacheTest : public LRUCacheTest {
public:
LRUCacheSecondaryCacheTest() : fail_create_(false) {}
~LRUCacheSecondaryCacheTest() {}
protected:
class TestItem {
public:
TestItem(const char* buf, size_t size) : buf_(new char[size]), size_(size) {
memcpy(buf_.get(), buf, size);
}
~TestItem() {}
char* Buf() { return buf_.get(); }
size_t Size() { return size_; }
std::string ToString() { return std::string(Buf(), Size()); }
private:
std::unique_ptr<char[]> buf_;
size_t size_;
};
static size_t SizeCallback(void* obj) {
return reinterpret_cast<TestItem*>(obj)->Size();
}
static Status SaveToCallback(void* from_obj, size_t from_offset,
size_t length, void* out) {
TestItem* item = reinterpret_cast<TestItem*>(from_obj);
char* buf = item->Buf();
EXPECT_EQ(length, item->Size());
EXPECT_EQ(from_offset, 0);
memcpy(out, buf, length);
return Status::OK();
}
static void DeletionCallback(const Slice& /*key*/, void* obj) {
delete reinterpret_cast<TestItem*>(obj);
}
static Cache::CacheItemHelper helper_;
static Status SaveToCallbackFail(void* /*obj*/, size_t /*offset*/,
size_t /*size*/, void* /*out*/) {
return Status::NotSupported();
}
static Cache::CacheItemHelper helper_fail_;
Cache::CreateCallback test_item_creator = [&](const void* buf, size_t size,
void** out_obj,
size_t* charge) -> Status {
if (fail_create_) {
return Status::NotSupported();
}
*out_obj = reinterpret_cast<void*>(new TestItem((char*)buf, size));
*charge = size;
return Status::OK();
};
void SetFailCreate(bool fail) { fail_create_ = fail; }
private:
bool fail_create_;
};
Cache::CacheItemHelper LRUCacheSecondaryCacheTest::helper_(
LRUCacheSecondaryCacheTest::SizeCallback,
LRUCacheSecondaryCacheTest::SaveToCallback,
LRUCacheSecondaryCacheTest::DeletionCallback);
Cache::CacheItemHelper LRUCacheSecondaryCacheTest::helper_fail_(
LRUCacheSecondaryCacheTest::SizeCallback,
LRUCacheSecondaryCacheTest::SaveToCallbackFail,
LRUCacheSecondaryCacheTest::DeletionCallback);
TEST_F(LRUCacheSecondaryCacheTest, BasicTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
std::shared_ptr<Statistics> stats = CreateDBStatistics();
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUCacheSecondaryCacheTest::helper_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUCacheSecondaryCacheTest::helper_,
str2.length()));
get_perf_context()->Reset();
Cache::Handle* handle;
handle =
cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true, stats.get());
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should promote k1 and demote k2
handle =
cache->Lookup("k1", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true, stats.get());
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_HITS),
secondary_cache->num_lookups());
PerfContext perf_ctx = *get_perf_context();
ASSERT_EQ(perf_ctx.secondary_cache_hit_count, secondary_cache->num_lookups());
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUCacheSecondaryCacheTest, BasicFailTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
auto item1 = std::make_unique<TestItem>(str1.data(), str1.length());
ASSERT_TRUE(cache->Insert("k1", item1.get(), nullptr, str1.length())
.IsInvalidArgument());
ASSERT_OK(cache->Insert("k1", item1.get(),
&LRUCacheSecondaryCacheTest::helper_, str1.length()));
item1.release(); // Appease clang-analyze "potential memory leak"
Cache::Handle* handle;
handle = cache->Lookup("k2", nullptr, test_item_creator, Cache::Priority::LOW,
true);
ASSERT_EQ(handle, nullptr);
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, false);
ASSERT_EQ(handle, nullptr);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUCacheSecondaryCacheTest, SaveFailTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert(
"k1", item1, &LRUCacheSecondaryCacheTest::helper_fail_, str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert(
"k2", item2, &LRUCacheSecondaryCacheTest::helper_fail_, str2.length()));
Cache::Handle* handle;
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_fail_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should fail, since k1 demotion would have failed
handle = cache->Lookup("k1", &LRUCacheSecondaryCacheTest::helper_fail_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_EQ(handle, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_fail_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUCacheSecondaryCacheTest, CreateFailTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUCacheSecondaryCacheTest::helper_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUCacheSecondaryCacheTest::helper_,
str2.length()));
Cache::Handle* handle;
SetFailCreate(true);
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should fail, since k1 creation would have failed
handle = cache->Lookup("k1", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_EQ(handle, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUCacheSecondaryCacheTest, FullCapacityTest) {
LRUCacheOptions opts(1024, 0, /*_strict_capacity_limit=*/true, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUCacheSecondaryCacheTest::helper_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUCacheSecondaryCacheTest::helper_,
str2.length()));
Cache::Handle* handle;
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
// k1 promotion should fail due to the block cache being at capacity,
// but the lookup should still succeed
Cache::Handle* handle2;
handle2 = cache->Lookup("k1", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle2, nullptr);
// Since k1 didn't get inserted, k2 should still be in cache
cache->Release(handle);
cache->Release(handle2);
handle = cache->Lookup("k2", &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
// if we try to insert block_1 to the block cache, it will always fails. Only
// block_2 will be successfully inserted into the block cache.
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheCorrectness1) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Note that, block_1 is never successfully
// inserted to the block cache. Here are 2 lookups in the secondary cache
// for block_1 and block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. Meta blocks are always cached. When block_1 is read
// out, block_2 is evicted from block cache and inserted to secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// The first data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
// be inserted successfully due to the size. Currently, cache only has
// the meta blocks.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// The second data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
// in the secondary cache. Now block cache has block_2
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block_2 is in the block cache. There is a block cache hit. No need to
// lookup or insert the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
Destroy(options);
}
// In this test, the block cache size is set to 6100, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
// insert and cache block_1 in the block cache (this is the different place
// from TestSecondaryCacheCorrectness1)
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheCorrectness2) {
LRUCacheOptions opts(6100, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = true;
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Thefore, block_1 is evicted from block
// cache and successfully inserted to the secondary cache. Here are 2
// lookups in the secondary cache for block_1 and block_2.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. After Flush, only block_2 is cached in block cache
// and block_1 is in the secondary cache. So when read block_1, it is
// read out from secondary cache and inserted to block cache. At the same
// time, block_2 is inserted to secondary cache. Now, secondary cache has
// both block_1 and block_2. After compaction, block_1 is in the cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is cached in block cache
// there is no secondary cache lookup.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_2 which is not in the block cache. So
// it will lookup the secondary cache for block_2 and cache it in the
// block_cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_2 which is already in the block cache.
// No need to lookup secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is not in block cache
// there is one econdary cache lookup. Then, block_1 is cached in the
// block cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is cached in block cache
// there is no secondary cache lookup.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
Destroy(options);
}
// The block cache size is set to 1024*1024, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
// cache all the blocks in the block cache and there is not secondary cache
// insertion. 2 lookup is needed for the blocks.
TEST_F(DBSecondaryCacheTest, NoSecondaryCacheInsertion) {
LRUCacheOptions opts(1024 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.paranoid_file_checks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1000);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. Now, block cache is large enough, it cache
// both block_1 and block_2. When first time read block_1 and block_2
// there are cache misses. So 2 secondary cache lookups are needed for
// the 2 blocks
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will iterate the whole SST file. Since all the data blocks
// are in the block cache. No need to lookup the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
std::string v = Get(Key(0));
ASSERT_EQ(1000, v.size());
// Since the block cache is large enough, all the blocks are cached. we
// do not need to lookup the seondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Destroy(options);
}
TEST_F(DBSecondaryCacheTest, SecondaryCacheIntensiveTesting) {
LRUCacheOptions opts(8 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1000);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
Compact("a", "z");
Random r_index(47);
std::string v;
for (int i = 0; i < 1000; i++) {
uint32_t key_i = r_index.Next() % N;
v = Get(Key(key_i));
}
// We have over 200 data blocks there will be multiple insertion
// and lookups.
ASSERT_GE(secondary_cache->num_inserts(), 1u);
ASSERT_GE(secondary_cache->num_lookups(), 1u);
Destroy(options);
}
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
// if we try to insert block_1 to the block cache, it will always fails. Only
// block_2 will be successfully inserted into the block cache.
TEST_F(DBSecondaryCacheTest, SecondaryCacheFailureTest) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.paranoid_file_checks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Note that, block_1 is never successfully
// inserted to the block cache. Here are 2 lookups in the secondary cache
// for block_1 and block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
// Fail the insertion, in LRU cache, the secondary insertion returned status
// is not checked, therefore, the DB will not be influenced.
secondary_cache->InjectFailure();
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. Meta blocks are always cached. When block_1 is read
// out, block_2 is evicted from block cache and inserted to secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// The first data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
// be inserted successfully due to the size. Currently, cache only has
// the meta blocks.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// The second data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
// in the secondary cache. Now block cache has block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block_2 is in the block cache. There is a block cache hit. No need to
// lookup or insert the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
secondary_cache->ResetInjectFailure();
Destroy(options);
}
TEST_F(LRUCacheSecondaryCacheTest, BasicWaitAllTest) {
LRUCacheOptions opts(1024, 2, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(32 * 1024);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
const int num_keys = 32;
Random rnd(301);
std::vector<std::string> values;
for (int i = 0; i < num_keys; ++i) {
std::string str = rnd.RandomString(1020);
values.emplace_back(str);
TestItem* item = new TestItem(str.data(), str.length());
ASSERT_OK(cache->Insert("k" + std::to_string(i), item,
&LRUCacheSecondaryCacheTest::helper_,
str.length()));
}
// Force all entries to be evicted to the secondary cache
cache->SetCapacity(0);
ASSERT_EQ(secondary_cache->num_inserts(), 32u);
cache->SetCapacity(32 * 1024);
secondary_cache->SetResultMap(
{{"k3", TestSecondaryCache::ResultType::DEFER},
{"k4", TestSecondaryCache::ResultType::DEFER_AND_FAIL},
{"k5", TestSecondaryCache::ResultType::FAIL}});
std::vector<Cache::Handle*> results;
for (int i = 0; i < 6; ++i) {
results.emplace_back(cache->Lookup(
"k" + std::to_string(i), &LRUCacheSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, false));
}
cache->WaitAll(results);
for (int i = 0; i < 6; ++i) {
if (i == 4) {
ASSERT_EQ(cache->Value(results[i]), nullptr);
} else if (i == 5) {
ASSERT_EQ(results[i], nullptr);
continue;
} else {
TestItem* item = static_cast<TestItem*>(cache->Value(results[i]));
ASSERT_EQ(item->ToString(), values[i]);
}
cache->Release(results[i]);
}
cache.reset();
secondary_cache.reset();
}
// In this test, we have one KV pair per data block. We indirectly determine
// the cache key associated with each data block (and thus each KV) by using
// a sync point callback in TestSecondaryCache::Lookup. We then control the
// lookup result by setting the ResultMap.
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheMultiGet) {
LRUCacheOptions opts(1 << 20, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
table_options.cache_index_and_filter_blocks = false;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = true;
DestroyAndReopen(options);
Random rnd(301);
const int N = 8;
std::vector<std::string> keys;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(4000);
keys.emplace_back(p_v);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB does the paranoid check for the new
// SST file. This will try to lookup all data blocks in the secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 8u);
cache->SetCapacity(0);
ASSERT_EQ(secondary_cache->num_inserts(), 8u);
cache->SetCapacity(1 << 20);
std::vector<std::string> cache_keys;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TestSecondaryCache::Lookup", [&cache_keys](void* key) -> void {
cache_keys.emplace_back(*(static_cast<std::string*>(key)));
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 0; i < N; ++i) {
std::string v = Get(Key(i));
ASSERT_EQ(4000, v.size());
ASSERT_EQ(v, keys[i]);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(secondary_cache->num_lookups(), 16u);
cache->SetCapacity(0);
cache->SetCapacity(1 << 20);
ASSERT_EQ(Get(Key(2)), keys[2]);
ASSERT_EQ(Get(Key(7)), keys[7]);
secondary_cache->SetResultMap(
{{cache_keys[3], TestSecondaryCache::ResultType::DEFER},
{cache_keys[4], TestSecondaryCache::ResultType::DEFER_AND_FAIL},
{cache_keys[5], TestSecondaryCache::ResultType::FAIL}});
std::vector<std::string> mget_keys(
{Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7)});
std::vector<PinnableSlice> values(mget_keys.size());
std::vector<Status> s(keys.size());
std::vector<Slice> key_slices;
for (const std::string& key : mget_keys) {
key_slices.emplace_back(key);
}
uint32_t num_lookups = secondary_cache->num_lookups();
dbfull()->MultiGet(ReadOptions(), dbfull()->DefaultColumnFamily(),
key_slices.size(), key_slices.data(), values.data(),
s.data(), false);
ASSERT_EQ(secondary_cache->num_lookups(), num_lookups + 5);
for (int i = 0; i < N; ++i) {
ASSERT_OK(s[i]);
ASSERT_EQ(values[i].ToString(), keys[i]);
values[i].Reset();
}
Destroy(options);
}
class LRUCacheWithStat : public LRUCache {
public:
LRUCacheWithStat(
size_t _capacity, int _num_shard_bits, bool _strict_capacity_limit,
double _high_pri_pool_ratio,
std::shared_ptr<MemoryAllocator> _memory_allocator = nullptr,
bool _use_adaptive_mutex = kDefaultToAdaptiveMutex,
CacheMetadataChargePolicy _metadata_charge_policy =
kDontChargeCacheMetadata,
const std::shared_ptr<SecondaryCache>& _secondary_cache = nullptr)
: LRUCache(_capacity, _num_shard_bits, _strict_capacity_limit,
_high_pri_pool_ratio, _memory_allocator, _use_adaptive_mutex,
_metadata_charge_policy, _secondary_cache) {
insert_count_ = 0;
lookup_count_ = 0;
}
~LRUCacheWithStat() {}
Status Insert(const Slice& key, void* value, size_t charge, DeleterFn deleter,
Handle** handle, Priority priority) override {
insert_count_++;
return LRUCache::Insert(key, value, charge, deleter, handle, priority);
}
Status Insert(const Slice& key, void* value, const CacheItemHelper* helper,
size_t chargge, Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
insert_count_++;
return LRUCache::Insert(key, value, helper, chargge, handle, priority);
}
Handle* Lookup(const Slice& key, Statistics* stats) override {
lookup_count_++;
return LRUCache::Lookup(key, stats);
}
Handle* Lookup(const Slice& key, const CacheItemHelper* helper,
const CreateCallback& create_cb, Priority priority, bool wait,
Statistics* stats = nullptr) override {
lookup_count_++;
return LRUCache::Lookup(key, helper, create_cb, priority, wait, stats);
}
uint32_t GetInsertCount() { return insert_count_; }
uint32_t GetLookupcount() { return lookup_count_; }
void ResetCount() {
insert_count_ = 0;
lookup_count_ = 0;
}
private:
uint32_t insert_count_;
uint32_t lookup_count_;
};
#ifndef ROCKSDB_LITE
TEST_F(DBSecondaryCacheTest, LRUCacheDumpLoadBasic) {
LRUCacheOptions cache_opts(1024 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
LRUCacheWithStat* tmp_cache = new LRUCacheWithStat(
cache_opts.capacity, cache_opts.num_shard_bits,
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
cache_opts.metadata_charge_policy, cache_opts.secondary_cache);
std::shared_ptr<Cache> cache(tmp_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
DestroyAndReopen(options);
fault_fs_->SetFailGetUniqueId(true);
Random rnd(301);
const int N = 256;
std::vector<std::string> value;
char buf[1000];
memset(buf, 'a', 1000);
value.resize(N);
for (int i = 0; i < N; i++) {
// std::string p_v = rnd.RandomString(1000);
std::string p_v(buf, 1000);
value[i] = p_v;
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
Compact("a", "z");
// do th eread for all the key value pairs, so all the blocks should be in
// cache
uint32_t start_insert = tmp_cache->GetInsertCount();
uint32_t start_lookup = tmp_cache->GetLookupcount();
std::string v;
for (int i = 0; i < N; i++) {
v = Get(Key(i));
ASSERT_EQ(v, value[i]);
}
uint32_t dump_insert = tmp_cache->GetInsertCount() - start_insert;
uint32_t dump_lookup = tmp_cache->GetLookupcount() - start_lookup;
ASSERT_EQ(63,
static_cast<int>(dump_insert)); // the insert in the block cache
ASSERT_EQ(256,
static_cast<int>(dump_lookup)); // the lookup in the block cache
// We have enough blocks in the block cache
CacheDumpOptions cd_options;
cd_options.clock = fault_env_->GetSystemClock().get();
std::string dump_path = db_->GetName() + "/cache_dump";
std::unique_ptr<CacheDumpWriter> dump_writer;
Status s = NewToFileCacheDumpWriter(fault_fs_, FileOptions(), dump_path,
&dump_writer);
ASSERT_OK(s);
std::unique_ptr<CacheDumper> cache_dumper;
s = NewDefaultCacheDumper(cd_options, cache, std::move(dump_writer),
&cache_dumper);
ASSERT_OK(s);
std::vector<DB*> db_list;
db_list.push_back(db_);
s = cache_dumper->SetDumpFilter(db_list);
ASSERT_OK(s);
s = cache_dumper->DumpCacheEntriesToWriter();
ASSERT_OK(s);
cache_dumper.reset();
// we have a new cache it is empty, then, before we do the Get, we do the
// dumpload
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048 * 1024);
cache_opts.secondary_cache = secondary_cache;
tmp_cache = new LRUCacheWithStat(
cache_opts.capacity, cache_opts.num_shard_bits,
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
cache_opts.metadata_charge_policy, cache_opts.secondary_cache);
std::shared_ptr<Cache> cache_new(tmp_cache);
table_options.block_cache = cache_new;
table_options.block_size = 4 * 1024;
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
// start to load the data to new block cache
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
std::unique_ptr<CacheDumpReader> dump_reader;
s = NewFromFileCacheDumpReader(fault_fs_, FileOptions(), dump_path,
&dump_reader);
ASSERT_OK(s);
std::unique_ptr<CacheDumpedLoader> cache_loader;
s = NewDefaultCacheDumpedLoader(cd_options, table_options, secondary_cache,
std::move(dump_reader), &cache_loader);
ASSERT_OK(s);
s = cache_loader->RestoreCacheEntriesToSecondaryCache();
ASSERT_OK(s);
uint32_t load_insert = secondary_cache->num_inserts() - start_insert;
uint32_t load_lookup = secondary_cache->num_lookups() - start_lookup;
// check the number we inserted
ASSERT_EQ(64, static_cast<int>(load_insert));
ASSERT_EQ(0, static_cast<int>(load_lookup));
ASSERT_OK(s);
Reopen(options);
// After load, we do the Get again
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
uint32_t cache_insert = tmp_cache->GetInsertCount();
uint32_t cache_lookup = tmp_cache->GetLookupcount();
for (int i = 0; i < N; i++) {
v = Get(Key(i));
ASSERT_EQ(v, value[i]);
}
uint32_t final_insert = secondary_cache->num_inserts() - start_insert;
uint32_t final_lookup = secondary_cache->num_lookups() - start_lookup;
// no insert to secondary cache
ASSERT_EQ(0, static_cast<int>(final_insert));
// lookup the secondary to get all blocks
ASSERT_EQ(64, static_cast<int>(final_lookup));
uint32_t block_insert = tmp_cache->GetInsertCount() - cache_insert;
uint32_t block_lookup = tmp_cache->GetLookupcount() - cache_lookup;
// Check the new block cache insert and lookup, should be no insert since all
// blocks are from the secondary cache.
ASSERT_EQ(0, static_cast<int>(block_insert));
ASSERT_EQ(256, static_cast<int>(block_lookup));
fault_fs_->SetFailGetUniqueId(false);
Destroy(options);
}
TEST_F(DBSecondaryCacheTest, LRUCacheDumpLoadWithFilter) {
LRUCacheOptions cache_opts(1024 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
LRUCacheWithStat* tmp_cache = new LRUCacheWithStat(
cache_opts.capacity, cache_opts.num_shard_bits,
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
cache_opts.metadata_charge_policy, cache_opts.secondary_cache);
std::shared_ptr<Cache> cache(tmp_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
std::string dbname1 = test::PerThreadDBPath("db_1");
ASSERT_OK(DestroyDB(dbname1, options));
DB* db1 = nullptr;
ASSERT_OK(DB::Open(options, dbname1, &db1));
std::string dbname2 = test::PerThreadDBPath("db_2");
ASSERT_OK(DestroyDB(dbname2, options));
DB* db2 = nullptr;
ASSERT_OK(DB::Open(options, dbname2, &db2));
fault_fs_->SetFailGetUniqueId(true);
// write the KVs to db1
Random rnd(301);
const int N = 256;
std::vector<std::string> value1;
WriteOptions wo;
char buf[1000];
memset(buf, 'a', 1000);
value1.resize(N);
for (int i = 0; i < N; i++) {
std::string p_v(buf, 1000);
value1[i] = p_v;
ASSERT_OK(db1->Put(wo, Key(i), p_v));
}
ASSERT_OK(db1->Flush(FlushOptions()));
Slice bg("a");
Slice ed("b");
ASSERT_OK(db1->CompactRange(CompactRangeOptions(), &bg, &ed));
// Write the KVs to DB2
std::vector<std::string> value2;
memset(buf, 'b', 1000);
value2.resize(N);
for (int i = 0; i < N; i++) {
std::string p_v(buf, 1000);
value2[i] = p_v;
ASSERT_OK(db2->Put(wo, Key(i), p_v));
}
ASSERT_OK(db2->Flush(FlushOptions()));
ASSERT_OK(db2->CompactRange(CompactRangeOptions(), &bg, &ed));
// do th eread for all the key value pairs, so all the blocks should be in
// cache
uint32_t start_insert = tmp_cache->GetInsertCount();
uint32_t start_lookup = tmp_cache->GetLookupcount();
ReadOptions ro;
std::string v;
for (int i = 0; i < N; i++) {
ASSERT_OK(db1->Get(ro, Key(i), &v));
ASSERT_EQ(v, value1[i]);
}
for (int i = 0; i < N; i++) {
ASSERT_OK(db2->Get(ro, Key(i), &v));
ASSERT_EQ(v, value2[i]);
}
uint32_t dump_insert = tmp_cache->GetInsertCount() - start_insert;
uint32_t dump_lookup = tmp_cache->GetLookupcount() - start_lookup;
ASSERT_EQ(128,
static_cast<int>(dump_insert)); // the insert in the block cache
ASSERT_EQ(512,
static_cast<int>(dump_lookup)); // the lookup in the block cache
// We have enough blocks in the block cache
CacheDumpOptions cd_options;
cd_options.clock = fault_env_->GetSystemClock().get();
std::string dump_path = db1->GetName() + "/cache_dump";
std::unique_ptr<CacheDumpWriter> dump_writer;
Status s = NewToFileCacheDumpWriter(fault_fs_, FileOptions(), dump_path,
&dump_writer);
ASSERT_OK(s);
std::unique_ptr<CacheDumper> cache_dumper;
s = NewDefaultCacheDumper(cd_options, cache, std::move(dump_writer),
&cache_dumper);
ASSERT_OK(s);
std::vector<DB*> db_list;
db_list.push_back(db1);
s = cache_dumper->SetDumpFilter(db_list);
ASSERT_OK(s);
s = cache_dumper->DumpCacheEntriesToWriter();
ASSERT_OK(s);
cache_dumper.reset();
// we have a new cache it is empty, then, before we do the Get, we do the
// dumpload
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048 * 1024);
cache_opts.secondary_cache = secondary_cache;
tmp_cache = new LRUCacheWithStat(
cache_opts.capacity, cache_opts.num_shard_bits,
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
cache_opts.metadata_charge_policy, cache_opts.secondary_cache);
std::shared_ptr<Cache> cache_new(tmp_cache);
table_options.block_cache = cache_new;
table_options.block_size = 4 * 1024;
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
// Start the cache loading process
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
std::unique_ptr<CacheDumpReader> dump_reader;
s = NewFromFileCacheDumpReader(fault_fs_, FileOptions(), dump_path,
&dump_reader);
ASSERT_OK(s);
std::unique_ptr<CacheDumpedLoader> cache_loader;
s = NewDefaultCacheDumpedLoader(cd_options, table_options, secondary_cache,
std::move(dump_reader), &cache_loader);
ASSERT_OK(s);
s = cache_loader->RestoreCacheEntriesToSecondaryCache();
ASSERT_OK(s);
uint32_t load_insert = secondary_cache->num_inserts() - start_insert;
uint32_t load_lookup = secondary_cache->num_lookups() - start_lookup;
// check the number we inserted
ASSERT_EQ(64, static_cast<int>(load_insert));
ASSERT_EQ(0, static_cast<int>(load_lookup));
ASSERT_OK(s);
ASSERT_OK(db1->Close());
delete db1;
ASSERT_OK(DB::Open(options, dbname1, &db1));
// After load, we do the Get again. To validate the cache, we do not allow any
// I/O, so we set the file system to false.
IOStatus error_msg = IOStatus::IOError("Retryable IO Error");
fault_fs_->SetFilesystemActive(false, error_msg);
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
uint32_t cache_insert = tmp_cache->GetInsertCount();
uint32_t cache_lookup = tmp_cache->GetLookupcount();
for (int i = 0; i < N; i++) {
ASSERT_OK(db1->Get(ro, Key(i), &v));
ASSERT_EQ(v, value1[i]);
}
uint32_t final_insert = secondary_cache->num_inserts() - start_insert;
uint32_t final_lookup = secondary_cache->num_lookups() - start_lookup;
// no insert to secondary cache
ASSERT_EQ(0, static_cast<int>(final_insert));
// lookup the secondary to get all blocks
ASSERT_EQ(64, static_cast<int>(final_lookup));
uint32_t block_insert = tmp_cache->GetInsertCount() - cache_insert;
uint32_t block_lookup = tmp_cache->GetLookupcount() - cache_lookup;
// Check the new block cache insert and lookup, should be no insert since all
// blocks are from the secondary cache.
ASSERT_EQ(0, static_cast<int>(block_insert));
ASSERT_EQ(256, static_cast<int>(block_lookup));
fault_fs_->SetFailGetUniqueId(false);
fault_fs_->SetFilesystemActive(true);
delete db1;
delete db2;
ASSERT_OK(DestroyDB(dbname1, options));
ASSERT_OK(DestroyDB(dbname2, options));
}
// Test the option not to use the secondary cache in a certain DB.
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheOptionBasic) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
options.lowest_used_cache_tier = CacheTier::kVolatileTier;
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i + 70), p_v));
}
ASSERT_OK(Flush());
// Flush will trigger the paranoid check and read blocks. But only block cache
// will be read. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
Compact("a", "z");
// Compaction will also insert and evict blocks, no operations to the block
// cache. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Check the data in first block. Cache miss, direclty read from SST file.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// Check the second block.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block cache hit
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(70));
ASSERT_EQ(1007, v.size());
// Check the first block in the second SST file. Cache miss and trigger SST
// file read. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(75));
ASSERT_EQ(1007, v.size());
// Check the second block in the second SST file. Cache miss and trigger SST
// file read. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
Destroy(options);
}
// We disable the secondary cache in DBOptions at first. Close and reopen the DB
// with new options, which set the lowest_used_cache_tier to
// kNonVolatileBlockTier. So secondary cache will be used.
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheOptionChange) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
options.lowest_used_cache_tier = CacheTier::kVolatileTier;
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i + 70), p_v));
}
ASSERT_OK(Flush());
// Flush will trigger the paranoid check and read blocks. But only block cache
// will be read.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
Compact("a", "z");
// Compaction will also insert and evict blocks, no operations to the block
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Check the data in first block. Cache miss, direclty read from SST file.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// Check the second block.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block cache hit
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
// Change the option to enable secondary cache after we Reopen the DB
options.lowest_used_cache_tier = CacheTier::kNonVolatileBlockTier;
Reopen(options);
v = Get(Key(70));
ASSERT_EQ(1007, v.size());
// Enable the secondary cache, trigger lookup of the first block in second SST
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
v = Get(Key(75));
ASSERT_EQ(1007, v.size());
// trigger lookup of the second block in second SST
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Destroy(options);
}
// Two DB test. We create 2 DBs sharing the same block cache and secondary
// cache. We diable the secondary cache option for DB2.
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheOptionTwoDB) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
options.paranoid_file_checks = true;
std::string dbname1 = test::PerThreadDBPath("db_t_1");
ASSERT_OK(DestroyDB(dbname1, options));
DB* db1 = nullptr;
ASSERT_OK(DB::Open(options, dbname1, &db1));
std::string dbname2 = test::PerThreadDBPath("db_t_2");
ASSERT_OK(DestroyDB(dbname2, options));
DB* db2 = nullptr;
Options options2 = options;
options2.lowest_used_cache_tier = CacheTier::kVolatileTier;
ASSERT_OK(DB::Open(options2, dbname2, &db2));
fault_fs_->SetFailGetUniqueId(true);
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
std::string session_id;
ASSERT_OK(db1->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
WriteOptions wo;
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(db1->Put(wo, Key(i), p_v));
}
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
ASSERT_OK(db1->Flush(FlushOptions()));
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(db2->Put(wo, Key(i), p_v));
}
// No change in the secondary cache, since it is disabled in DB2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
ASSERT_OK(db2->Flush(FlushOptions()));
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Slice bg("a");
Slice ed("b");
ASSERT_OK(db1->CompactRange(CompactRangeOptions(), &bg, &ed));
ASSERT_OK(db2->CompactRange(CompactRangeOptions(), &bg, &ed));
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
ReadOptions ro;
std::string v;
ASSERT_OK(db1->Get(ro, Key(0), &v));
ASSERT_EQ(1007, v.size());
// DB 1 has lookup block 1 and it is miss in block cache, trigger secondary
// cache lookup
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
ASSERT_OK(db1->Get(ro, Key(5), &v));
ASSERT_EQ(1007, v.size());
// DB 1 lookup the second block and it is miss in block cache, trigger
// secondary cache lookup
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
ASSERT_OK(db2->Get(ro, Key(0), &v));
ASSERT_EQ(1007, v.size());
// For db2, it is not enabled with secondary cache, so no search in the
// secondary cache
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
ASSERT_OK(db2->Get(ro, Key(5), &v));
ASSERT_EQ(1007, v.size());
// For db2, it is not enabled with secondary cache, so no search in the
// secondary cache
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
fault_fs_->SetFailGetUniqueId(false);
fault_fs_->SetFilesystemActive(true);
delete db1;
delete db2;
ASSERT_OK(DestroyDB(dbname1, options));
ASSERT_OK(DestroyDB(dbname2, options));
}
#endif // ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}