rocksdb/cache/sharded_cache.cc
anand76 52be8f54f2 Add APIs to query secondary cache capacity and usage for TieredCache (#12011)
Summary:
In `TieredCache`, the underlying compressed secondary cache is hidden from the user. So we need a way to query the capacity, as well as the portion of cache reservation charged to the compressed secondary cache.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12011

Test Plan: Update the unit tests

Reviewed By: akankshamahajan15

Differential Revision: D50651943

Pulled By: anand1976

fbshipit-source-id: 06d1cb5edb75a790c919bce718e2ff65f5908220
2023-10-25 16:54:50 -07:00

148 lines
4.6 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "cache/sharded_cache.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include "env/unique_id_gen.h"
#include "rocksdb/env.h"
#include "util/hash.h"
#include "util/math.h"
#include "util/mutexlock.h"
namespace ROCKSDB_NAMESPACE {
namespace {
// The generated seeds must fit in 31 bits so that
// ShardedCacheOptions::hash_seed can be set to it explicitly, for
// diagnostic/debugging purposes.
constexpr uint32_t kSeedMask = 0x7fffffff;
uint32_t DetermineSeed(int32_t hash_seed_option) {
if (hash_seed_option >= 0) {
// User-specified exact seed
return static_cast<uint32_t>(hash_seed_option);
}
static SemiStructuredUniqueIdGen gen;
if (hash_seed_option == ShardedCacheOptions::kHostHashSeed) {
std::string hostname;
Status s = Env::Default()->GetHostNameString(&hostname);
if (s.ok()) {
return GetSliceHash(hostname) & kSeedMask;
} else {
// Fall back on something stable within the process.
return BitwiseAnd(gen.GetBaseUpper(), kSeedMask);
}
} else {
// for kQuasiRandomHashSeed and fallback
uint32_t val = gen.GenerateNext<uint32_t>() & kSeedMask;
// Perform some 31-bit bijective transformations so that we get
// quasirandom, not just incrementing. (An incrementing seed from a
// random starting point would be fine, but hard to describe in a name.)
// See https://en.wikipedia.org/wiki/Quasirandom and using a murmur-like
// transformation here for our bijection in the lower 31 bits.
// See https://en.wikipedia.org/wiki/MurmurHash
val *= /*31-bit prime*/ 1150630961;
val ^= (val & kSeedMask) >> 17;
val *= /*31-bit prime*/ 1320603883;
return val & kSeedMask;
}
}
} // namespace
ShardedCacheBase::ShardedCacheBase(const ShardedCacheOptions& opts)
: Cache(opts.memory_allocator),
last_id_(1),
shard_mask_((uint32_t{1} << opts.num_shard_bits) - 1),
hash_seed_(DetermineSeed(opts.hash_seed)),
strict_capacity_limit_(opts.strict_capacity_limit),
capacity_(opts.capacity) {}
size_t ShardedCacheBase::ComputePerShardCapacity(size_t capacity) const {
uint32_t num_shards = GetNumShards();
return (capacity + (num_shards - 1)) / num_shards;
}
size_t ShardedCacheBase::GetPerShardCapacity() const {
return ComputePerShardCapacity(GetCapacity());
}
uint64_t ShardedCacheBase::NewId() {
return last_id_.fetch_add(1, std::memory_order_relaxed);
}
size_t ShardedCacheBase::GetCapacity() const {
MutexLock l(&config_mutex_);
return capacity_;
}
Status ShardedCacheBase::GetSecondaryCacheCapacity(size_t& size) const {
size = 0;
return Status::OK();
}
Status ShardedCacheBase::GetSecondaryCachePinnedUsage(size_t& size) const {
size = 0;
return Status::OK();
}
bool ShardedCacheBase::HasStrictCapacityLimit() const {
MutexLock l(&config_mutex_);
return strict_capacity_limit_;
}
size_t ShardedCacheBase::GetUsage(Handle* handle) const {
return GetCharge(handle);
}
std::string ShardedCacheBase::GetPrintableOptions() const {
std::string ret;
ret.reserve(20000);
const int kBufferSize = 200;
char buffer[kBufferSize];
{
MutexLock l(&config_mutex_);
snprintf(buffer, kBufferSize, " capacity : %" ROCKSDB_PRIszt "\n",
capacity_);
ret.append(buffer);
snprintf(buffer, kBufferSize, " num_shard_bits : %d\n",
GetNumShardBits());
ret.append(buffer);
snprintf(buffer, kBufferSize, " strict_capacity_limit : %d\n",
strict_capacity_limit_);
ret.append(buffer);
}
snprintf(buffer, kBufferSize, " memory_allocator : %s\n",
memory_allocator() ? memory_allocator()->Name() : "None");
ret.append(buffer);
AppendPrintableOptions(ret);
return ret;
}
int GetDefaultCacheShardBits(size_t capacity, size_t min_shard_size) {
int num_shard_bits = 0;
size_t num_shards = capacity / min_shard_size;
while (num_shards >>= 1) {
if (++num_shard_bits >= 6) {
// No more than 6.
return num_shard_bits;
}
}
return num_shard_bits;
}
int ShardedCacheBase::GetNumShardBits() const {
return BitsSetToOne(shard_mask_);
}
uint32_t ShardedCacheBase::GetNumShards() const { return shard_mask_ + 1; }
} // namespace ROCKSDB_NAMESPACE