mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-26 16:30:56 +00:00
7d87f02799
Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
341 lines
9.8 KiB
C++
341 lines
9.8 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
|
|
#ifndef GFLAGS
|
|
#include <cstdio>
|
|
int main() {
|
|
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
|
|
return 0;
|
|
}
|
|
#else
|
|
|
|
#ifndef __STDC_FORMAT_MACROS
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <inttypes.h>
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <gflags/gflags.h>
|
|
|
|
#include "dynamic_bloom.h"
|
|
#include "port/port.h"
|
|
#include "util/arena.h"
|
|
#include "util/logging.h"
|
|
#include "util/testharness.h"
|
|
#include "util/testutil.h"
|
|
#include "util/stop_watch.h"
|
|
|
|
using GFLAGS::ParseCommandLineFlags;
|
|
|
|
DEFINE_int32(bits_per_key, 10, "");
|
|
DEFINE_int32(num_probes, 6, "");
|
|
DEFINE_bool(enable_perf, false, "");
|
|
|
|
namespace rocksdb {
|
|
|
|
static Slice Key(uint64_t i, char* buffer) {
|
|
memcpy(buffer, &i, sizeof(i));
|
|
return Slice(buffer, sizeof(i));
|
|
}
|
|
|
|
class DynamicBloomTest : public testing::Test {};
|
|
|
|
TEST_F(DynamicBloomTest, EmptyFilter) {
|
|
Arena arena;
|
|
DynamicBloom bloom1(&arena, 100, 0, 2);
|
|
ASSERT_TRUE(!bloom1.MayContain("hello"));
|
|
ASSERT_TRUE(!bloom1.MayContain("world"));
|
|
|
|
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
|
|
ASSERT_TRUE(!bloom2.MayContain("hello"));
|
|
ASSERT_TRUE(!bloom2.MayContain("world"));
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, Small) {
|
|
Arena arena;
|
|
DynamicBloom bloom1(&arena, 100, 0, 2);
|
|
bloom1.Add("hello");
|
|
bloom1.Add("world");
|
|
ASSERT_TRUE(bloom1.MayContain("hello"));
|
|
ASSERT_TRUE(bloom1.MayContain("world"));
|
|
ASSERT_TRUE(!bloom1.MayContain("x"));
|
|
ASSERT_TRUE(!bloom1.MayContain("foo"));
|
|
|
|
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
|
|
bloom2.Add("hello");
|
|
bloom2.Add("world");
|
|
ASSERT_TRUE(bloom2.MayContain("hello"));
|
|
ASSERT_TRUE(bloom2.MayContain("world"));
|
|
ASSERT_TRUE(!bloom2.MayContain("x"));
|
|
ASSERT_TRUE(!bloom2.MayContain("foo"));
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, SmallConcurrentAdd) {
|
|
Arena arena;
|
|
DynamicBloom bloom1(&arena, 100, 0, 2);
|
|
bloom1.AddConcurrently("hello");
|
|
bloom1.AddConcurrently("world");
|
|
ASSERT_TRUE(bloom1.MayContain("hello"));
|
|
ASSERT_TRUE(bloom1.MayContain("world"));
|
|
ASSERT_TRUE(!bloom1.MayContain("x"));
|
|
ASSERT_TRUE(!bloom1.MayContain("foo"));
|
|
|
|
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
|
|
bloom2.AddConcurrently("hello");
|
|
bloom2.AddConcurrently("world");
|
|
ASSERT_TRUE(bloom2.MayContain("hello"));
|
|
ASSERT_TRUE(bloom2.MayContain("world"));
|
|
ASSERT_TRUE(!bloom2.MayContain("x"));
|
|
ASSERT_TRUE(!bloom2.MayContain("foo"));
|
|
}
|
|
|
|
static uint32_t NextNum(uint32_t num) {
|
|
if (num < 10) {
|
|
num += 1;
|
|
} else if (num < 100) {
|
|
num += 10;
|
|
} else if (num < 1000) {
|
|
num += 100;
|
|
} else {
|
|
num += 1000;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, VaryingLengths) {
|
|
char buffer[sizeof(uint64_t)];
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
int mediocre_filters = 0;
|
|
int good_filters = 0;
|
|
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
|
|
|
|
fprintf(stderr, "bits_per_key: %d num_probes: %d\n", FLAGS_bits_per_key,
|
|
num_probes);
|
|
|
|
for (uint32_t enable_locality = 0; enable_locality < 2; ++enable_locality) {
|
|
for (uint32_t num = 1; num <= 10000; num = NextNum(num)) {
|
|
uint32_t bloom_bits = 0;
|
|
Arena arena;
|
|
if (enable_locality == 0) {
|
|
bloom_bits = std::max(num * FLAGS_bits_per_key, 64U);
|
|
} else {
|
|
bloom_bits = std::max(num * FLAGS_bits_per_key,
|
|
enable_locality * CACHE_LINE_SIZE * 8);
|
|
}
|
|
DynamicBloom bloom(&arena, bloom_bits, enable_locality, num_probes);
|
|
for (uint64_t i = 0; i < num; i++) {
|
|
bloom.Add(Key(i, buffer));
|
|
ASSERT_TRUE(bloom.MayContain(Key(i, buffer)));
|
|
}
|
|
|
|
// All added keys must match
|
|
for (uint64_t i = 0; i < num; i++) {
|
|
ASSERT_TRUE(bloom.MayContain(Key(i, buffer))) << "Num " << num
|
|
<< "; key " << i;
|
|
}
|
|
|
|
// Check false positive rate
|
|
|
|
int result = 0;
|
|
for (uint64_t i = 0; i < 10000; i++) {
|
|
if (bloom.MayContain(Key(i + 1000000000, buffer))) {
|
|
result++;
|
|
}
|
|
}
|
|
double rate = result / 10000.0;
|
|
|
|
fprintf(stderr,
|
|
"False positives: %5.2f%% @ num = %6u, bloom_bits = %6u, "
|
|
"enable locality?%u\n",
|
|
rate * 100.0, num, bloom_bits, enable_locality);
|
|
|
|
if (rate > 0.0125)
|
|
mediocre_filters++; // Allowed, but not too often
|
|
else
|
|
good_filters++;
|
|
}
|
|
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters,
|
|
mediocre_filters);
|
|
ASSERT_LE(mediocre_filters, good_filters / 5);
|
|
}
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, perf) {
|
|
StopWatchNano timer(Env::Default());
|
|
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
|
|
|
|
if (!FLAGS_enable_perf) {
|
|
return;
|
|
}
|
|
|
|
for (uint32_t m = 1; m <= 8; ++m) {
|
|
Arena arena;
|
|
const uint32_t num_keys = m * 8 * 1024 * 1024;
|
|
fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);
|
|
|
|
DynamicBloom std_bloom(&arena, num_keys * 10, 0, num_probes);
|
|
|
|
timer.Start();
|
|
for (uint64_t i = 1; i <= num_keys; ++i) {
|
|
std_bloom.Add(Slice(reinterpret_cast<const char*>(&i), 8));
|
|
}
|
|
|
|
uint64_t elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr, "standard bloom, avg add latency %" PRIu64 "\n",
|
|
elapsed / num_keys);
|
|
|
|
uint32_t count = 0;
|
|
timer.Start();
|
|
for (uint64_t i = 1; i <= num_keys; ++i) {
|
|
if (std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8))) {
|
|
++count;
|
|
}
|
|
}
|
|
ASSERT_EQ(count, num_keys);
|
|
elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr, "standard bloom, avg query latency %" PRIu64 "\n",
|
|
elapsed / count);
|
|
|
|
// Locality enabled version
|
|
DynamicBloom blocked_bloom(&arena, num_keys * 10, 1, num_probes);
|
|
|
|
timer.Start();
|
|
for (uint64_t i = 1; i <= num_keys; ++i) {
|
|
blocked_bloom.Add(Slice(reinterpret_cast<const char*>(&i), 8));
|
|
}
|
|
|
|
elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr,
|
|
"blocked bloom(enable locality), avg add latency %" PRIu64 "\n",
|
|
elapsed / num_keys);
|
|
|
|
count = 0;
|
|
timer.Start();
|
|
for (uint64_t i = 1; i <= num_keys; ++i) {
|
|
if (blocked_bloom.MayContain(
|
|
Slice(reinterpret_cast<const char*>(&i), 8))) {
|
|
++count;
|
|
}
|
|
}
|
|
|
|
elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr,
|
|
"blocked bloom(enable locality), avg query latency %" PRIu64 "\n",
|
|
elapsed / count);
|
|
ASSERT_TRUE(count == num_keys);
|
|
}
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, concurrent_with_perf) {
|
|
StopWatchNano timer(Env::Default());
|
|
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
|
|
|
|
uint32_t m_limit = FLAGS_enable_perf ? 8 : 1;
|
|
uint32_t locality_limit = FLAGS_enable_perf ? 1 : 0;
|
|
|
|
uint32_t num_threads = 4;
|
|
std::vector<std::thread> threads;
|
|
|
|
for (uint32_t m = 1; m <= m_limit; ++m) {
|
|
for (uint32_t locality = 0; locality <= locality_limit; ++locality) {
|
|
Arena arena;
|
|
const uint32_t num_keys = m * 8 * 1024 * 1024;
|
|
fprintf(stderr, "testing %" PRIu32 "M keys with %" PRIu32 " locality\n",
|
|
m * 8, locality);
|
|
|
|
DynamicBloom std_bloom(&arena, num_keys * 10, locality, num_probes);
|
|
|
|
timer.Start();
|
|
|
|
auto adder = [&](size_t t) {
|
|
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
|
|
std_bloom.AddConcurrently(
|
|
Slice(reinterpret_cast<const char*>(&i), 8));
|
|
}
|
|
};
|
|
for (size_t t = 0; t < num_threads; ++t) {
|
|
// TSAN currently complains of a race between an allocation
|
|
// made bythis race and the eventual shutdown of the thread.
|
|
// It is a false positive.
|
|
threads.emplace_back(adder, t);
|
|
}
|
|
while (threads.size() > 0) {
|
|
threads.back().join();
|
|
threads.pop_back();
|
|
}
|
|
|
|
uint64_t elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr, "standard bloom, avg parallel add latency %" PRIu64
|
|
" nanos/key\n",
|
|
elapsed / num_keys);
|
|
|
|
timer.Start();
|
|
|
|
auto hitter = [&](size_t t) {
|
|
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
|
|
bool f =
|
|
std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8));
|
|
ASSERT_TRUE(f);
|
|
}
|
|
};
|
|
for (size_t t = 0; t < num_threads; ++t) {
|
|
threads.emplace_back(hitter, t);
|
|
}
|
|
while (threads.size() > 0) {
|
|
threads.back().join();
|
|
threads.pop_back();
|
|
}
|
|
|
|
elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr, "standard bloom, avg parallel hit latency %" PRIu64
|
|
" nanos/key\n",
|
|
elapsed / num_keys);
|
|
|
|
timer.Start();
|
|
|
|
std::atomic<uint32_t> false_positives(0);
|
|
auto misser = [&](size_t t) {
|
|
for (uint64_t i = num_keys + 1 + t; i <= 2 * num_keys;
|
|
i += num_threads) {
|
|
bool f =
|
|
std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8));
|
|
if (f) {
|
|
++false_positives;
|
|
}
|
|
}
|
|
};
|
|
for (size_t t = 0; t < num_threads; ++t) {
|
|
threads.emplace_back(misser, t);
|
|
}
|
|
while (threads.size() > 0) {
|
|
threads.back().join();
|
|
threads.pop_back();
|
|
}
|
|
|
|
elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr, "standard bloom, avg parallel miss latency %" PRIu64
|
|
" nanos/key, %f%% false positive rate\n",
|
|
elapsed / num_keys, false_positives.load() * 100.0 / num_keys);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace rocksdb
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|
|
#endif // GFLAGS
|