mirror of
https://github.com/facebook/rocksdb.git
synced 2024-12-01 07:15:51 +00:00
f48b64460e
Summary: Add the `ApplyToHandle` method to the `Cache` interface to allow a caller to request the invocation of a callback on the given cache handle. The goal here is to allow a cache that manages multiple cache instances to use a callback on a handle to determine which instance it belongs to. For example, the callback can hash the key and use that to pick the correct target instance. This is useful to redirect methods like `Ref` and `Release`, which don't know the cache key. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12987 Reviewed By: pdillinger Differential Revision: D62151907 Pulled By: anand1976 fbshipit-source-id: e4ffbbb96eac9061d2ab0e7e1739eea5ebb1cd58
1111 lines
35 KiB
C++
1111 lines
35 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "rocksdb/cache.h"
|
|
|
|
#include <forward_list>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "cache/lru_cache.h"
|
|
#include "cache/typed_cache.h"
|
|
#include "port/stack_trace.h"
|
|
#include "table/block_based/block_cache.h"
|
|
#include "test_util/secondary_cache_test_util.h"
|
|
#include "test_util/testharness.h"
|
|
#include "util/coding.h"
|
|
#include "util/hash_containers.h"
|
|
#include "util/string_util.h"
|
|
|
|
// HyperClockCache only supports 16-byte keys, so some of the tests
|
|
// originally written for LRUCache do not work on the other caches.
|
|
// Those tests were adapted to use 16-byte keys. We kept the original ones.
|
|
// TODO: Remove the original tests if they ever become unused.
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace {
|
|
|
|
// Conversions between numeric keys/values and the types expected by Cache.
|
|
std::string EncodeKey16Bytes(int k) {
|
|
std::string result;
|
|
PutFixed32(&result, k);
|
|
result.append(std::string(12, 'a')); // Because we need a 16B output, we
|
|
// add a 12-byte padding.
|
|
return result;
|
|
}
|
|
|
|
int DecodeKey16Bytes(const Slice& k) {
|
|
assert(k.size() == 16);
|
|
return DecodeFixed32(k.data()); // Decodes only the first 4 bytes of k.
|
|
}
|
|
|
|
std::string EncodeKey32Bits(int k) {
|
|
std::string result;
|
|
PutFixed32(&result, k);
|
|
return result;
|
|
}
|
|
|
|
int DecodeKey32Bits(const Slice& k) {
|
|
assert(k.size() == 4);
|
|
return DecodeFixed32(k.data());
|
|
}
|
|
|
|
Cache::ObjectPtr EncodeValue(uintptr_t v) {
|
|
return reinterpret_cast<Cache::ObjectPtr>(v);
|
|
}
|
|
|
|
int DecodeValue(void* v) {
|
|
return static_cast<int>(reinterpret_cast<uintptr_t>(v));
|
|
}
|
|
|
|
const Cache::CacheItemHelper kDumbHelper{
|
|
CacheEntryRole::kMisc,
|
|
[](Cache::ObjectPtr /*value*/, MemoryAllocator* /*alloc*/) {}};
|
|
|
|
const Cache::CacheItemHelper kInvokeOnDeleteHelper{
|
|
CacheEntryRole::kMisc,
|
|
[](Cache::ObjectPtr value, MemoryAllocator* /*alloc*/) {
|
|
auto& fn = *static_cast<std::function<void()>*>(value);
|
|
fn();
|
|
}};
|
|
} // anonymous namespace
|
|
|
|
class CacheTest : public testing::Test,
|
|
public secondary_cache_test_util::WithCacheTypeParam {
|
|
public:
|
|
static CacheTest* current_;
|
|
static std::string type_;
|
|
|
|
static void Deleter(Cache::ObjectPtr v, MemoryAllocator*) {
|
|
current_->deleted_values_.push_back(DecodeValue(v));
|
|
}
|
|
static const Cache::CacheItemHelper kHelper;
|
|
|
|
static const int kCacheSize = 1000;
|
|
static const int kNumShardBits = 4;
|
|
|
|
static const int kCacheSize2 = 100;
|
|
static const int kNumShardBits2 = 2;
|
|
|
|
std::vector<int> deleted_values_;
|
|
std::shared_ptr<Cache> cache_;
|
|
std::shared_ptr<Cache> cache2_;
|
|
|
|
CacheTest()
|
|
: cache_(NewCache(kCacheSize, kNumShardBits, false)),
|
|
cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) {
|
|
current_ = this;
|
|
type_ = GetParam();
|
|
}
|
|
|
|
~CacheTest() override = default;
|
|
|
|
// These functions encode/decode keys in tests cases that use
|
|
// int keys.
|
|
// Currently, HyperClockCache requires keys to be 16B long, whereas
|
|
// LRUCache doesn't, so the encoding depends on the cache type.
|
|
std::string EncodeKey(int k) {
|
|
if (IsHyperClock()) {
|
|
return EncodeKey16Bytes(k);
|
|
} else {
|
|
return EncodeKey32Bits(k);
|
|
}
|
|
}
|
|
|
|
int DecodeKey(const Slice& k) {
|
|
if (IsHyperClock()) {
|
|
return DecodeKey16Bytes(k);
|
|
} else {
|
|
return DecodeKey32Bits(k);
|
|
}
|
|
}
|
|
|
|
int Lookup(std::shared_ptr<Cache> cache, int key) {
|
|
Cache::Handle* handle = cache->Lookup(EncodeKey(key));
|
|
const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle));
|
|
if (handle != nullptr) {
|
|
cache->Release(handle);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void Insert(std::shared_ptr<Cache> cache, int key, int value,
|
|
int charge = 1) {
|
|
EXPECT_OK(cache->Insert(EncodeKey(key), EncodeValue(value), &kHelper,
|
|
charge, /*handle*/ nullptr, Cache::Priority::HIGH));
|
|
}
|
|
|
|
void Erase(std::shared_ptr<Cache> cache, int key) {
|
|
cache->Erase(EncodeKey(key));
|
|
}
|
|
|
|
int Lookup(int key) { return Lookup(cache_, key); }
|
|
|
|
void Insert(int key, int value, int charge = 1) {
|
|
Insert(cache_, key, value, charge);
|
|
}
|
|
|
|
void Erase(int key) { Erase(cache_, key); }
|
|
|
|
int Lookup2(int key) { return Lookup(cache2_, key); }
|
|
|
|
void Insert2(int key, int value, int charge = 1) {
|
|
Insert(cache2_, key, value, charge);
|
|
}
|
|
|
|
void Erase2(int key) { Erase(cache2_, key); }
|
|
};
|
|
|
|
const Cache::CacheItemHelper CacheTest::kHelper{CacheEntryRole::kMisc,
|
|
&CacheTest::Deleter};
|
|
|
|
CacheTest* CacheTest::current_;
|
|
std::string CacheTest::type_;
|
|
|
|
class LRUCacheTest : public CacheTest {};
|
|
|
|
TEST_P(CacheTest, UsageTest) {
|
|
// cache is std::shared_ptr and will be automatically cleaned up.
|
|
const size_t kCapacity = 100000;
|
|
auto cache = NewCache(kCapacity, 6, false, kDontChargeCacheMetadata);
|
|
auto precise_cache = NewCache(kCapacity, 0, false, kFullChargeCacheMetadata);
|
|
ASSERT_EQ(0, cache->GetUsage());
|
|
size_t baseline_meta_usage = precise_cache->GetUsage();
|
|
if (!IsHyperClock()) {
|
|
ASSERT_EQ(0, baseline_meta_usage);
|
|
}
|
|
|
|
size_t usage = 0;
|
|
char value[10] = "abcdef";
|
|
// make sure everything will be cached
|
|
for (int i = 1; i < 100; ++i) {
|
|
std::string key = EncodeKey(i);
|
|
auto kv_size = key.size() + 5;
|
|
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, kv_size));
|
|
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, kv_size));
|
|
usage += kv_size;
|
|
ASSERT_EQ(usage, cache->GetUsage());
|
|
if (GetParam() == kFixedHyperClock) {
|
|
ASSERT_EQ(baseline_meta_usage + usage, precise_cache->GetUsage());
|
|
} else {
|
|
// AutoHyperClockCache meta usage grows in proportion to lifetime
|
|
// max number of entries. LRUCache in proportion to resident number of
|
|
// entries, though there is an untracked component proportional to
|
|
// lifetime max number of entries.
|
|
ASSERT_LT(usage, precise_cache->GetUsage());
|
|
}
|
|
}
|
|
|
|
cache->EraseUnRefEntries();
|
|
precise_cache->EraseUnRefEntries();
|
|
ASSERT_EQ(0, cache->GetUsage());
|
|
if (GetParam() != kAutoHyperClock) {
|
|
// NOTE: AutoHyperClockCache meta usage grows in proportion to lifetime
|
|
// max number of entries.
|
|
ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage());
|
|
}
|
|
|
|
// make sure the cache will be overloaded
|
|
for (size_t i = 1; i < kCapacity; ++i) {
|
|
std::string key = EncodeKey(static_cast<int>(1000 + i));
|
|
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, key.size() + 5));
|
|
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, key.size() + 5));
|
|
}
|
|
|
|
// the usage should be close to the capacity
|
|
ASSERT_GT(kCapacity, cache->GetUsage());
|
|
ASSERT_GT(kCapacity, precise_cache->GetUsage());
|
|
ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
|
|
if (!IsHyperClock()) {
|
|
ASSERT_LT(kCapacity * 0.95, precise_cache->GetUsage());
|
|
} else {
|
|
// estimated value size of 1 is weird for clock cache, because
|
|
// almost all of the capacity will be used for metadata, and due to only
|
|
// using power of 2 table sizes, we might hit strict occupancy limit
|
|
// before hitting capacity limit.
|
|
ASSERT_LT(kCapacity * 0.80, precise_cache->GetUsage());
|
|
}
|
|
}
|
|
|
|
// TODO: This test takes longer than expected on FixedHyperClockCache.
|
|
// This is because the values size estimate at construction is too sloppy.
|
|
// Fix this.
|
|
// Why is it so slow? The cache is constructed with an estimate of 1, but
|
|
// then the charge is claimed to be 21. This will cause the hash table
|
|
// to be extremely sparse, which in turn means clock needs to scan too
|
|
// many slots to find victims.
|
|
TEST_P(CacheTest, PinnedUsageTest) {
|
|
// cache is std::shared_ptr and will be automatically cleaned up.
|
|
const size_t kCapacity = 200000;
|
|
auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata);
|
|
auto precise_cache = NewCache(kCapacity, 8, false, kFullChargeCacheMetadata);
|
|
size_t baseline_meta_usage = precise_cache->GetUsage();
|
|
if (!IsHyperClock()) {
|
|
ASSERT_EQ(0, baseline_meta_usage);
|
|
}
|
|
|
|
size_t pinned_usage = 0;
|
|
char value[10] = "abcdef";
|
|
|
|
std::forward_list<Cache::Handle*> unreleased_handles;
|
|
std::forward_list<Cache::Handle*> unreleased_handles_in_precise_cache;
|
|
|
|
// Add entries. Unpin some of them after insertion. Then, pin some of them
|
|
// again. Check GetPinnedUsage().
|
|
for (int i = 1; i < 100; ++i) {
|
|
std::string key = EncodeKey(i);
|
|
auto kv_size = key.size() + 5;
|
|
Cache::Handle* handle;
|
|
Cache::Handle* handle_in_precise_cache;
|
|
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, kv_size, &handle));
|
|
assert(handle);
|
|
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, kv_size,
|
|
&handle_in_precise_cache));
|
|
assert(handle_in_precise_cache);
|
|
pinned_usage += kv_size;
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
|
|
if (i % 2 == 0) {
|
|
cache->Release(handle);
|
|
precise_cache->Release(handle_in_precise_cache);
|
|
pinned_usage -= kv_size;
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
|
|
} else {
|
|
unreleased_handles.push_front(handle);
|
|
unreleased_handles_in_precise_cache.push_front(handle_in_precise_cache);
|
|
}
|
|
if (i % 3 == 0) {
|
|
unreleased_handles.push_front(cache->Lookup(key));
|
|
auto x = precise_cache->Lookup(key);
|
|
assert(x);
|
|
unreleased_handles_in_precise_cache.push_front(x);
|
|
// If i % 2 == 0, then the entry was unpinned before Lookup, so pinned
|
|
// usage increased
|
|
if (i % 2 == 0) {
|
|
pinned_usage += kv_size;
|
|
}
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
|
|
}
|
|
}
|
|
auto precise_cache_pinned_usage = precise_cache->GetPinnedUsage();
|
|
ASSERT_LT(pinned_usage, precise_cache_pinned_usage);
|
|
|
|
// check that overloading the cache does not change the pinned usage
|
|
for (size_t i = 1; i < 2 * kCapacity; ++i) {
|
|
std::string key = EncodeKey(static_cast<int>(1000 + i));
|
|
ASSERT_OK(cache->Insert(key, value, &kDumbHelper, key.size() + 5));
|
|
ASSERT_OK(precise_cache->Insert(key, value, &kDumbHelper, key.size() + 5));
|
|
}
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
cache->EraseUnRefEntries();
|
|
precise_cache->EraseUnRefEntries();
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
// release handles for pinned entries to prevent memory leaks
|
|
for (auto handle : unreleased_handles) {
|
|
cache->Release(handle);
|
|
}
|
|
for (auto handle : unreleased_handles_in_precise_cache) {
|
|
precise_cache->Release(handle);
|
|
}
|
|
ASSERT_EQ(0, cache->GetPinnedUsage());
|
|
ASSERT_EQ(0, precise_cache->GetPinnedUsage());
|
|
cache->EraseUnRefEntries();
|
|
precise_cache->EraseUnRefEntries();
|
|
ASSERT_EQ(0, cache->GetUsage());
|
|
if (GetParam() != kAutoHyperClock) {
|
|
// NOTE: AutoHyperClockCache meta usage grows in proportion to lifetime
|
|
// max number of entries.
|
|
ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage());
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, HitAndMiss) {
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
Insert(100, 101);
|
|
ASSERT_EQ(101, Lookup(100));
|
|
ASSERT_EQ(-1, Lookup(200));
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
Insert(200, 201);
|
|
ASSERT_EQ(101, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
Insert(100, 102);
|
|
if (IsHyperClock()) {
|
|
// ClockCache usually doesn't overwrite on Insert
|
|
ASSERT_EQ(101, Lookup(100));
|
|
} else {
|
|
ASSERT_EQ(102, Lookup(100));
|
|
}
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
ASSERT_EQ(1U, deleted_values_.size());
|
|
if (IsHyperClock()) {
|
|
ASSERT_EQ(102, deleted_values_[0]);
|
|
} else {
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, InsertSameKey) {
|
|
if (IsHyperClock()) {
|
|
ROCKSDB_GTEST_BYPASS(
|
|
"ClockCache doesn't guarantee Insert overwrite same key.");
|
|
return;
|
|
}
|
|
Insert(1, 1);
|
|
Insert(1, 2);
|
|
ASSERT_EQ(2, Lookup(1));
|
|
}
|
|
|
|
TEST_P(CacheTest, Erase) {
|
|
Erase(200);
|
|
ASSERT_EQ(0U, deleted_values_.size());
|
|
|
|
Insert(100, 101);
|
|
Insert(200, 201);
|
|
Erase(100);
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(1U, deleted_values_.size());
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
|
|
Erase(100);
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(1U, deleted_values_.size());
|
|
}
|
|
|
|
TEST_P(CacheTest, EntriesArePinned) {
|
|
if (IsHyperClock()) {
|
|
ROCKSDB_GTEST_BYPASS(
|
|
"ClockCache doesn't guarantee Insert overwrite same key.");
|
|
return;
|
|
}
|
|
Insert(100, 101);
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
Insert(100, 102);
|
|
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
|
|
ASSERT_EQ(0U, deleted_values_.size());
|
|
ASSERT_EQ(2U, cache_->GetUsage());
|
|
|
|
cache_->Release(h1);
|
|
ASSERT_EQ(1U, deleted_values_.size());
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
Erase(100);
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(1U, deleted_values_.size());
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
cache_->Release(h2);
|
|
ASSERT_EQ(2U, deleted_values_.size());
|
|
ASSERT_EQ(102, deleted_values_[1]);
|
|
ASSERT_EQ(0U, cache_->GetUsage());
|
|
}
|
|
|
|
TEST_P(CacheTest, EvictionPolicy) {
|
|
Insert(100, 101);
|
|
Insert(200, 201);
|
|
// Frequently used entry must be kept around
|
|
for (int i = 0; i < 2 * kCacheSize; i++) {
|
|
Insert(1000 + i, 2000 + i);
|
|
ASSERT_EQ(101, Lookup(100));
|
|
}
|
|
ASSERT_EQ(101, Lookup(100));
|
|
ASSERT_EQ(-1, Lookup(200));
|
|
}
|
|
|
|
TEST_P(CacheTest, ExternalRefPinsEntries) {
|
|
Insert(100, 101);
|
|
Cache::Handle* h = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_TRUE(cache_->Ref(h));
|
|
ASSERT_EQ(101, DecodeValue(cache_->Value(h)));
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (i > 0) {
|
|
// First release (i == 1) corresponds to Ref(), second release (i == 2)
|
|
// corresponds to Lookup(). Then, since all external refs are released,
|
|
// the below insertions should push out the cache entry.
|
|
cache_->Release(h);
|
|
}
|
|
// double cache size because the usage bit in block cache prevents 100 from
|
|
// being evicted in the first kCacheSize iterations
|
|
for (int j = 0; j < 2 * kCacheSize + 100; j++) {
|
|
Insert(1000 + j, 2000 + j);
|
|
}
|
|
// Clock cache is even more stateful and needs more churn to evict
|
|
if (IsHyperClock()) {
|
|
for (int j = 0; j < kCacheSize; j++) {
|
|
Insert(11000 + j, 11000 + j);
|
|
}
|
|
}
|
|
if (i < 2) {
|
|
ASSERT_EQ(101, Lookup(100));
|
|
}
|
|
}
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
}
|
|
|
|
TEST_P(CacheTest, EvictionPolicyRef) {
|
|
Insert(100, 101);
|
|
Insert(101, 102);
|
|
Insert(102, 103);
|
|
Insert(103, 104);
|
|
Insert(200, 101);
|
|
Insert(201, 102);
|
|
Insert(202, 103);
|
|
Insert(203, 104);
|
|
Cache::Handle* h201 = cache_->Lookup(EncodeKey(200));
|
|
Cache::Handle* h202 = cache_->Lookup(EncodeKey(201));
|
|
Cache::Handle* h203 = cache_->Lookup(EncodeKey(202));
|
|
Cache::Handle* h204 = cache_->Lookup(EncodeKey(203));
|
|
Insert(300, 101);
|
|
Insert(301, 102);
|
|
Insert(302, 103);
|
|
Insert(303, 104);
|
|
|
|
// Insert entries much more than cache capacity.
|
|
for (int i = 0; i < 100 * kCacheSize; i++) {
|
|
Insert(1000 + i, 2000 + i);
|
|
}
|
|
|
|
// Check whether the entries inserted in the beginning
|
|
// are evicted. Ones without extra ref are evicted and
|
|
// those with are not.
|
|
EXPECT_EQ(-1, Lookup(100));
|
|
EXPECT_EQ(-1, Lookup(101));
|
|
EXPECT_EQ(-1, Lookup(102));
|
|
EXPECT_EQ(-1, Lookup(103));
|
|
|
|
EXPECT_EQ(-1, Lookup(300));
|
|
EXPECT_EQ(-1, Lookup(301));
|
|
EXPECT_EQ(-1, Lookup(302));
|
|
EXPECT_EQ(-1, Lookup(303));
|
|
|
|
EXPECT_EQ(101, Lookup(200));
|
|
EXPECT_EQ(102, Lookup(201));
|
|
EXPECT_EQ(103, Lookup(202));
|
|
EXPECT_EQ(104, Lookup(203));
|
|
|
|
// Cleaning up all the handles
|
|
cache_->Release(h201);
|
|
cache_->Release(h202);
|
|
cache_->Release(h203);
|
|
cache_->Release(h204);
|
|
}
|
|
|
|
TEST_P(CacheTest, EvictEmptyCache) {
|
|
// Insert item large than capacity to trigger eviction on empty cache.
|
|
auto cache = NewCache(1, 0, false);
|
|
ASSERT_OK(cache->Insert(EncodeKey(1000), nullptr, &kDumbHelper, 10));
|
|
}
|
|
|
|
TEST_P(CacheTest, EraseFromDeleter) {
|
|
// Have deleter which will erase item from cache, which will re-enter
|
|
// the cache at that point.
|
|
std::shared_ptr<Cache> cache = NewCache(10, 0, false);
|
|
std::string foo = EncodeKey(1234);
|
|
std::string bar = EncodeKey(5678);
|
|
|
|
std::function<void()> erase_fn = [&]() { cache->Erase(foo); };
|
|
|
|
ASSERT_OK(cache->Insert(foo, nullptr, &kDumbHelper, 1));
|
|
ASSERT_OK(cache->Insert(bar, &erase_fn, &kInvokeOnDeleteHelper, 1));
|
|
|
|
cache->Erase(bar);
|
|
ASSERT_EQ(nullptr, cache->Lookup(foo));
|
|
ASSERT_EQ(nullptr, cache->Lookup(bar));
|
|
}
|
|
|
|
TEST_P(CacheTest, ErasedHandleState) {
|
|
// insert a key and get two handles
|
|
Insert(100, 1000);
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
|
|
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_EQ(h1, h2);
|
|
ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000);
|
|
ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000);
|
|
|
|
// delete the key from the cache
|
|
Erase(100);
|
|
// can no longer find in the cache
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
// release one handle
|
|
cache_->Release(h1);
|
|
// still can't find in cache
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
cache_->Release(h2);
|
|
}
|
|
|
|
TEST_P(CacheTest, HeavyEntries) {
|
|
// Add a bunch of light and heavy entries and then count the combined
|
|
// size of items still in the cache, which must be approximately the
|
|
// same as the total capacity.
|
|
const int kLight = 1;
|
|
const int kHeavy = 10;
|
|
int added = 0;
|
|
int index = 0;
|
|
while (added < 2 * kCacheSize) {
|
|
const int weight = (index & 1) ? kLight : kHeavy;
|
|
Insert(index, 1000 + index, weight);
|
|
added += weight;
|
|
index++;
|
|
}
|
|
|
|
int cached_weight = 0;
|
|
for (int i = 0; i < index; i++) {
|
|
const int weight = (i & 1 ? kLight : kHeavy);
|
|
int r = Lookup(i);
|
|
if (r >= 0) {
|
|
cached_weight += weight;
|
|
ASSERT_EQ(1000 + i, r);
|
|
}
|
|
}
|
|
ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10);
|
|
}
|
|
|
|
TEST_P(CacheTest, NewId) {
|
|
uint64_t a = cache_->NewId();
|
|
uint64_t b = cache_->NewId();
|
|
ASSERT_NE(a, b);
|
|
}
|
|
|
|
TEST_P(CacheTest, ReleaseAndErase) {
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
Cache::Handle* handle;
|
|
Status s =
|
|
cache->Insert(EncodeKey(100), EncodeValue(100), &kHelper, 1, &handle);
|
|
ASSERT_TRUE(s.ok());
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
ASSERT_EQ(1U, cache->GetUsage());
|
|
ASSERT_EQ(0U, deleted_values_.size());
|
|
auto erased = cache->Release(handle, true);
|
|
ASSERT_TRUE(erased);
|
|
// This tests that deleter has been called
|
|
ASSERT_EQ(1U, deleted_values_.size());
|
|
}
|
|
|
|
TEST_P(CacheTest, ReleaseWithoutErase) {
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
Cache::Handle* handle;
|
|
Status s =
|
|
cache->Insert(EncodeKey(100), EncodeValue(100), &kHelper, 1, &handle);
|
|
ASSERT_TRUE(s.ok());
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
ASSERT_EQ(1U, cache->GetUsage());
|
|
ASSERT_EQ(0U, deleted_values_.size());
|
|
auto erased = cache->Release(handle);
|
|
ASSERT_FALSE(erased);
|
|
// This tests that deleter is not called. When cache has free capacity it is
|
|
// not expected to immediately erase the released items.
|
|
ASSERT_EQ(0U, deleted_values_.size());
|
|
}
|
|
|
|
namespace {
|
|
class Value {
|
|
public:
|
|
explicit Value(int v) : v_(v) {}
|
|
|
|
int v_;
|
|
|
|
static constexpr auto kCacheEntryRole = CacheEntryRole::kMisc;
|
|
};
|
|
|
|
using SharedCache = BasicTypedSharedCacheInterface<Value>;
|
|
using TypedHandle = SharedCache::TypedHandle;
|
|
} // namespace
|
|
|
|
TEST_P(CacheTest, SetCapacity) {
|
|
if (IsHyperClock()) {
|
|
// TODO: update test & code for limited supoort
|
|
ROCKSDB_GTEST_BYPASS(
|
|
"HyperClockCache doesn't support arbitrary capacity "
|
|
"adjustments.");
|
|
return;
|
|
}
|
|
// test1: increase capacity
|
|
// lets create a cache with capacity 5,
|
|
// then, insert 5 elements, then increase capacity
|
|
// to 10, returned capacity should be 10, usage=5
|
|
SharedCache cache{NewCache(5, 0, false)};
|
|
std::vector<TypedHandle*> handles(10);
|
|
// Insert 5 entries, but not releasing.
|
|
for (int i = 0; i < 5; i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
Status s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
|
|
ASSERT_TRUE(s.ok());
|
|
}
|
|
ASSERT_EQ(5U, cache.get()->GetCapacity());
|
|
ASSERT_EQ(5U, cache.get()->GetUsage());
|
|
cache.get()->SetCapacity(10);
|
|
ASSERT_EQ(10U, cache.get()->GetCapacity());
|
|
ASSERT_EQ(5U, cache.get()->GetUsage());
|
|
|
|
// test2: decrease capacity
|
|
// insert 5 more elements to cache, then release 5,
|
|
// then decrease capacity to 7, final capacity should be 7
|
|
// and usage should be 7
|
|
for (int i = 5; i < 10; i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
Status s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
|
|
ASSERT_TRUE(s.ok());
|
|
}
|
|
ASSERT_EQ(10U, cache.get()->GetCapacity());
|
|
ASSERT_EQ(10U, cache.get()->GetUsage());
|
|
for (int i = 0; i < 5; i++) {
|
|
cache.Release(handles[i]);
|
|
}
|
|
ASSERT_EQ(10U, cache.get()->GetCapacity());
|
|
ASSERT_EQ(10U, cache.get()->GetUsage());
|
|
cache.get()->SetCapacity(7);
|
|
ASSERT_EQ(7, cache.get()->GetCapacity());
|
|
ASSERT_EQ(7, cache.get()->GetUsage());
|
|
|
|
// release remaining 5 to keep valgrind happy
|
|
for (int i = 5; i < 10; i++) {
|
|
cache.Release(handles[i]);
|
|
}
|
|
|
|
// Make sure this doesn't crash or upset ASAN/valgrind
|
|
cache.get()->DisownData();
|
|
}
|
|
|
|
TEST_P(LRUCacheTest, SetStrictCapacityLimit) {
|
|
// test1: set the flag to false. Insert more keys than capacity. See if they
|
|
// all go through.
|
|
SharedCache cache{NewCache(5, 0, false)};
|
|
std::vector<TypedHandle*> handles(10);
|
|
Status s;
|
|
for (int i = 0; i < 10; i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
|
|
ASSERT_OK(s);
|
|
ASSERT_NE(nullptr, handles[i]);
|
|
}
|
|
ASSERT_EQ(10, cache.get()->GetUsage());
|
|
|
|
// test2: set the flag to true. Insert and check if it fails.
|
|
std::string extra_key = EncodeKey(100);
|
|
Value* extra_value = new Value(0);
|
|
cache.get()->SetStrictCapacityLimit(true);
|
|
TypedHandle* handle;
|
|
s = cache.Insert(extra_key, extra_value, 1, &handle);
|
|
ASSERT_TRUE(s.IsMemoryLimit());
|
|
ASSERT_EQ(nullptr, handle);
|
|
ASSERT_EQ(10, cache.get()->GetUsage());
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
cache.Release(handles[i]);
|
|
}
|
|
|
|
// test3: init with flag being true.
|
|
SharedCache cache2{NewCache(5, 0, true)};
|
|
for (int i = 0; i < 5; i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
s = cache2.Insert(key, new Value(i + 1), 1, &handles[i]);
|
|
ASSERT_OK(s);
|
|
ASSERT_NE(nullptr, handles[i]);
|
|
}
|
|
s = cache2.Insert(extra_key, extra_value, 1, &handle);
|
|
ASSERT_TRUE(s.IsMemoryLimit());
|
|
ASSERT_EQ(nullptr, handle);
|
|
// test insert without handle
|
|
s = cache2.Insert(extra_key, extra_value, 1);
|
|
// AS if the key have been inserted into cache but get evicted immediately.
|
|
ASSERT_OK(s);
|
|
ASSERT_EQ(5, cache2.get()->GetUsage());
|
|
ASSERT_EQ(nullptr, cache2.Lookup(extra_key));
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
cache2.Release(handles[i]);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, OverCapacity) {
|
|
size_t n = 10;
|
|
|
|
// a LRUCache with n entries and one shard only
|
|
SharedCache cache{NewCache(n, 0, false)};
|
|
std::vector<TypedHandle*> handles(n + 1);
|
|
|
|
// Insert n+1 entries, but not releasing.
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
Status s = cache.Insert(key, new Value(i + 1), 1, &handles[i]);
|
|
ASSERT_TRUE(s.ok());
|
|
}
|
|
|
|
// Guess what's in the cache now?
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
auto h = cache.Lookup(key);
|
|
ASSERT_TRUE(h != nullptr);
|
|
if (h) {
|
|
cache.Release(h);
|
|
}
|
|
}
|
|
|
|
// the cache is over capacity since nothing could be evicted
|
|
ASSERT_EQ(n + 1U, cache.get()->GetUsage());
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
cache.Release(handles[i]);
|
|
}
|
|
|
|
if (IsHyperClock()) {
|
|
// Make sure eviction is triggered.
|
|
ASSERT_OK(cache.Insert(EncodeKey(-1), nullptr, 1, handles.data()));
|
|
|
|
// cache is under capacity now since elements were released
|
|
ASSERT_GE(n, cache.get()->GetUsage());
|
|
|
|
// clean up
|
|
cache.Release(handles[0]);
|
|
} else {
|
|
// LRUCache checks for over-capacity in Release.
|
|
|
|
// cache is exactly at capacity now with minimal eviction
|
|
ASSERT_EQ(n, cache.get()->GetUsage());
|
|
|
|
// element 0 is evicted and the rest is there
|
|
// This is consistent with the LRU policy since the element 0
|
|
// was released first
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
std::string key = EncodeKey(i + 1);
|
|
auto h = cache.Lookup(key);
|
|
if (h) {
|
|
ASSERT_NE(static_cast<size_t>(i), 0U);
|
|
cache.Release(h);
|
|
} else {
|
|
ASSERT_EQ(static_cast<size_t>(i), 0U);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, ApplyToAllEntriesTest) {
|
|
std::vector<std::string> callback_state;
|
|
const auto callback = [&](const Slice& key, Cache::ObjectPtr value,
|
|
size_t charge,
|
|
const Cache::CacheItemHelper* helper) {
|
|
callback_state.push_back(std::to_string(DecodeKey(key)) + "," +
|
|
std::to_string(DecodeValue(value)) + "," +
|
|
std::to_string(charge));
|
|
assert(helper == &CacheTest::kHelper);
|
|
};
|
|
|
|
std::vector<std::string> inserted;
|
|
callback_state.clear();
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
Insert(i, i * 2, i + 1);
|
|
inserted.push_back(std::to_string(i) + "," + std::to_string(i * 2) + "," +
|
|
std::to_string(i + 1));
|
|
}
|
|
cache_->ApplyToAllEntries(callback, /*opts*/ {});
|
|
|
|
std::sort(inserted.begin(), inserted.end());
|
|
std::sort(callback_state.begin(), callback_state.end());
|
|
ASSERT_EQ(inserted.size(), callback_state.size());
|
|
for (int i = 0; i < static_cast<int>(inserted.size()); ++i) {
|
|
EXPECT_EQ(inserted[i], callback_state[i]);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, ApplyToAllEntriesDuringResize) {
|
|
// This is a mini-stress test of ApplyToAllEntries, to ensure
|
|
// items in the cache that are neither added nor removed
|
|
// during ApplyToAllEntries are counted exactly once.
|
|
|
|
// Insert some entries that we expect to be seen exactly once
|
|
// during iteration.
|
|
constexpr int kSpecialCharge = 2;
|
|
constexpr int kNotSpecialCharge = 1;
|
|
constexpr int kSpecialCount = 100;
|
|
size_t expected_usage = 0;
|
|
for (int i = 0; i < kSpecialCount; ++i) {
|
|
Insert(i, i * 2, kSpecialCharge);
|
|
expected_usage += kSpecialCharge;
|
|
}
|
|
|
|
// For callback
|
|
int special_count = 0;
|
|
const auto callback = [&](const Slice&, Cache::ObjectPtr, size_t charge,
|
|
const Cache::CacheItemHelper*) {
|
|
if (charge == static_cast<size_t>(kSpecialCharge)) {
|
|
++special_count;
|
|
}
|
|
};
|
|
|
|
// Start counting
|
|
std::thread apply_thread([&]() {
|
|
// Use small average_entries_per_lock to make the problem difficult
|
|
Cache::ApplyToAllEntriesOptions opts;
|
|
opts.average_entries_per_lock = 2;
|
|
cache_->ApplyToAllEntries(callback, opts);
|
|
});
|
|
|
|
// In parallel, add more entries, enough to cause resize but not enough
|
|
// to cause ejections. (Note: if any cache shard is over capacity, there
|
|
// will be ejections)
|
|
for (int i = kSpecialCount * 1; i < kSpecialCount * 5; ++i) {
|
|
Insert(i, i * 2, kNotSpecialCharge);
|
|
expected_usage += kNotSpecialCharge;
|
|
}
|
|
|
|
apply_thread.join();
|
|
// verify no evictions
|
|
ASSERT_EQ(cache_->GetUsage(), expected_usage);
|
|
// verify everything seen in ApplyToAllEntries
|
|
ASSERT_EQ(special_count, kSpecialCount);
|
|
}
|
|
|
|
TEST_P(CacheTest, ApplyToHandleTest) {
|
|
std::string callback_state;
|
|
const auto callback = [&](const Slice& key, Cache::ObjectPtr value,
|
|
size_t charge,
|
|
const Cache::CacheItemHelper* helper) {
|
|
callback_state = std::to_string(DecodeKey(key)) + "," +
|
|
std::to_string(DecodeValue(value)) + "," +
|
|
std::to_string(charge);
|
|
assert(helper == &CacheTest::kHelper);
|
|
};
|
|
|
|
std::vector<std::string> inserted;
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
Insert(i, i * 2, i + 1);
|
|
inserted.push_back(std::to_string(i) + "," + std::to_string(i * 2) + "," +
|
|
std::to_string(i + 1));
|
|
}
|
|
for (int i = 0; i < 10; ++i) {
|
|
Cache::Handle* handle = cache_->Lookup(EncodeKey(i));
|
|
cache_->ApplyToHandle(cache_.get(), handle, callback);
|
|
EXPECT_EQ(inserted[i], callback_state);
|
|
cache_->Release(handle);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, DefaultShardBits) {
|
|
// Prevent excessive allocation (to save time & space)
|
|
estimated_value_size_ = 100000;
|
|
// Implementations use different minimum shard sizes
|
|
size_t min_shard_size = (IsHyperClock() ? 32U * 1024U : 512U) * 1024U;
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(32U * min_shard_size);
|
|
ShardedCacheBase* sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
|
ASSERT_EQ(5, sc->GetNumShardBits());
|
|
|
|
cache = NewCache(min_shard_size / 1000U * 999U);
|
|
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
|
ASSERT_EQ(0, sc->GetNumShardBits());
|
|
|
|
cache = NewCache(3U * 1024U * 1024U * 1024U);
|
|
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
|
// current maximum of 6
|
|
ASSERT_EQ(6, sc->GetNumShardBits());
|
|
|
|
if constexpr (sizeof(size_t) > 4) {
|
|
cache = NewCache(128U * min_shard_size);
|
|
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
|
// current maximum of 6
|
|
ASSERT_EQ(6, sc->GetNumShardBits());
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, GetChargeAndDeleter) {
|
|
Insert(1, 2);
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(1));
|
|
ASSERT_EQ(2, DecodeValue(cache_->Value(h1)));
|
|
ASSERT_EQ(1, cache_->GetCharge(h1));
|
|
ASSERT_EQ(&CacheTest::kHelper, cache_->GetCacheItemHelper(h1));
|
|
cache_->Release(h1);
|
|
}
|
|
|
|
namespace {
|
|
bool AreTwoCacheKeysOrdered(Cache* cache) {
|
|
std::vector<std::string> keys;
|
|
const auto callback = [&](const Slice& key, Cache::ObjectPtr /*value*/,
|
|
size_t /*charge*/,
|
|
const Cache::CacheItemHelper* /*helper*/) {
|
|
keys.push_back(key.ToString());
|
|
};
|
|
cache->ApplyToAllEntries(callback, /*opts*/ {});
|
|
EXPECT_EQ(keys.size(), 2U);
|
|
EXPECT_NE(keys[0], keys[1]);
|
|
return keys[0] < keys[1];
|
|
}
|
|
} // namespace
|
|
|
|
TEST_P(CacheTest, CacheUniqueSeeds) {
|
|
// kQuasiRandomHashSeed should generate unique seeds (up to 2 billion before
|
|
// repeating)
|
|
UnorderedSet<uint32_t> seeds_seen;
|
|
// Roughly sqrt(number of possible values) for a decent chance at detecting
|
|
// a random collision if it's possible (shouldn't be)
|
|
uint16_t kSamples = 20000;
|
|
seeds_seen.reserve(kSamples);
|
|
|
|
// Hash seed should affect ordering of entries in the table, so we should
|
|
// have extremely high chance of seeing two entries ordered both ways.
|
|
bool seen_forward_order = false;
|
|
bool seen_reverse_order = false;
|
|
|
|
for (int i = 0; i < kSamples; ++i) {
|
|
auto cache = NewCache(2, [=](ShardedCacheOptions& opts) {
|
|
opts.hash_seed = LRUCacheOptions::kQuasiRandomHashSeed;
|
|
opts.num_shard_bits = 0;
|
|
opts.metadata_charge_policy = kDontChargeCacheMetadata;
|
|
});
|
|
auto val = cache->GetHashSeed();
|
|
ASSERT_TRUE(seeds_seen.insert(val).second);
|
|
|
|
ASSERT_OK(cache->Insert(EncodeKey(1), nullptr, &kHelper, /*charge*/ 1));
|
|
ASSERT_OK(cache->Insert(EncodeKey(2), nullptr, &kHelper, /*charge*/ 1));
|
|
|
|
if (AreTwoCacheKeysOrdered(cache.get())) {
|
|
seen_forward_order = true;
|
|
} else {
|
|
seen_reverse_order = true;
|
|
}
|
|
}
|
|
|
|
ASSERT_TRUE(seen_forward_order);
|
|
ASSERT_TRUE(seen_reverse_order);
|
|
}
|
|
|
|
TEST_P(CacheTest, CacheHostSeed) {
|
|
// kHostHashSeed should generate a consistent seed within this process
|
|
// (and other processes on the same host, but not unit testing that).
|
|
// And we should be able to use that chosen seed as an explicit option
|
|
// (for debugging).
|
|
// And we should verify consistent ordering of entries.
|
|
uint32_t expected_seed = 0;
|
|
bool expected_order = false;
|
|
// 10 iterations -> chance of a random seed falsely appearing consistent
|
|
// should be low, just 1 in 2^9.
|
|
for (int i = 0; i < 10; ++i) {
|
|
auto cache = NewCache(2, [=](ShardedCacheOptions& opts) {
|
|
if (i != 5) {
|
|
opts.hash_seed = LRUCacheOptions::kHostHashSeed;
|
|
} else {
|
|
// Can be used as explicit seed
|
|
opts.hash_seed = static_cast<int32_t>(expected_seed);
|
|
ASSERT_GE(opts.hash_seed, 0);
|
|
}
|
|
opts.num_shard_bits = 0;
|
|
opts.metadata_charge_policy = kDontChargeCacheMetadata;
|
|
});
|
|
ASSERT_OK(cache->Insert(EncodeKey(1), nullptr, &kHelper, /*charge*/ 1));
|
|
ASSERT_OK(cache->Insert(EncodeKey(2), nullptr, &kHelper, /*charge*/ 1));
|
|
uint32_t val = cache->GetHashSeed();
|
|
bool order = AreTwoCacheKeysOrdered(cache.get());
|
|
if (i != 0) {
|
|
ASSERT_EQ(val, expected_seed);
|
|
ASSERT_EQ(order, expected_order);
|
|
} else {
|
|
expected_seed = val;
|
|
expected_order = order;
|
|
}
|
|
}
|
|
// Printed for reference in case it's needed to reproduce other unit test
|
|
// failures on another host
|
|
fprintf(stderr, "kHostHashSeed -> %u\n", (unsigned)expected_seed);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest,
|
|
secondary_cache_test_util::GetTestingCacheTypes());
|
|
INSTANTIATE_TEST_CASE_P(CacheTestInstance, LRUCacheTest,
|
|
testing::Values(secondary_cache_test_util::kLRU));
|
|
|
|
TEST(MiscBlockCacheTest, UncacheAggressivenessAdvisor) {
|
|
// Aggressiveness to a sequence of Report() calls (as string of 0s and 1s)
|
|
// exactly until the first ShouldContinue() == false.
|
|
const std::vector<std::pair<uint32_t, Slice>> expectedTraces{
|
|
// Aggressiveness 1 aborts on first unsuccessful erasure.
|
|
{1, "0"},
|
|
{1, "11111111111111111111110"},
|
|
// For sufficient evidence, aggressiveness 2 requires a minimum of two
|
|
// unsuccessful erasures.
|
|
{2, "00"},
|
|
{2, "0110"},
|
|
{2, "1100"},
|
|
{2, "011111111111111111111111111111111111111111111111111111111111111100"},
|
|
{2, "0111111111111111111111111111111111110"},
|
|
// For sufficient evidence, aggressiveness 3 and higher require a minimum
|
|
// of three unsuccessful erasures.
|
|
{3, "000"},
|
|
{3, "01010"},
|
|
{3, "111000"},
|
|
{3, "00111111111111111111111111111111111100"},
|
|
{3, "00111111111111111111110"},
|
|
|
|
{4, "000"},
|
|
{4, "01010"},
|
|
{4, "111000"},
|
|
{4, "001111111111111111111100"},
|
|
{4, "0011111111111110"},
|
|
|
|
{6, "000"},
|
|
{6, "01010"},
|
|
{6, "111000"},
|
|
{6, "00111111111111100"},
|
|
{6, "0011111110"},
|
|
|
|
// 69 -> 50% threshold, now up to minimum of 4
|
|
{69, "0000"},
|
|
{69, "010000"},
|
|
{69, "01010000"},
|
|
{69, "101010100010101000"},
|
|
|
|
// 230 -> 10% threshold, appropriately higher minimum
|
|
{230, "000000000000"},
|
|
{230, "0000000000010000000000"},
|
|
{230, "00000000000100000000010000000000"}};
|
|
for (const auto& [aggressiveness, t] : expectedTraces) {
|
|
SCOPED_TRACE("aggressiveness=" + std::to_string(aggressiveness) + " with " +
|
|
t.ToString());
|
|
UncacheAggressivenessAdvisor uaa(aggressiveness);
|
|
for (size_t i = 0; i < t.size(); ++i) {
|
|
SCOPED_TRACE("i=" + std::to_string(i));
|
|
ASSERT_TRUE(uaa.ShouldContinue());
|
|
uaa.Report(t[i] & 1);
|
|
}
|
|
ASSERT_FALSE(uaa.ShouldContinue());
|
|
}
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|