mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 20:43:57 +00:00
151242ce46
Summary: **Context:** The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them. **Summary** - Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros` - Fixed the default histogram in `RandomAccessFileReader` - New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader` - Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288 Test Plan: - **Stress test** - **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.** (without blob) - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads. ``` ./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10) ``` ``` // BlockBasedTable rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805 rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116 rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689 // PlainTable Does not apply ``` - **Db bench 2: performance** **Read** SETUP: db with 900 files ``` ./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none ```run till convergence ``` ./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3 ``` Pre-change `readrandom [AVG 60 runs] : 21568 (± 248) ops/sec` Post-change (no regression, -0.3%) `readrandom [AVG 60 runs] : 21486 (± 236) ops/sec` **Compaction/Flush**run till convergence ``` ./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none rocksdb.sst.read.micros COUNT : 33820 rocksdb.sst.read.flush.micros COUNT : 1800 rocksdb.sst.read.compaction.micros COUNT : 32020 ``` Pre-change `fillseq [AVG 46 runs] : 1391 (± 214) ops/sec; 0.7 (± 0.1) MB/sec` Post-change (no regression, ~-0.4%) `fillseq [AVG 46 runs] : 1385 (± 216) ops/sec; 0.7 (± 0.1) MB/sec` Reviewed By: ajkr Differential Revision: D44007011 Pulled By: hx235 fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
1762 lines
58 KiB
C++
1762 lines
58 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#ifdef GFLAGS
|
|
#include "db_stress_tool/multi_ops_txns_stress.h"
|
|
|
|
#include "rocksdb/utilities/write_batch_with_index.h"
|
|
#include "util/defer.h"
|
|
#include "utilities/fault_injection_fs.h"
|
|
#include "utilities/transactions/write_prepared_txn_db.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
// The description of A and C can be found in multi_ops_txns_stress.h
|
|
DEFINE_int32(lb_a, 0, "(Inclusive) lower bound of A");
|
|
DEFINE_int32(ub_a, 1000, "(Exclusive) upper bound of A");
|
|
DEFINE_int32(lb_c, 0, "(Inclusive) lower bound of C");
|
|
DEFINE_int32(ub_c, 1000, "(Exclusive) upper bound of C");
|
|
|
|
DEFINE_string(key_spaces_path, "",
|
|
"Path to file describing the lower and upper bounds of A and C");
|
|
|
|
DEFINE_int32(delay_snapshot_read_one_in, 0,
|
|
"With a chance of 1/N, inject a random delay between taking "
|
|
"snapshot and read.");
|
|
|
|
DEFINE_int32(rollback_one_in, 0,
|
|
"If non-zero, rollback non-read-only transactions with a "
|
|
"probability of 1/N.");
|
|
|
|
DEFINE_int32(clear_wp_commit_cache_one_in, 0,
|
|
"If non-zero, evict all commit entries from commit cache with a "
|
|
"probability of 1/N. This options applies to write-prepared and "
|
|
"write-unprepared transactions.");
|
|
|
|
extern "C" bool rocksdb_write_prepared_TEST_ShouldClearCommitCache(void) {
|
|
static Random rand(static_cast<uint32_t>(db_stress_env->NowMicros()));
|
|
return FLAGS_clear_wp_commit_cache_one_in > 0 &&
|
|
rand.OneIn(FLAGS_clear_wp_commit_cache_one_in);
|
|
}
|
|
|
|
// MultiOpsTxnsStressTest can either operate on a database with pre-populated
|
|
// data (possibly from previous ones), or create a new db and preload it with
|
|
// data specified via `-lb_a`, `-ub_a`, `-lb_c`, `-ub_c`, etc. Among these, we
|
|
// define the test key spaces as two key ranges: [lb_a, ub_a) and [lb_c, ub_c).
|
|
// The key spaces specification is persisted in a file whose absolute path can
|
|
// be specified via `-key_spaces_path`.
|
|
//
|
|
// Whether an existing db is used or a new one is created, key_spaces_path will
|
|
// be used. In the former case, the test reads the key spaces specification
|
|
// from `-key_spaces_path` and decodes [lb_a, ub_a) and [lb_c, ub_c). In the
|
|
// latter case, the test writes a key spaces specification to a file at the
|
|
// location, and this file will be used by future runs until a new db is
|
|
// created.
|
|
//
|
|
// Create a fresh new database (-destroy_db_initially=1 or there is no database
|
|
// in the location specified by -db). See PreloadDb().
|
|
//
|
|
// Use an existing, non-empty database. See ScanExistingDb().
|
|
//
|
|
// This test is multi-threaded, and thread count can be specified via
|
|
// `-threads`. For simplicity, we partition the key ranges and each thread
|
|
// operates on a subrange independently.
|
|
// Within each subrange, a KeyGenerator object is responsible for key
|
|
// generation. A KeyGenerator maintains two sets: set of existing keys within
|
|
// [low, high), set of non-existing keys within [low, high). [low, high) is the
|
|
// subrange. The test initialization makes sure there is at least one
|
|
// non-existing key, otherwise the test will return an error and exit before
|
|
// any test thread is spawned.
|
|
|
|
void MultiOpsTxnsStressTest::KeyGenerator::FinishInit() {
|
|
assert(existing_.empty());
|
|
assert(!existing_uniq_.empty());
|
|
assert(low_ < high_);
|
|
for (auto v : existing_uniq_) {
|
|
assert(low_ <= v);
|
|
assert(high_ > v);
|
|
existing_.push_back(v);
|
|
}
|
|
if (non_existing_uniq_.empty()) {
|
|
fprintf(
|
|
stderr,
|
|
"Cannot allocate key in [%u, %u)\nStart with a new DB or try change "
|
|
"the number of threads for testing via -threads=<#threads>\n",
|
|
static_cast<unsigned int>(low_), static_cast<unsigned int>(high_));
|
|
fflush(stdout);
|
|
fflush(stderr);
|
|
assert(false);
|
|
}
|
|
initialized_ = true;
|
|
}
|
|
|
|
std::pair<uint32_t, uint32_t>
|
|
MultiOpsTxnsStressTest::KeyGenerator::ChooseExisting() {
|
|
assert(initialized_);
|
|
const size_t N = existing_.size();
|
|
assert(N > 0);
|
|
uint32_t rnd = rand_.Uniform(static_cast<int>(N));
|
|
assert(rnd < N);
|
|
return std::make_pair(existing_[rnd], rnd);
|
|
}
|
|
|
|
uint32_t MultiOpsTxnsStressTest::KeyGenerator::Allocate() {
|
|
assert(initialized_);
|
|
auto it = non_existing_uniq_.begin();
|
|
assert(non_existing_uniq_.end() != it);
|
|
uint32_t ret = *it;
|
|
// Remove this element from non_existing_.
|
|
// Need to call UndoAllocation() if the calling transaction does not commit.
|
|
non_existing_uniq_.erase(it);
|
|
return ret;
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::KeyGenerator::Replace(uint32_t old_val,
|
|
uint32_t old_pos,
|
|
uint32_t new_val) {
|
|
assert(initialized_);
|
|
{
|
|
auto it = existing_uniq_.find(old_val);
|
|
assert(it != existing_uniq_.end());
|
|
existing_uniq_.erase(it);
|
|
}
|
|
|
|
{
|
|
assert(0 == existing_uniq_.count(new_val));
|
|
existing_uniq_.insert(new_val);
|
|
existing_[old_pos] = new_val;
|
|
}
|
|
|
|
{
|
|
assert(0 == non_existing_uniq_.count(old_val));
|
|
non_existing_uniq_.insert(old_val);
|
|
}
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::KeyGenerator::UndoAllocation(uint32_t new_val) {
|
|
assert(initialized_);
|
|
assert(0 == non_existing_uniq_.count(new_val));
|
|
non_existing_uniq_.insert(new_val);
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::Record::EncodePrimaryKey(uint32_t a) {
|
|
std::string ret;
|
|
PutFixed32(&ret, kPrimaryIndexId);
|
|
PutFixed32(&ret, a);
|
|
|
|
char* const buf = &ret[0];
|
|
std::reverse(buf, buf + sizeof(kPrimaryIndexId));
|
|
std::reverse(buf + sizeof(kPrimaryIndexId),
|
|
buf + sizeof(kPrimaryIndexId) + sizeof(a));
|
|
return ret;
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::Record::EncodeSecondaryKey(uint32_t c) {
|
|
std::string ret;
|
|
PutFixed32(&ret, kSecondaryIndexId);
|
|
PutFixed32(&ret, c);
|
|
|
|
char* const buf = &ret[0];
|
|
std::reverse(buf, buf + sizeof(kSecondaryIndexId));
|
|
std::reverse(buf + sizeof(kSecondaryIndexId),
|
|
buf + sizeof(kSecondaryIndexId) + sizeof(c));
|
|
return ret;
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::Record::EncodeSecondaryKey(uint32_t c,
|
|
uint32_t a) {
|
|
std::string ret;
|
|
PutFixed32(&ret, kSecondaryIndexId);
|
|
PutFixed32(&ret, c);
|
|
PutFixed32(&ret, a);
|
|
|
|
char* const buf = &ret[0];
|
|
std::reverse(buf, buf + sizeof(kSecondaryIndexId));
|
|
std::reverse(buf + sizeof(kSecondaryIndexId),
|
|
buf + sizeof(kSecondaryIndexId) + sizeof(c));
|
|
std::reverse(buf + sizeof(kSecondaryIndexId) + sizeof(c),
|
|
buf + sizeof(kSecondaryIndexId) + sizeof(c) + sizeof(a));
|
|
return ret;
|
|
}
|
|
|
|
std::tuple<Status, uint32_t, uint32_t>
|
|
MultiOpsTxnsStressTest::Record::DecodePrimaryIndexValue(
|
|
Slice primary_index_value) {
|
|
if (primary_index_value.size() != 8) {
|
|
return std::tuple<Status, uint32_t, uint32_t>{Status::Corruption(""), 0, 0};
|
|
}
|
|
uint32_t b = 0;
|
|
uint32_t c = 0;
|
|
if (!GetFixed32(&primary_index_value, &b) ||
|
|
!GetFixed32(&primary_index_value, &c)) {
|
|
assert(false);
|
|
return std::tuple<Status, uint32_t, uint32_t>{Status::Corruption(""), 0, 0};
|
|
}
|
|
return std::tuple<Status, uint32_t, uint32_t>{Status::OK(), b, c};
|
|
}
|
|
|
|
std::pair<Status, uint32_t>
|
|
MultiOpsTxnsStressTest::Record::DecodeSecondaryIndexValue(
|
|
Slice secondary_index_value) {
|
|
if (secondary_index_value.size() != 4) {
|
|
return std::make_pair(Status::Corruption(""), 0);
|
|
}
|
|
uint32_t crc = 0;
|
|
bool result __attribute__((unused)) =
|
|
GetFixed32(&secondary_index_value, &crc);
|
|
assert(result);
|
|
return std::make_pair(Status::OK(), crc);
|
|
}
|
|
|
|
std::pair<std::string, std::string>
|
|
MultiOpsTxnsStressTest::Record::EncodePrimaryIndexEntry() const {
|
|
std::string primary_index_key = EncodePrimaryKey();
|
|
std::string primary_index_value = EncodePrimaryIndexValue();
|
|
return std::make_pair(primary_index_key, primary_index_value);
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::Record::EncodePrimaryKey() const {
|
|
return EncodePrimaryKey(a_);
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::Record::EncodePrimaryIndexValue() const {
|
|
std::string ret;
|
|
PutFixed32(&ret, b_);
|
|
PutFixed32(&ret, c_);
|
|
return ret;
|
|
}
|
|
|
|
std::pair<std::string, std::string>
|
|
MultiOpsTxnsStressTest::Record::EncodeSecondaryIndexEntry() const {
|
|
std::string secondary_index_key = EncodeSecondaryKey(c_, a_);
|
|
|
|
// Secondary index value is always 4-byte crc32 of the secondary key
|
|
std::string secondary_index_value;
|
|
uint32_t crc =
|
|
crc32c::Value(secondary_index_key.data(), secondary_index_key.size());
|
|
PutFixed32(&secondary_index_value, crc);
|
|
return std::make_pair(std::move(secondary_index_key), secondary_index_value);
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::Record::EncodeSecondaryKey() const {
|
|
return EncodeSecondaryKey(c_, a_);
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::Record::DecodePrimaryIndexEntry(
|
|
Slice primary_index_key, Slice primary_index_value) {
|
|
if (primary_index_key.size() != 8) {
|
|
assert(false);
|
|
return Status::Corruption("Primary index key length is not 8");
|
|
}
|
|
|
|
uint32_t index_id = 0;
|
|
|
|
[[maybe_unused]] bool res = GetFixed32(&primary_index_key, &index_id);
|
|
assert(res);
|
|
index_id = EndianSwapValue(index_id);
|
|
|
|
if (index_id != kPrimaryIndexId) {
|
|
std::ostringstream oss;
|
|
oss << "Unexpected primary index id: " << index_id;
|
|
return Status::Corruption(oss.str());
|
|
}
|
|
|
|
res = GetFixed32(&primary_index_key, &a_);
|
|
assert(res);
|
|
a_ = EndianSwapValue(a_);
|
|
assert(primary_index_key.empty());
|
|
|
|
if (primary_index_value.size() != 8) {
|
|
return Status::Corruption("Primary index value length is not 8");
|
|
}
|
|
GetFixed32(&primary_index_value, &b_);
|
|
GetFixed32(&primary_index_value, &c_);
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::Record::DecodeSecondaryIndexEntry(
|
|
Slice secondary_index_key, Slice secondary_index_value) {
|
|
if (secondary_index_key.size() != 12) {
|
|
return Status::Corruption("Secondary index key length is not 12");
|
|
}
|
|
uint32_t crc =
|
|
crc32c::Value(secondary_index_key.data(), secondary_index_key.size());
|
|
|
|
uint32_t index_id = 0;
|
|
|
|
[[maybe_unused]] bool res = GetFixed32(&secondary_index_key, &index_id);
|
|
assert(res);
|
|
index_id = EndianSwapValue(index_id);
|
|
|
|
if (index_id != kSecondaryIndexId) {
|
|
std::ostringstream oss;
|
|
oss << "Unexpected secondary index id: " << index_id;
|
|
return Status::Corruption(oss.str());
|
|
}
|
|
|
|
assert(secondary_index_key.size() == 8);
|
|
res = GetFixed32(&secondary_index_key, &c_);
|
|
assert(res);
|
|
c_ = EndianSwapValue(c_);
|
|
|
|
assert(secondary_index_key.size() == 4);
|
|
res = GetFixed32(&secondary_index_key, &a_);
|
|
assert(res);
|
|
a_ = EndianSwapValue(a_);
|
|
assert(secondary_index_key.empty());
|
|
|
|
if (secondary_index_value.size() != 4) {
|
|
return Status::Corruption("Secondary index value length is not 4");
|
|
}
|
|
uint32_t val = 0;
|
|
GetFixed32(&secondary_index_value, &val);
|
|
if (val != crc) {
|
|
std::ostringstream oss;
|
|
oss << "Secondary index key checksum mismatch, stored: " << val
|
|
<< ", recomputed: " << crc;
|
|
return Status::Corruption(oss.str());
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::FinishInitDb(SharedState* shared) {
|
|
if (FLAGS_enable_compaction_filter) {
|
|
// TODO (yanqin) enable compaction filter
|
|
}
|
|
ProcessRecoveredPreparedTxns(shared);
|
|
|
|
ReopenAndPreloadDbIfNeeded(shared);
|
|
// TODO (yanqin) parallelize if key space is large
|
|
for (auto& key_gen : key_gen_for_a_) {
|
|
assert(key_gen);
|
|
key_gen->FinishInit();
|
|
}
|
|
// TODO (yanqin) parallelize if key space is large
|
|
for (auto& key_gen : key_gen_for_c_) {
|
|
assert(key_gen);
|
|
key_gen->FinishInit();
|
|
}
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::ReopenAndPreloadDbIfNeeded(SharedState* shared) {
|
|
(void)shared;
|
|
bool db_empty = false;
|
|
{
|
|
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
|
|
iter->SeekToFirst();
|
|
if (!iter->Valid()) {
|
|
db_empty = true;
|
|
}
|
|
}
|
|
|
|
if (db_empty) {
|
|
PreloadDb(shared, FLAGS_threads, FLAGS_lb_a, FLAGS_ub_a, FLAGS_lb_c,
|
|
FLAGS_ub_c);
|
|
} else {
|
|
fprintf(stdout,
|
|
"Key ranges will be read from %s.\n-lb_a, -ub_a, -lb_c, -ub_c will "
|
|
"be ignored\n",
|
|
FLAGS_key_spaces_path.c_str());
|
|
fflush(stdout);
|
|
ScanExistingDb(shared, FLAGS_threads);
|
|
}
|
|
}
|
|
|
|
// Used for point-lookup transaction
|
|
Status MultiOpsTxnsStressTest::TestGet(
|
|
ThreadState* thread, const ReadOptions& read_opts,
|
|
const std::vector<int>& /*rand_column_families*/,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
uint32_t a = 0;
|
|
uint32_t pos = 0;
|
|
std::tie(a, pos) = ChooseExistingA(thread);
|
|
return PointLookupTxn(thread, read_opts, a);
|
|
}
|
|
|
|
// Not used.
|
|
std::vector<Status> MultiOpsTxnsStressTest::TestMultiGet(
|
|
ThreadState* /*thread*/, const ReadOptions& /*read_opts*/,
|
|
const std::vector<int>& /*rand_column_families*/,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
return std::vector<Status>{Status::NotSupported()};
|
|
}
|
|
|
|
// Wide columns are currently not supported by transactions.
|
|
void MultiOpsTxnsStressTest::TestGetEntity(
|
|
ThreadState* /* thread */, const ReadOptions& /* read_opts */,
|
|
const std::vector<int>& /* rand_column_families */,
|
|
const std::vector<int64_t>& /* rand_keys */) {}
|
|
|
|
// Wide columns are currently not supported by transactions.
|
|
void MultiOpsTxnsStressTest::TestMultiGetEntity(
|
|
ThreadState* /* thread */, const ReadOptions& /* read_opts */,
|
|
const std::vector<int>& /* rand_column_families */,
|
|
const std::vector<int64_t>& /* rand_keys */) {}
|
|
|
|
Status MultiOpsTxnsStressTest::TestPrefixScan(
|
|
ThreadState* thread, const ReadOptions& read_opts,
|
|
const std::vector<int>& rand_column_families,
|
|
const std::vector<int64_t>& rand_keys) {
|
|
(void)thread;
|
|
(void)read_opts;
|
|
(void)rand_column_families;
|
|
(void)rand_keys;
|
|
return Status::OK();
|
|
}
|
|
|
|
// Given a key K, this creates an iterator which scans to K and then
|
|
// does a random sequence of Next/Prev operations.
|
|
Status MultiOpsTxnsStressTest::TestIterate(
|
|
ThreadState* thread, const ReadOptions& read_opts,
|
|
const std::vector<int>& /*rand_column_families*/,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
uint32_t c = 0;
|
|
uint32_t pos = 0;
|
|
std::tie(c, pos) = ChooseExistingC(thread);
|
|
return RangeScanTxn(thread, read_opts, c);
|
|
}
|
|
|
|
// Not intended for use.
|
|
Status MultiOpsTxnsStressTest::TestPut(ThreadState* /*thread*/,
|
|
WriteOptions& /*write_opts*/,
|
|
const ReadOptions& /*read_opts*/,
|
|
const std::vector<int>& /*cf_ids*/,
|
|
const std::vector<int64_t>& /*keys*/,
|
|
char (&value)[100]) {
|
|
(void)value;
|
|
return Status::NotSupported();
|
|
}
|
|
|
|
// Not intended for use.
|
|
Status MultiOpsTxnsStressTest::TestDelete(
|
|
ThreadState* /*thread*/, WriteOptions& /*write_opts*/,
|
|
const std::vector<int>& /*rand_column_families*/,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
return Status::NotSupported();
|
|
}
|
|
|
|
// Not intended for use.
|
|
Status MultiOpsTxnsStressTest::TestDeleteRange(
|
|
ThreadState* /*thread*/, WriteOptions& /*write_opts*/,
|
|
const std::vector<int>& /*rand_column_families*/,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
return Status::NotSupported();
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::TestIngestExternalFile(
|
|
ThreadState* thread, const std::vector<int>& rand_column_families,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
// TODO (yanqin)
|
|
(void)thread;
|
|
(void)rand_column_families;
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::TestCompactRange(
|
|
ThreadState* thread, int64_t /*rand_key*/, const Slice& /*start_key*/,
|
|
ColumnFamilyHandle* column_family) {
|
|
// TODO (yanqin).
|
|
// May use GetRangeHash() for validation before and after DB::CompactRange()
|
|
// completes.
|
|
(void)thread;
|
|
(void)column_family;
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::TestBackupRestore(
|
|
ThreadState* thread, const std::vector<int>& rand_column_families,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
// TODO (yanqin)
|
|
(void)thread;
|
|
(void)rand_column_families;
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::TestCheckpoint(
|
|
ThreadState* thread, const std::vector<int>& rand_column_families,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
// TODO (yanqin)
|
|
(void)thread;
|
|
(void)rand_column_families;
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::TestApproximateSize(
|
|
ThreadState* thread, uint64_t iteration,
|
|
const std::vector<int>& rand_column_families,
|
|
const std::vector<int64_t>& /*rand_keys*/) {
|
|
// TODO (yanqin)
|
|
(void)thread;
|
|
(void)iteration;
|
|
(void)rand_column_families;
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::TestCustomOperations(
|
|
ThreadState* thread, const std::vector<int>& rand_column_families) {
|
|
(void)rand_column_families;
|
|
// Randomly choose from 0, 1, and 2.
|
|
// TODO (yanqin) allow user to configure probability of each operation.
|
|
uint32_t rand = thread->rand.Uniform(3);
|
|
Status s;
|
|
if (0 == rand) {
|
|
// Update primary key.
|
|
uint32_t old_a = 0;
|
|
uint32_t pos = 0;
|
|
std::tie(old_a, pos) = ChooseExistingA(thread);
|
|
uint32_t new_a = GenerateNextA(thread);
|
|
s = PrimaryKeyUpdateTxn(thread, old_a, pos, new_a);
|
|
} else if (1 == rand) {
|
|
// Update secondary key.
|
|
uint32_t old_c = 0;
|
|
uint32_t pos = 0;
|
|
std::tie(old_c, pos) = ChooseExistingC(thread);
|
|
uint32_t new_c = GenerateNextC(thread);
|
|
s = SecondaryKeyUpdateTxn(thread, old_c, pos, new_c);
|
|
} else if (2 == rand) {
|
|
// Update primary index value.
|
|
uint32_t a = 0;
|
|
uint32_t pos = 0;
|
|
std::tie(a, pos) = ChooseExistingA(thread);
|
|
s = UpdatePrimaryIndexValueTxn(thread, a, /*b_delta=*/1);
|
|
} else {
|
|
// Should never reach here.
|
|
assert(false);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::RegisterAdditionalListeners() {
|
|
options_.listeners.emplace_back(new MultiOpsTxnsStressListener(this));
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::PrepareTxnDbOptions(
|
|
SharedState* /*shared*/, TransactionDBOptions& txn_db_opts) {
|
|
// MultiOpsTxnStressTest uses SingleDelete to delete secondary keys, thus we
|
|
// register this callback to let TxnDb know that when rolling back
|
|
// a transaction, use only SingleDelete to cancel prior Put from the same
|
|
// transaction if applicable.
|
|
txn_db_opts.rollback_deletion_type_callback =
|
|
[](TransactionDB* /*db*/, ColumnFamilyHandle* /*column_family*/,
|
|
const Slice& key) {
|
|
Slice ks = key;
|
|
uint32_t index_id = 0;
|
|
[[maybe_unused]] bool res = GetFixed32(&ks, &index_id);
|
|
assert(res);
|
|
index_id = EndianSwapValue(index_id);
|
|
assert(index_id <= Record::kSecondaryIndexId);
|
|
return index_id == Record::kSecondaryIndexId;
|
|
};
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::PrimaryKeyUpdateTxn(ThreadState* thread,
|
|
uint32_t old_a,
|
|
uint32_t old_a_pos,
|
|
uint32_t new_a) {
|
|
std::string old_pk = Record::EncodePrimaryKey(old_a);
|
|
std::string new_pk = Record::EncodePrimaryKey(new_a);
|
|
Transaction* txn = nullptr;
|
|
WriteOptions wopts;
|
|
Status s = NewTxn(wopts, &txn);
|
|
if (!s.ok()) {
|
|
assert(!txn);
|
|
thread->stats.AddErrors(1);
|
|
return s;
|
|
}
|
|
|
|
assert(txn);
|
|
txn->SetSnapshotOnNextOperation(/*notifier=*/nullptr);
|
|
|
|
const Defer cleanup([new_a, &s, thread, txn, this]() {
|
|
if (s.ok()) {
|
|
// Two gets, one for existing pk, one for locking potential new pk.
|
|
thread->stats.AddGets(/*ngets=*/2, /*nfounds=*/1);
|
|
thread->stats.AddDeletes(1);
|
|
thread->stats.AddBytesForWrites(
|
|
/*nwrites=*/2,
|
|
Record::kPrimaryIndexEntrySize + Record::kSecondaryIndexEntrySize);
|
|
thread->stats.AddSingleDeletes(1);
|
|
return;
|
|
}
|
|
if (s.IsNotFound()) {
|
|
thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/0);
|
|
} else if (s.IsBusy() || s.IsIncomplete()) {
|
|
// ignore.
|
|
// Incomplete also means rollback by application. See the transaction
|
|
// implementations.
|
|
} else {
|
|
thread->stats.AddErrors(1);
|
|
}
|
|
auto& key_gen = key_gen_for_a_[thread->tid];
|
|
key_gen->UndoAllocation(new_a);
|
|
RollbackTxn(txn).PermitUncheckedError();
|
|
});
|
|
|
|
ReadOptions ropts;
|
|
ropts.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
std::string value;
|
|
s = txn->GetForUpdate(ropts, old_pk, &value);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
std::string empty_value;
|
|
s = txn->GetForUpdate(ropts, new_pk, &empty_value);
|
|
if (s.ok()) {
|
|
assert(!empty_value.empty());
|
|
s = Status::Busy();
|
|
return s;
|
|
} else if (!s.IsNotFound()) {
|
|
return s;
|
|
}
|
|
|
|
auto result = Record::DecodePrimaryIndexValue(value);
|
|
s = std::get<0>(result);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
uint32_t b = std::get<1>(result);
|
|
uint32_t c = std::get<2>(result);
|
|
|
|
ColumnFamilyHandle* cf = db_->DefaultColumnFamily();
|
|
s = txn->Delete(cf, old_pk, /*assume_tracked=*/true);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
s = txn->Put(cf, new_pk, value, /*assume_tracked=*/true);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
auto* wb = txn->GetWriteBatch();
|
|
assert(wb);
|
|
|
|
std::string old_sk = Record::EncodeSecondaryKey(c, old_a);
|
|
s = wb->SingleDelete(old_sk);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
Record record(new_a, b, c);
|
|
std::string new_sk;
|
|
std::string new_crc;
|
|
std::tie(new_sk, new_crc) = record.EncodeSecondaryIndexEntry();
|
|
s = wb->Put(new_sk, new_crc);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
s = txn->Prepare();
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
if (FLAGS_rollback_one_in > 0 && thread->rand.OneIn(FLAGS_rollback_one_in)) {
|
|
s = Status::Incomplete();
|
|
return s;
|
|
}
|
|
|
|
s = WriteToCommitTimeWriteBatch(*txn);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
s = CommitAndCreateTimestampedSnapshotIfNeeded(thread, *txn);
|
|
|
|
auto& key_gen = key_gen_for_a_.at(thread->tid);
|
|
if (s.ok()) {
|
|
delete txn;
|
|
key_gen->Replace(old_a, old_a_pos, new_a);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::SecondaryKeyUpdateTxn(ThreadState* thread,
|
|
uint32_t old_c,
|
|
uint32_t old_c_pos,
|
|
uint32_t new_c) {
|
|
Transaction* txn = nullptr;
|
|
WriteOptions wopts;
|
|
Status s = NewTxn(wopts, &txn);
|
|
if (!s.ok()) {
|
|
assert(!txn);
|
|
thread->stats.AddErrors(1);
|
|
return s;
|
|
}
|
|
|
|
assert(txn);
|
|
|
|
Iterator* it = nullptr;
|
|
long iterations = 0;
|
|
const Defer cleanup([new_c, &s, thread, &it, txn, this, &iterations]() {
|
|
delete it;
|
|
if (s.ok()) {
|
|
thread->stats.AddIterations(iterations);
|
|
thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/1);
|
|
thread->stats.AddSingleDeletes(1);
|
|
thread->stats.AddBytesForWrites(
|
|
/*nwrites=*/2,
|
|
Record::kPrimaryIndexEntrySize + Record::kSecondaryIndexEntrySize);
|
|
return;
|
|
} else if (s.IsBusy() || s.IsTimedOut() || s.IsTryAgain() ||
|
|
s.IsMergeInProgress() || s.IsIncomplete()) {
|
|
// ww-conflict detected, or
|
|
// lock cannot be acquired, or
|
|
// memtable history is not large enough for conflict checking, or
|
|
// Merge operation cannot be resolved, or
|
|
// application rollback.
|
|
// TODO (yanqin) add stats for other cases?
|
|
} else if (s.IsNotFound()) {
|
|
// ignore.
|
|
} else {
|
|
thread->stats.AddErrors(1);
|
|
}
|
|
auto& key_gen = key_gen_for_c_[thread->tid];
|
|
key_gen->UndoAllocation(new_c);
|
|
RollbackTxn(txn).PermitUncheckedError();
|
|
});
|
|
|
|
// TODO (yanqin) try SetSnapshotOnNextOperation(). We currently need to take
|
|
// a snapshot here because we will later verify that point lookup in the
|
|
// primary index using GetForUpdate() returns the same value for 'c' as the
|
|
// iterator. The iterator does not need a snapshot though, because it will be
|
|
// assigned the current latest (published) sequence in the db, which will be
|
|
// no smaller than the snapshot created here. The GetForUpdate will perform
|
|
// ww conflict checking to ensure GetForUpdate() (using the snapshot) sees
|
|
// the same data as this iterator.
|
|
txn->SetSnapshot();
|
|
std::string old_sk_prefix = Record::EncodeSecondaryKey(old_c);
|
|
std::string iter_ub_str = Record::EncodeSecondaryKey(old_c + 1);
|
|
Slice iter_ub = iter_ub_str;
|
|
ReadOptions ropts;
|
|
ropts.snapshot = txn->GetSnapshot();
|
|
ropts.total_order_seek = true;
|
|
ropts.iterate_upper_bound = &iter_ub;
|
|
ropts.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
it = txn->GetIterator(ropts);
|
|
|
|
assert(it);
|
|
it->Seek(old_sk_prefix);
|
|
if (!it->Valid()) {
|
|
s = Status::NotFound();
|
|
return s;
|
|
}
|
|
auto* wb = txn->GetWriteBatch();
|
|
assert(wb);
|
|
|
|
do {
|
|
++iterations;
|
|
Record record;
|
|
s = record.DecodeSecondaryIndexEntry(it->key(), it->value());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot decode secondary key (%s => %s): %s\n",
|
|
it->key().ToString(true).c_str(),
|
|
it->value().ToString(true).c_str(), s.ToString().c_str());
|
|
assert(false);
|
|
break;
|
|
}
|
|
// At this point, record.b is not known yet, thus we need to access
|
|
// primary index.
|
|
std::string pk = Record::EncodePrimaryKey(record.a_value());
|
|
std::string value;
|
|
ReadOptions read_opts;
|
|
read_opts.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
read_opts.snapshot = txn->GetSnapshot();
|
|
s = txn->GetForUpdate(read_opts, pk, &value);
|
|
if (s.IsBusy() || s.IsTimedOut() || s.IsTryAgain() ||
|
|
s.IsMergeInProgress()) {
|
|
// Write conflict, or cannot acquire lock, or memtable size is not large
|
|
// enough, or merge cannot be resolved.
|
|
break;
|
|
} else if (s.IsNotFound()) {
|
|
// We can also fail verification here.
|
|
std::ostringstream oss;
|
|
auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
|
|
assert(dbimpl);
|
|
oss << "snap " << read_opts.snapshot->GetSequenceNumber()
|
|
<< " (published " << dbimpl->GetLastPublishedSequence()
|
|
<< "), pk should exist: " << Slice(pk).ToString(true);
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
assert(false);
|
|
break;
|
|
}
|
|
if (!s.ok()) {
|
|
std::ostringstream oss;
|
|
auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
|
|
assert(dbimpl);
|
|
oss << "snap " << read_opts.snapshot->GetSequenceNumber()
|
|
<< " (published " << dbimpl->GetLastPublishedSequence() << "), "
|
|
<< s.ToString();
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
assert(false);
|
|
break;
|
|
}
|
|
auto result = Record::DecodePrimaryIndexValue(value);
|
|
s = std::get<0>(result);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot decode primary index value %s: %s\n",
|
|
Slice(value).ToString(true).c_str(), s.ToString().c_str());
|
|
assert(false);
|
|
break;
|
|
}
|
|
uint32_t b = std::get<1>(result);
|
|
uint32_t c = std::get<2>(result);
|
|
if (c != old_c) {
|
|
std::ostringstream oss;
|
|
auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
|
|
assert(dbimpl);
|
|
oss << "snap " << read_opts.snapshot->GetSequenceNumber()
|
|
<< " (published " << dbimpl->GetLastPublishedSequence()
|
|
<< "), pk/sk mismatch. pk: (a=" << record.a_value() << ", "
|
|
<< "c=" << c << "), sk: (c=" << old_c << ")";
|
|
s = Status::Corruption();
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
assert(false);
|
|
break;
|
|
}
|
|
Record new_rec(record.a_value(), b, new_c);
|
|
std::string new_primary_index_value = new_rec.EncodePrimaryIndexValue();
|
|
ColumnFamilyHandle* cf = db_->DefaultColumnFamily();
|
|
s = txn->Put(cf, pk, new_primary_index_value, /*assume_tracked=*/true);
|
|
if (!s.ok()) {
|
|
break;
|
|
}
|
|
std::string old_sk = it->key().ToString(/*hex=*/false);
|
|
std::string new_sk;
|
|
std::string new_crc;
|
|
std::tie(new_sk, new_crc) = new_rec.EncodeSecondaryIndexEntry();
|
|
s = wb->SingleDelete(old_sk);
|
|
if (!s.ok()) {
|
|
break;
|
|
}
|
|
s = wb->Put(new_sk, new_crc);
|
|
if (!s.ok()) {
|
|
break;
|
|
}
|
|
|
|
it->Next();
|
|
} while (it->Valid());
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
s = txn->Prepare();
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
if (FLAGS_rollback_one_in > 0 && thread->rand.OneIn(FLAGS_rollback_one_in)) {
|
|
s = Status::Incomplete();
|
|
return s;
|
|
}
|
|
|
|
s = WriteToCommitTimeWriteBatch(*txn);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
s = CommitAndCreateTimestampedSnapshotIfNeeded(thread, *txn);
|
|
|
|
if (s.ok()) {
|
|
delete txn;
|
|
auto& key_gen = key_gen_for_c_.at(thread->tid);
|
|
key_gen->Replace(old_c, old_c_pos, new_c);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::UpdatePrimaryIndexValueTxn(ThreadState* thread,
|
|
uint32_t a,
|
|
uint32_t b_delta) {
|
|
std::string pk_str = Record::EncodePrimaryKey(a);
|
|
Transaction* txn = nullptr;
|
|
WriteOptions wopts;
|
|
Status s = NewTxn(wopts, &txn);
|
|
if (!s.ok()) {
|
|
assert(!txn);
|
|
thread->stats.AddErrors(1);
|
|
return s;
|
|
}
|
|
|
|
assert(txn);
|
|
|
|
const Defer cleanup([&s, thread, txn, this]() {
|
|
if (s.ok()) {
|
|
thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/1);
|
|
thread->stats.AddBytesForWrites(
|
|
/*nwrites=*/1, /*nbytes=*/Record::kPrimaryIndexEntrySize);
|
|
return;
|
|
}
|
|
if (s.IsNotFound()) {
|
|
thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/0);
|
|
} else if (s.IsInvalidArgument()) {
|
|
// ignored.
|
|
} else if (s.IsBusy() || s.IsTimedOut() || s.IsTryAgain() ||
|
|
s.IsMergeInProgress() || s.IsIncomplete()) {
|
|
// ignored.
|
|
} else {
|
|
thread->stats.AddErrors(1);
|
|
}
|
|
RollbackTxn(txn).PermitUncheckedError();
|
|
});
|
|
ReadOptions ropts;
|
|
ropts.rate_limiter_priority =
|
|
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
|
|
std::string value;
|
|
s = txn->GetForUpdate(ropts, pk_str, &value);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
auto result = Record::DecodePrimaryIndexValue(value);
|
|
if (!std::get<0>(result).ok()) {
|
|
s = std::get<0>(result);
|
|
fprintf(stderr, "Cannot decode primary index value %s: %s\n",
|
|
Slice(value).ToString(true).c_str(), s.ToString().c_str());
|
|
assert(false);
|
|
return s;
|
|
}
|
|
uint32_t b = std::get<1>(result) + b_delta;
|
|
uint32_t c = std::get<2>(result);
|
|
Record record(a, b, c);
|
|
std::string primary_index_value = record.EncodePrimaryIndexValue();
|
|
ColumnFamilyHandle* cf = db_->DefaultColumnFamily();
|
|
s = txn->Put(cf, pk_str, primary_index_value, /*assume_tracked=*/true);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
s = txn->Prepare();
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
if (FLAGS_rollback_one_in > 0 && thread->rand.OneIn(FLAGS_rollback_one_in)) {
|
|
s = Status::Incomplete();
|
|
return s;
|
|
}
|
|
|
|
s = WriteToCommitTimeWriteBatch(*txn);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
s = CommitAndCreateTimestampedSnapshotIfNeeded(thread, *txn);
|
|
|
|
if (s.ok()) {
|
|
delete txn;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::PointLookupTxn(ThreadState* thread,
|
|
ReadOptions ropts, uint32_t a) {
|
|
std::string pk_str = Record::EncodePrimaryKey(a);
|
|
// pk may or may not exist
|
|
PinnableSlice value;
|
|
|
|
Transaction* txn = nullptr;
|
|
WriteOptions wopts;
|
|
Status s = NewTxn(wopts, &txn);
|
|
if (!s.ok()) {
|
|
assert(!txn);
|
|
thread->stats.AddErrors(1);
|
|
return s;
|
|
}
|
|
|
|
assert(txn);
|
|
|
|
const Defer cleanup([&s, thread, txn, this]() {
|
|
if (s.ok()) {
|
|
thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/1);
|
|
return;
|
|
} else if (s.IsNotFound()) {
|
|
thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/0);
|
|
} else {
|
|
thread->stats.AddErrors(1);
|
|
}
|
|
RollbackTxn(txn).PermitUncheckedError();
|
|
});
|
|
|
|
std::shared_ptr<const Snapshot> snapshot;
|
|
SetupSnapshot(thread, ropts, *txn, snapshot);
|
|
|
|
if (FLAGS_delay_snapshot_read_one_in > 0 &&
|
|
thread->rand.OneIn(FLAGS_delay_snapshot_read_one_in)) {
|
|
uint64_t delay_ms = thread->rand.Uniform(100) + 1;
|
|
db_->GetDBOptions().env->SleepForMicroseconds(
|
|
static_cast<int>(delay_ms * 1000));
|
|
}
|
|
|
|
s = txn->Get(ropts, db_->DefaultColumnFamily(), pk_str, &value);
|
|
if (s.ok()) {
|
|
s = txn->Commit();
|
|
}
|
|
if (s.ok()) {
|
|
delete txn;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::RangeScanTxn(ThreadState* thread,
|
|
ReadOptions ropts, uint32_t c) {
|
|
std::string sk = Record::EncodeSecondaryKey(c);
|
|
|
|
Transaction* txn = nullptr;
|
|
WriteOptions wopts;
|
|
Status s = NewTxn(wopts, &txn);
|
|
if (!s.ok()) {
|
|
assert(!txn);
|
|
thread->stats.AddErrors(1);
|
|
return s;
|
|
}
|
|
|
|
assert(txn);
|
|
|
|
const Defer cleanup([&s, thread, txn, this]() {
|
|
if (s.ok()) {
|
|
thread->stats.AddIterations(1);
|
|
return;
|
|
}
|
|
thread->stats.AddErrors(1);
|
|
RollbackTxn(txn).PermitUncheckedError();
|
|
});
|
|
|
|
std::shared_ptr<const Snapshot> snapshot;
|
|
SetupSnapshot(thread, ropts, *txn, snapshot);
|
|
|
|
if (FLAGS_delay_snapshot_read_one_in > 0 &&
|
|
thread->rand.OneIn(FLAGS_delay_snapshot_read_one_in)) {
|
|
uint64_t delay_ms = thread->rand.Uniform(100) + 1;
|
|
db_->GetDBOptions().env->SleepForMicroseconds(
|
|
static_cast<int>(delay_ms * 1000));
|
|
}
|
|
|
|
std::unique_ptr<Iterator> iter(txn->GetIterator(ropts));
|
|
|
|
constexpr size_t total_nexts = 10;
|
|
size_t nexts = 0;
|
|
for (iter->Seek(sk);
|
|
iter->Valid() && nexts < total_nexts && iter->status().ok();
|
|
iter->Next(), ++nexts) {
|
|
}
|
|
|
|
if (iter->status().ok()) {
|
|
s = txn->Commit();
|
|
} else {
|
|
s = iter->status();
|
|
}
|
|
|
|
if (s.ok()) {
|
|
delete txn;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::VerifyDb(ThreadState* thread) const {
|
|
if (thread->shared->HasVerificationFailedYet()) {
|
|
return;
|
|
}
|
|
const Snapshot* const snapshot = db_->GetSnapshot();
|
|
assert(snapshot);
|
|
ManagedSnapshot snapshot_guard(db_, snapshot);
|
|
|
|
std::ostringstream oss;
|
|
oss << "[snap=" << snapshot->GetSequenceNumber() << ",";
|
|
|
|
auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
|
|
assert(dbimpl);
|
|
|
|
oss << " last_published=" << dbimpl->GetLastPublishedSequence() << "] ";
|
|
|
|
if (FLAGS_delay_snapshot_read_one_in > 0 &&
|
|
thread->rand.OneIn(FLAGS_delay_snapshot_read_one_in)) {
|
|
uint64_t delay_ms = thread->rand.Uniform(100) + 1;
|
|
db_->GetDBOptions().env->SleepForMicroseconds(
|
|
static_cast<int>(delay_ms * 1000));
|
|
}
|
|
|
|
// TODO (yanqin) with a probability, we can use either forward or backward
|
|
// iterator in subsequent checks. We can also use more advanced features in
|
|
// range scan. For now, let's just use simple forward iteration with
|
|
// total_order_seek = true.
|
|
|
|
// First, iterate primary index.
|
|
size_t primary_index_entries_count = 0;
|
|
{
|
|
std::string iter_ub_str;
|
|
PutFixed32(&iter_ub_str, Record::kPrimaryIndexId + 1);
|
|
std::reverse(iter_ub_str.begin(), iter_ub_str.end());
|
|
Slice iter_ub = iter_ub_str;
|
|
|
|
std::string start_key;
|
|
PutFixed32(&start_key, Record::kPrimaryIndexId);
|
|
std::reverse(start_key.begin(), start_key.end());
|
|
|
|
// This `ReadOptions` is for validation purposes. Ignore
|
|
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
|
|
ReadOptions ropts;
|
|
ropts.snapshot = snapshot;
|
|
ropts.total_order_seek = true;
|
|
ropts.iterate_upper_bound = &iter_ub;
|
|
|
|
std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
|
|
for (it->Seek(start_key); it->Valid(); it->Next()) {
|
|
Record record;
|
|
Status s = record.DecodePrimaryIndexEntry(it->key(), it->value());
|
|
if (!s.ok()) {
|
|
oss << "Cannot decode primary index entry " << it->key().ToString(true)
|
|
<< "=>" << it->value().ToString(true);
|
|
VerificationAbort(thread->shared, oss.str(), s);
|
|
assert(false);
|
|
return;
|
|
}
|
|
++primary_index_entries_count;
|
|
|
|
// Search secondary index.
|
|
uint32_t a = record.a_value();
|
|
uint32_t c = record.c_value();
|
|
char sk_buf[12];
|
|
EncodeFixed32(sk_buf, Record::kSecondaryIndexId);
|
|
std::reverse(sk_buf, sk_buf + sizeof(uint32_t));
|
|
EncodeFixed32(sk_buf + sizeof(uint32_t), c);
|
|
std::reverse(sk_buf + sizeof(uint32_t), sk_buf + 2 * sizeof(uint32_t));
|
|
EncodeFixed32(sk_buf + 2 * sizeof(uint32_t), a);
|
|
std::reverse(sk_buf + 2 * sizeof(uint32_t), sk_buf + sizeof(sk_buf));
|
|
Slice sk(sk_buf, sizeof(sk_buf));
|
|
std::string value;
|
|
s = db_->Get(ropts, sk, &value);
|
|
if (!s.ok()) {
|
|
oss << "Cannot find secondary index entry " << sk.ToString(true);
|
|
VerificationAbort(thread->shared, oss.str(), s);
|
|
assert(false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second, iterate secondary index.
|
|
size_t secondary_index_entries_count = 0;
|
|
{
|
|
std::string start_key;
|
|
PutFixed32(&start_key, Record::kSecondaryIndexId);
|
|
std::reverse(start_key.begin(), start_key.end());
|
|
|
|
// This `ReadOptions` is for validation purposes. Ignore
|
|
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
|
|
ReadOptions ropts;
|
|
ropts.snapshot = snapshot;
|
|
ropts.total_order_seek = true;
|
|
|
|
std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
|
|
for (it->Seek(start_key); it->Valid(); it->Next()) {
|
|
++secondary_index_entries_count;
|
|
Record record;
|
|
Status s = record.DecodeSecondaryIndexEntry(it->key(), it->value());
|
|
if (!s.ok()) {
|
|
oss << "Cannot decode secondary index entry "
|
|
<< it->key().ToString(true) << "=>" << it->value().ToString(true);
|
|
VerificationAbort(thread->shared, oss.str(), s);
|
|
assert(false);
|
|
return;
|
|
}
|
|
// After decoding secondary index entry, we know a and c. Crc is verified
|
|
// in decoding phase.
|
|
//
|
|
// Form a primary key and search in the primary index.
|
|
std::string pk = Record::EncodePrimaryKey(record.a_value());
|
|
std::string value;
|
|
s = db_->Get(ropts, pk, &value);
|
|
if (!s.ok()) {
|
|
oss << "Error searching pk " << Slice(pk).ToString(true) << ". "
|
|
<< s.ToString() << ". sk " << it->key().ToString(true);
|
|
VerificationAbort(thread->shared, oss.str(), s);
|
|
assert(false);
|
|
return;
|
|
}
|
|
auto result = Record::DecodePrimaryIndexValue(value);
|
|
s = std::get<0>(result);
|
|
if (!s.ok()) {
|
|
oss << "Error decoding primary index value "
|
|
<< Slice(value).ToString(true) << ". " << s.ToString();
|
|
VerificationAbort(thread->shared, oss.str(), s);
|
|
assert(false);
|
|
return;
|
|
}
|
|
uint32_t c_in_primary = std::get<2>(result);
|
|
if (c_in_primary != record.c_value()) {
|
|
oss << "Pk/sk mismatch. pk: " << Slice(pk).ToString(true) << "=>"
|
|
<< Slice(value).ToString(true) << " (a=" << record.a_value()
|
|
<< ", c=" << c_in_primary << "), sk: " << it->key().ToString(true)
|
|
<< " (c=" << record.c_value() << ")";
|
|
VerificationAbort(thread->shared, oss.str(), s);
|
|
assert(false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (secondary_index_entries_count != primary_index_entries_count) {
|
|
oss << "Pk/sk mismatch: primary index has " << primary_index_entries_count
|
|
<< " entries. Secondary index has " << secondary_index_entries_count
|
|
<< " entries.";
|
|
VerificationAbort(thread->shared, oss.str(), Status::OK());
|
|
assert(false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// VerifyPkSkFast() can be called by MultiOpsTxnsStressListener's callbacks
|
|
// which can be called before TransactionDB::Open() returns to caller.
|
|
// Therefore, at that time, db_ and txn_db_ may still be nullptr.
|
|
// Caller has to make sure that the race condition does not happen.
|
|
void MultiOpsTxnsStressTest::VerifyPkSkFast(const ReadOptions& read_options,
|
|
int job_id) {
|
|
DB* const db = db_aptr_.load(std::memory_order_acquire);
|
|
if (db == nullptr) {
|
|
return;
|
|
}
|
|
|
|
assert(db_ == db);
|
|
assert(db_ != nullptr);
|
|
|
|
const Snapshot* const snapshot = db_->GetSnapshot();
|
|
assert(snapshot);
|
|
ManagedSnapshot snapshot_guard(db_, snapshot);
|
|
|
|
std::ostringstream oss;
|
|
auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
|
|
assert(dbimpl);
|
|
|
|
oss << "Job " << job_id << ": [" << snapshot->GetSequenceNumber() << ","
|
|
<< dbimpl->GetLastPublishedSequence() << "] ";
|
|
|
|
std::string start_key;
|
|
PutFixed32(&start_key, Record::kSecondaryIndexId);
|
|
std::reverse(start_key.begin(), start_key.end());
|
|
|
|
// This `ReadOptions` is for validation purposes. Ignore
|
|
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
|
|
ReadOptions ropts;
|
|
ropts.snapshot = snapshot;
|
|
ropts.total_order_seek = true;
|
|
ropts.io_activity = read_options.io_activity;
|
|
|
|
std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
|
|
for (it->Seek(start_key); it->Valid(); it->Next()) {
|
|
Record record;
|
|
Status s = record.DecodeSecondaryIndexEntry(it->key(), it->value());
|
|
if (!s.ok()) {
|
|
oss << "Cannot decode secondary index entry " << it->key().ToString(true)
|
|
<< "=>" << it->value().ToString(true);
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
fflush(stderr);
|
|
assert(false);
|
|
}
|
|
// After decoding secondary index entry, we know a and c. Crc is verified
|
|
// in decoding phase.
|
|
//
|
|
// Form a primary key and search in the primary index.
|
|
std::string pk = Record::EncodePrimaryKey(record.a_value());
|
|
std::string value;
|
|
s = db_->Get(ropts, pk, &value);
|
|
if (!s.ok()) {
|
|
oss << "Error searching pk " << Slice(pk).ToString(true) << ". "
|
|
<< s.ToString() << ". sk " << it->key().ToString(true);
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
fflush(stderr);
|
|
assert(false);
|
|
}
|
|
auto result = Record::DecodePrimaryIndexValue(value);
|
|
s = std::get<0>(result);
|
|
if (!s.ok()) {
|
|
oss << "Error decoding primary index value "
|
|
<< Slice(value).ToString(true) << ". " << s.ToString();
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
fflush(stderr);
|
|
assert(false);
|
|
}
|
|
uint32_t c_in_primary = std::get<2>(result);
|
|
if (c_in_primary != record.c_value()) {
|
|
oss << "Pk/sk mismatch. pk: " << Slice(pk).ToString(true) << "=>"
|
|
<< Slice(value).ToString(true) << " (a=" << record.a_value()
|
|
<< ", c=" << c_in_primary << "), sk: " << it->key().ToString(true)
|
|
<< " (c=" << record.c_value() << ")";
|
|
fprintf(stderr, "%s\n", oss.str().c_str());
|
|
fflush(stderr);
|
|
assert(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<uint32_t, uint32_t> MultiOpsTxnsStressTest::ChooseExistingA(
|
|
ThreadState* thread) {
|
|
uint32_t tid = thread->tid;
|
|
auto& key_gen = key_gen_for_a_.at(tid);
|
|
return key_gen->ChooseExisting();
|
|
}
|
|
|
|
uint32_t MultiOpsTxnsStressTest::GenerateNextA(ThreadState* thread) {
|
|
uint32_t tid = thread->tid;
|
|
auto& key_gen = key_gen_for_a_.at(tid);
|
|
return key_gen->Allocate();
|
|
}
|
|
|
|
std::pair<uint32_t, uint32_t> MultiOpsTxnsStressTest::ChooseExistingC(
|
|
ThreadState* thread) {
|
|
uint32_t tid = thread->tid;
|
|
auto& key_gen = key_gen_for_c_.at(tid);
|
|
return key_gen->ChooseExisting();
|
|
}
|
|
|
|
uint32_t MultiOpsTxnsStressTest::GenerateNextC(ThreadState* thread) {
|
|
uint32_t tid = thread->tid;
|
|
auto& key_gen = key_gen_for_c_.at(tid);
|
|
return key_gen->Allocate();
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::ProcessRecoveredPreparedTxnsHelper(
|
|
Transaction* txn, SharedState*) {
|
|
thread_local Random rand(static_cast<uint32_t>(FLAGS_seed));
|
|
if (rand.OneIn(2)) {
|
|
Status s = txn->Commit();
|
|
assert(s.ok());
|
|
} else {
|
|
Status s = txn->Rollback();
|
|
assert(s.ok());
|
|
}
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::WriteToCommitTimeWriteBatch(Transaction& txn) {
|
|
WriteBatch* ctwb = txn.GetCommitTimeWriteBatch();
|
|
assert(ctwb);
|
|
// Do not change the content in key_buf.
|
|
static constexpr char key_buf[sizeof(Record::kMetadataPrefix) + 4] = {
|
|
'\0', '\0', '\0', '\0', '\0', '\0', '\0', '\xff'};
|
|
|
|
uint64_t counter_val = counter_.Next();
|
|
char val_buf[sizeof(counter_val)];
|
|
EncodeFixed64(val_buf, counter_val);
|
|
return ctwb->Put(Slice(key_buf, sizeof(key_buf)),
|
|
Slice(val_buf, sizeof(val_buf)));
|
|
}
|
|
|
|
Status MultiOpsTxnsStressTest::CommitAndCreateTimestampedSnapshotIfNeeded(
|
|
ThreadState* thread, Transaction& txn) {
|
|
Status s;
|
|
if (FLAGS_create_timestamped_snapshot_one_in > 0 &&
|
|
thread->rand.OneInOpt(FLAGS_create_timestamped_snapshot_one_in)) {
|
|
uint64_t ts = db_stress_env->NowNanos();
|
|
std::shared_ptr<const Snapshot> snapshot;
|
|
s = txn.CommitAndTryCreateSnapshot(/*notifier=*/nullptr, ts, &snapshot);
|
|
} else {
|
|
s = txn.Commit();
|
|
}
|
|
assert(txn_db_);
|
|
if (FLAGS_create_timestamped_snapshot_one_in > 0 &&
|
|
thread->rand.OneInOpt(50000)) {
|
|
uint64_t now = db_stress_env->NowNanos();
|
|
constexpr uint64_t time_diff = static_cast<uint64_t>(1000) * 1000 * 1000;
|
|
txn_db_->ReleaseTimestampedSnapshotsOlderThan(now - time_diff);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::SetupSnapshot(
|
|
ThreadState* thread, ReadOptions& read_opts, Transaction& txn,
|
|
std::shared_ptr<const Snapshot>& snapshot) {
|
|
if (thread->rand.OneInOpt(2)) {
|
|
snapshot = txn_db_->GetLatestTimestampedSnapshot();
|
|
}
|
|
|
|
if (snapshot) {
|
|
read_opts.snapshot = snapshot.get();
|
|
} else {
|
|
txn.SetSnapshot();
|
|
read_opts.snapshot = txn.GetSnapshot();
|
|
}
|
|
}
|
|
|
|
std::string MultiOpsTxnsStressTest::KeySpaces::EncodeTo() const {
|
|
std::string result;
|
|
PutFixed32(&result, lb_a);
|
|
PutFixed32(&result, ub_a);
|
|
PutFixed32(&result, lb_c);
|
|
PutFixed32(&result, ub_c);
|
|
return result;
|
|
}
|
|
|
|
bool MultiOpsTxnsStressTest::KeySpaces::DecodeFrom(Slice data) {
|
|
if (!GetFixed32(&data, &lb_a) || !GetFixed32(&data, &ub_a) ||
|
|
!GetFixed32(&data, &lb_c) || !GetFixed32(&data, &ub_c)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MultiOpsTxnsStressTest::PersistKeySpacesDesc(
|
|
const std::string& key_spaces_path, uint32_t lb_a, uint32_t ub_a,
|
|
uint32_t lb_c, uint32_t ub_c) {
|
|
KeySpaces key_spaces(lb_a, ub_a, lb_c, ub_c);
|
|
std::string key_spaces_rep = key_spaces.EncodeTo();
|
|
|
|
std::unique_ptr<WritableFile> wfile;
|
|
Status s1 =
|
|
Env::Default()->NewWritableFile(key_spaces_path, &wfile, EnvOptions());
|
|
assert(s1.ok());
|
|
assert(wfile);
|
|
s1 = wfile->Append(key_spaces_rep);
|
|
assert(s1.ok());
|
|
}
|
|
|
|
MultiOpsTxnsStressTest::KeySpaces MultiOpsTxnsStressTest::ReadKeySpacesDesc(
|
|
const std::string& key_spaces_path) {
|
|
KeySpaces key_spaces;
|
|
std::unique_ptr<SequentialFile> sfile;
|
|
Status s1 =
|
|
Env::Default()->NewSequentialFile(key_spaces_path, &sfile, EnvOptions());
|
|
assert(s1.ok());
|
|
assert(sfile);
|
|
char buf[16];
|
|
Slice result;
|
|
s1 = sfile->Read(sizeof(buf), &result, buf);
|
|
assert(s1.ok());
|
|
if (!key_spaces.DecodeFrom(result)) {
|
|
assert(false);
|
|
}
|
|
return key_spaces;
|
|
}
|
|
|
|
// Create an empty database if necessary and preload it with initial test data.
|
|
// Key range [lb_a, ub_a), [lb_c, ub_c). The key ranges will be shared by
|
|
// 'threads' threads.
|
|
// PreloadDb() also sets up KeyGenerator objects for each sub key range
|
|
// operated on by each thread.
|
|
// Both [lb_a, ub_a) and [lb_c, ub_c) are partitioned. Each thread operates on
|
|
// one sub range, using KeyGenerators to generate keys.
|
|
// For example, we choose a from [0, 10000) and c from [0, 100). Number of
|
|
// threads is 32, their tids range from 0 to 31.
|
|
// Thread k chooses a from [312*k,312*(k+1)) and c from [3*k,3*(k+1)) if k<31.
|
|
// Thread 31 chooses a from [9672, 10000) and c from [93, 100).
|
|
// Within each subrange: a from [low1, high1), c from [low2, high2).
|
|
// high1 - low1 > high2 - low2
|
|
// We reserve {high1 - 1} and {high2 - 1} as unallocated.
|
|
// The records are <low1,low2>, <low1+1,low2+1>, ...,
|
|
// <low1+k,low2+k%(high2-low2-1), <low1+k+1,low2+(k+1)%(high2-low2-1)>, ...
|
|
void MultiOpsTxnsStressTest::PreloadDb(SharedState* shared, int threads,
|
|
uint32_t lb_a, uint32_t ub_a,
|
|
uint32_t lb_c, uint32_t ub_c) {
|
|
key_gen_for_a_.resize(threads);
|
|
key_gen_for_c_.resize(threads);
|
|
|
|
assert(ub_a > lb_a && ub_a > lb_a + threads);
|
|
assert(ub_c > lb_c && ub_c > lb_c + threads);
|
|
|
|
PersistKeySpacesDesc(FLAGS_key_spaces_path, lb_a, ub_a, lb_c, ub_c);
|
|
|
|
fprintf(stdout, "a from [%u, %u), c from [%u, %u)\n",
|
|
static_cast<unsigned int>(lb_a), static_cast<unsigned int>(ub_a),
|
|
static_cast<unsigned int>(lb_c), static_cast<unsigned int>(ub_c));
|
|
|
|
const uint32_t num_c = ub_c - lb_c;
|
|
const uint32_t num_c_per_thread = num_c / threads;
|
|
const uint32_t num_a = ub_a - lb_a;
|
|
const uint32_t num_a_per_thread = num_a / threads;
|
|
|
|
WriteOptions wopts;
|
|
wopts.disableWAL = FLAGS_disable_wal;
|
|
Random rnd(shared->GetSeed());
|
|
assert(txn_db_);
|
|
|
|
std::vector<KeySet> existing_a_uniqs(threads);
|
|
std::vector<KeySet> non_existing_a_uniqs(threads);
|
|
std::vector<KeySet> existing_c_uniqs(threads);
|
|
std::vector<KeySet> non_existing_c_uniqs(threads);
|
|
|
|
for (uint32_t a = lb_a; a < ub_a; ++a) {
|
|
uint32_t tid = (a - lb_a) / num_a_per_thread;
|
|
if (tid >= static_cast<uint32_t>(threads)) {
|
|
tid = threads - 1;
|
|
}
|
|
|
|
uint32_t a_base = lb_a + tid * num_a_per_thread;
|
|
uint32_t a_hi = (tid < static_cast<uint32_t>(threads - 1))
|
|
? (a_base + num_a_per_thread)
|
|
: ub_a;
|
|
uint32_t a_delta = a - a_base;
|
|
|
|
if (a == a_hi - 1) {
|
|
non_existing_a_uniqs[tid].insert(a);
|
|
continue;
|
|
}
|
|
|
|
uint32_t c_base = lb_c + tid * num_c_per_thread;
|
|
uint32_t c_hi = (tid < static_cast<uint32_t>(threads - 1))
|
|
? (c_base + num_c_per_thread)
|
|
: ub_c;
|
|
uint32_t c_delta = a_delta % (c_hi - c_base - 1);
|
|
uint32_t c = c_base + c_delta;
|
|
|
|
uint32_t b = rnd.Next();
|
|
Record record(a, b, c);
|
|
WriteBatch wb;
|
|
const auto primary_index_entry = record.EncodePrimaryIndexEntry();
|
|
Status s = wb.Put(primary_index_entry.first, primary_index_entry.second);
|
|
assert(s.ok());
|
|
|
|
const auto secondary_index_entry = record.EncodeSecondaryIndexEntry();
|
|
s = wb.Put(secondary_index_entry.first, secondary_index_entry.second);
|
|
assert(s.ok());
|
|
|
|
s = txn_db_->Write(wopts, &wb);
|
|
assert(s.ok());
|
|
|
|
// TODO (yanqin): make the following check optional, especially when data
|
|
// size is large.
|
|
Record tmp_rec;
|
|
tmp_rec.SetB(record.b_value());
|
|
s = tmp_rec.DecodeSecondaryIndexEntry(secondary_index_entry.first,
|
|
secondary_index_entry.second);
|
|
assert(s.ok());
|
|
assert(tmp_rec == record);
|
|
|
|
existing_a_uniqs[tid].insert(a);
|
|
existing_c_uniqs[tid].insert(c);
|
|
}
|
|
|
|
for (int i = 0; i < threads; ++i) {
|
|
uint32_t my_seed = i + shared->GetSeed();
|
|
|
|
auto& key_gen_for_a = key_gen_for_a_[i];
|
|
assert(!key_gen_for_a);
|
|
uint32_t low = lb_a + i * num_a_per_thread;
|
|
uint32_t high = (i < threads - 1) ? (low + num_a_per_thread) : ub_a;
|
|
assert(existing_a_uniqs[i].size() == high - low - 1);
|
|
assert(non_existing_a_uniqs[i].size() == 1);
|
|
key_gen_for_a = std::make_unique<KeyGenerator>(
|
|
my_seed, low, high, std::move(existing_a_uniqs[i]),
|
|
std::move(non_existing_a_uniqs[i]));
|
|
|
|
auto& key_gen_for_c = key_gen_for_c_[i];
|
|
assert(!key_gen_for_c);
|
|
low = lb_c + i * num_c_per_thread;
|
|
high = (i < threads - 1) ? (low + num_c_per_thread) : ub_c;
|
|
non_existing_c_uniqs[i].insert(high - 1);
|
|
assert(existing_c_uniqs[i].size() == high - low - 1);
|
|
assert(non_existing_c_uniqs[i].size() == 1);
|
|
key_gen_for_c = std::make_unique<KeyGenerator>(
|
|
my_seed, low, high, std::move(existing_c_uniqs[i]),
|
|
std::move(non_existing_c_uniqs[i]));
|
|
}
|
|
}
|
|
|
|
// Scan an existing, non-empty database.
|
|
// Set up [lb_a, ub_a) and [lb_c, ub_c) as test key ranges.
|
|
// Set up KeyGenerator objects for each sub key range operated on by each
|
|
// thread.
|
|
// Scan the entire database and for each subrange, populate the existing keys
|
|
// and non-existing keys. We currently require the non-existing keys be
|
|
// non-empty after initialization.
|
|
void MultiOpsTxnsStressTest::ScanExistingDb(SharedState* shared, int threads) {
|
|
key_gen_for_a_.resize(threads);
|
|
key_gen_for_c_.resize(threads);
|
|
|
|
KeySpaces key_spaces = ReadKeySpacesDesc(FLAGS_key_spaces_path);
|
|
|
|
const uint32_t lb_a = key_spaces.lb_a;
|
|
const uint32_t ub_a = key_spaces.ub_a;
|
|
const uint32_t lb_c = key_spaces.lb_c;
|
|
const uint32_t ub_c = key_spaces.ub_c;
|
|
|
|
assert(lb_a < ub_a && lb_c < ub_c);
|
|
|
|
fprintf(stdout, "a from [%u, %u), c from [%u, %u)\n",
|
|
static_cast<unsigned int>(lb_a), static_cast<unsigned int>(ub_a),
|
|
static_cast<unsigned int>(lb_c), static_cast<unsigned int>(ub_c));
|
|
|
|
assert(ub_a > lb_a && ub_a > lb_a + threads);
|
|
assert(ub_c > lb_c && ub_c > lb_c + threads);
|
|
|
|
const uint32_t num_c = ub_c - lb_c;
|
|
const uint32_t num_c_per_thread = num_c / threads;
|
|
const uint32_t num_a = ub_a - lb_a;
|
|
const uint32_t num_a_per_thread = num_a / threads;
|
|
|
|
assert(db_);
|
|
ReadOptions ropts;
|
|
std::vector<KeySet> existing_a_uniqs(threads);
|
|
std::vector<KeySet> non_existing_a_uniqs(threads);
|
|
std::vector<KeySet> existing_c_uniqs(threads);
|
|
std::vector<KeySet> non_existing_c_uniqs(threads);
|
|
{
|
|
std::string pk_lb_str = Record::EncodePrimaryKey(0);
|
|
std::string pk_ub_str =
|
|
Record::EncodePrimaryKey(std::numeric_limits<uint32_t>::max());
|
|
Slice pk_lb = pk_lb_str;
|
|
Slice pk_ub = pk_ub_str;
|
|
ropts.iterate_lower_bound = &pk_lb;
|
|
ropts.iterate_upper_bound = &pk_ub;
|
|
ropts.total_order_seek = true;
|
|
std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
|
|
|
|
for (it->SeekToFirst(); it->Valid(); it->Next()) {
|
|
Record record;
|
|
Status s = record.DecodePrimaryIndexEntry(it->key(), it->value());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot decode primary index entry (%s => %s): %s\n",
|
|
it->key().ToString(true).c_str(),
|
|
it->value().ToString(true).c_str(), s.ToString().c_str());
|
|
assert(false);
|
|
}
|
|
uint32_t a = record.a_value();
|
|
assert(a >= lb_a);
|
|
assert(a < ub_a);
|
|
uint32_t tid = (a - lb_a) / num_a_per_thread;
|
|
if (tid >= static_cast<uint32_t>(threads)) {
|
|
tid = threads - 1;
|
|
}
|
|
|
|
existing_a_uniqs[tid].insert(a);
|
|
|
|
uint32_t c = record.c_value();
|
|
assert(c >= lb_c);
|
|
assert(c < ub_c);
|
|
tid = (c - lb_c) / num_c_per_thread;
|
|
if (tid >= static_cast<uint32_t>(threads)) {
|
|
tid = threads - 1;
|
|
}
|
|
auto& existing_c_uniq = existing_c_uniqs[tid];
|
|
existing_c_uniq.insert(c);
|
|
}
|
|
|
|
for (uint32_t a = lb_a; a < ub_a; ++a) {
|
|
uint32_t tid = (a - lb_a) / num_a_per_thread;
|
|
if (tid >= static_cast<uint32_t>(threads)) {
|
|
tid = threads - 1;
|
|
}
|
|
if (0 == existing_a_uniqs[tid].count(a)) {
|
|
non_existing_a_uniqs[tid].insert(a);
|
|
}
|
|
}
|
|
|
|
for (uint32_t c = lb_c; c < ub_c; ++c) {
|
|
uint32_t tid = (c - lb_c) / num_c_per_thread;
|
|
if (tid >= static_cast<uint32_t>(threads)) {
|
|
tid = threads - 1;
|
|
}
|
|
if (0 == existing_c_uniqs[tid].count(c)) {
|
|
non_existing_c_uniqs[tid].insert(c);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < threads; ++i) {
|
|
uint32_t my_seed = i + shared->GetSeed();
|
|
auto& key_gen_for_a = key_gen_for_a_[i];
|
|
assert(!key_gen_for_a);
|
|
uint32_t low = lb_a + i * num_a_per_thread;
|
|
uint32_t high = (i < threads - 1) ? (low + num_a_per_thread) : ub_a;
|
|
|
|
// The following two assertions assume the test thread count and key
|
|
// space remain the same across different runs. Will need to relax.
|
|
assert(existing_a_uniqs[i].size() == high - low - 1);
|
|
assert(non_existing_a_uniqs[i].size() == 1);
|
|
|
|
key_gen_for_a = std::make_unique<KeyGenerator>(
|
|
my_seed, low, high, std::move(existing_a_uniqs[i]),
|
|
std::move(non_existing_a_uniqs[i]));
|
|
|
|
auto& key_gen_for_c = key_gen_for_c_[i];
|
|
assert(!key_gen_for_c);
|
|
low = lb_c + i * num_c_per_thread;
|
|
high = (i < threads - 1) ? (low + num_c_per_thread) : ub_c;
|
|
|
|
// The following two assertions assume the test thread count and key
|
|
// space remain the same across different runs. Will need to relax.
|
|
assert(existing_c_uniqs[i].size() == high - low - 1);
|
|
assert(non_existing_c_uniqs[i].size() == 1);
|
|
|
|
key_gen_for_c = std::make_unique<KeyGenerator>(
|
|
my_seed, low, high, std::move(existing_c_uniqs[i]),
|
|
std::move(non_existing_c_uniqs[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
StressTest* CreateMultiOpsTxnsStressTest() {
|
|
return new MultiOpsTxnsStressTest();
|
|
}
|
|
|
|
void CheckAndSetOptionsForMultiOpsTxnStressTest() {
|
|
if (FLAGS_test_batches_snapshots || FLAGS_test_cf_consistency) {
|
|
fprintf(stderr,
|
|
"-test_multi_ops_txns is not compatible with "
|
|
"-test_bathces_snapshots and -test_cf_consistency\n");
|
|
exit(1);
|
|
}
|
|
if (!FLAGS_use_txn) {
|
|
fprintf(stderr, "-use_txn must be true if -test_multi_ops_txns\n");
|
|
exit(1);
|
|
} else if (FLAGS_test_secondary > 0) {
|
|
fprintf(
|
|
stderr,
|
|
"secondary instance does not support replaying logs (MANIFEST + WAL) "
|
|
"of TransactionDB with write-prepared/write-unprepared policy\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_clear_column_family_one_in > 0) {
|
|
fprintf(stderr,
|
|
"-test_multi_ops_txns is not compatible with clearing column "
|
|
"families\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_column_families > 1) {
|
|
// TODO (yanqin) support separating primary index and secondary index in
|
|
// different column families.
|
|
fprintf(stderr,
|
|
"-test_multi_ops_txns currently does not use more than one column "
|
|
"family\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_writepercent > 0 || FLAGS_delpercent > 0 ||
|
|
FLAGS_delrangepercent > 0) {
|
|
fprintf(stderr,
|
|
"-test_multi_ops_txns requires that -writepercent, -delpercent and "
|
|
"-delrangepercent be 0\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_key_spaces_path.empty()) {
|
|
fprintf(stderr,
|
|
"Must specify a file to store ranges of A and C via "
|
|
"-key_spaces_path\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_create_timestamped_snapshot_one_in > 0) {
|
|
if (FLAGS_txn_write_policy !=
|
|
static_cast<uint64_t>(TxnDBWritePolicy::WRITE_COMMITTED)) {
|
|
fprintf(stderr,
|
|
"Timestamped snapshot is not yet supported by "
|
|
"write-prepared/write-unprepared transactions\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
if (FLAGS_sync_fault_injection == 1) {
|
|
fprintf(stderr,
|
|
"Sync fault injection is currently not supported in "
|
|
"-test_multi_ops_txns\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
#endif // GFLAGS
|