mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-30 13:41:46 +00:00
f1b9f804e9
Summary: Add options.compaction_pri, which specifies the policy about which file to compact first. kCompactionPriByLargestSeq will compact oldest files first. Verified the behavior in db_bench but did not write unit tests yet. Also need to make it settable through option string and dynamically changeable. Test Plan: Will write unit tests Reviewers: igor, rven, anthony, kradhakrishnan, IslamAbdelRahman, yhchiang, MarkCallaghan Reviewed By: yhchiang Subscribers: leveldb, dhruba Differential Revision: https://reviews.facebook.net/D45951
1753 lines
63 KiB
C++
1753 lines
63 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction_picker.h"
|
|
|
|
#ifndef __STDC_FORMAT_MACROS
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <inttypes.h>
|
|
#include <limits>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "db/column_family.h"
|
|
#include "db/filename.h"
|
|
#include "util/log_buffer.h"
|
|
#include "util/random.h"
|
|
#include "util/statistics.h"
|
|
#include "util/string_util.h"
|
|
#include "util/sync_point.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
namespace {
|
|
uint64_t TotalCompensatedFileSize(const std::vector<FileMetaData*>& files) {
|
|
uint64_t sum = 0;
|
|
for (size_t i = 0; i < files.size() && files[i]; i++) {
|
|
sum += files[i]->compensated_file_size;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
// Universal compaction is not supported in ROCKSDB_LITE
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
// Used in universal compaction when trivial move is enabled.
|
|
// This structure is used for the construction of min heap
|
|
// that contains the file meta data, the level of the file
|
|
// and the index of the file in that level
|
|
|
|
struct InputFileInfo {
|
|
InputFileInfo() : f(nullptr) {}
|
|
|
|
FileMetaData* f;
|
|
size_t level;
|
|
size_t index;
|
|
};
|
|
|
|
// Used in universal compaction when trivial move is enabled.
|
|
// This comparator is used for the construction of min heap
|
|
// based on the smallest key of the file.
|
|
struct UserKeyComparator {
|
|
explicit UserKeyComparator(const Comparator* ucmp) { ucmp_ = ucmp; }
|
|
|
|
bool operator()(InputFileInfo i1, InputFileInfo i2) const {
|
|
return (ucmp_->Compare(i1.f->smallest.user_key(),
|
|
i2.f->smallest.user_key()) > 0);
|
|
}
|
|
|
|
private:
|
|
const Comparator* ucmp_;
|
|
};
|
|
|
|
typedef std::priority_queue<InputFileInfo, std::vector<InputFileInfo>,
|
|
UserKeyComparator> SmallestKeyHeap;
|
|
|
|
// This function creates the heap that is used to find if the files are
|
|
// overlapping during universal compaction when the allow_trivial_move
|
|
// is set.
|
|
SmallestKeyHeap create_level_heap(Compaction* c, const Comparator* ucmp) {
|
|
SmallestKeyHeap smallest_key_priority_q =
|
|
SmallestKeyHeap(UserKeyComparator(ucmp));
|
|
|
|
InputFileInfo input_file;
|
|
|
|
for (size_t l = 0; l < c->num_input_levels(); l++) {
|
|
if (c->num_input_files(l) != 0) {
|
|
if (l == 0 && c->start_level() == 0) {
|
|
for (size_t i = 0; i < c->num_input_files(0); i++) {
|
|
input_file.f = c->input(0, i);
|
|
input_file.level = 0;
|
|
input_file.index = i;
|
|
smallest_key_priority_q.push(std::move(input_file));
|
|
}
|
|
} else {
|
|
input_file.f = c->input(l, 0);
|
|
input_file.level = l;
|
|
input_file.index = 0;
|
|
smallest_key_priority_q.push(std::move(input_file));
|
|
}
|
|
}
|
|
}
|
|
return smallest_key_priority_q;
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
} // anonymous namespace
|
|
|
|
// Determine compression type, based on user options, level of the output
|
|
// file and whether compression is disabled.
|
|
// If enable_compression is false, then compression is always disabled no
|
|
// matter what the values of the other two parameters are.
|
|
// Otherwise, the compression type is determined based on options and level.
|
|
CompressionType GetCompressionType(const ImmutableCFOptions& ioptions,
|
|
int level, int base_level,
|
|
const bool enable_compression) {
|
|
if (!enable_compression) {
|
|
// disable compression
|
|
return kNoCompression;
|
|
}
|
|
// If the use has specified a different compression level for each level,
|
|
// then pick the compression for that level.
|
|
if (!ioptions.compression_per_level.empty()) {
|
|
assert(level == 0 || level >= base_level);
|
|
int idx = (level == 0) ? 0 : level - base_level + 1;
|
|
|
|
const int n = static_cast<int>(ioptions.compression_per_level.size()) - 1;
|
|
// It is possible for level_ to be -1; in that case, we use level
|
|
// 0's compression. This occurs mostly in backwards compatibility
|
|
// situations when the builder doesn't know what level the file
|
|
// belongs to. Likewise, if level is beyond the end of the
|
|
// specified compression levels, use the last value.
|
|
return ioptions.compression_per_level[std::max(0, std::min(idx, n))];
|
|
} else {
|
|
return ioptions.compression;
|
|
}
|
|
}
|
|
|
|
CompactionPicker::CompactionPicker(const ImmutableCFOptions& ioptions,
|
|
const InternalKeyComparator* icmp)
|
|
: ioptions_(ioptions), icmp_(icmp) {}
|
|
|
|
CompactionPicker::~CompactionPicker() {}
|
|
|
|
// Delete this compaction from the list of running compactions.
|
|
void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) {
|
|
if (c->start_level() == 0) {
|
|
level0_compactions_in_progress_.erase(c);
|
|
}
|
|
if (!status.ok()) {
|
|
c->ResetNextCompactionIndex();
|
|
}
|
|
}
|
|
|
|
void CompactionPicker::GetRange(const CompactionInputFiles& inputs,
|
|
InternalKey* smallest, InternalKey* largest) {
|
|
const int level = inputs.level;
|
|
assert(!inputs.empty());
|
|
smallest->Clear();
|
|
largest->Clear();
|
|
|
|
if (level == 0) {
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
FileMetaData* f = inputs[i];
|
|
if (i == 0) {
|
|
*smallest = f->smallest;
|
|
*largest = f->largest;
|
|
} else {
|
|
if (icmp_->Compare(f->smallest, *smallest) < 0) {
|
|
*smallest = f->smallest;
|
|
}
|
|
if (icmp_->Compare(f->largest, *largest) > 0) {
|
|
*largest = f->largest;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
*smallest = inputs[0]->smallest;
|
|
*largest = inputs[inputs.size() - 1]->largest;
|
|
}
|
|
}
|
|
|
|
void CompactionPicker::GetRange(const CompactionInputFiles& inputs1,
|
|
const CompactionInputFiles& inputs2,
|
|
InternalKey* smallest, InternalKey* largest) {
|
|
assert(!inputs1.empty() || !inputs2.empty());
|
|
if (inputs1.empty()) {
|
|
GetRange(inputs2, smallest, largest);
|
|
} else if (inputs2.empty()) {
|
|
GetRange(inputs1, smallest, largest);
|
|
} else {
|
|
InternalKey smallest1, smallest2, largest1, largest2;
|
|
GetRange(inputs1, &smallest1, &largest1);
|
|
GetRange(inputs2, &smallest2, &largest2);
|
|
*smallest = icmp_->Compare(smallest1, smallest2) < 0 ?
|
|
smallest1 : smallest2;
|
|
*largest = icmp_->Compare(largest1, largest2) < 0 ?
|
|
largest2 : largest1;
|
|
}
|
|
}
|
|
|
|
bool CompactionPicker::ExpandWhileOverlapping(const std::string& cf_name,
|
|
VersionStorageInfo* vstorage,
|
|
CompactionInputFiles* inputs) {
|
|
// This isn't good compaction
|
|
assert(!inputs->empty());
|
|
|
|
const int level = inputs->level;
|
|
// GetOverlappingInputs will always do the right thing for level-0.
|
|
// So we don't need to do any expansion if level == 0.
|
|
if (level == 0) {
|
|
return true;
|
|
}
|
|
|
|
InternalKey smallest, largest;
|
|
|
|
// Keep expanding inputs until we are sure that there is a "clean cut"
|
|
// boundary between the files in input and the surrounding files.
|
|
// This will ensure that no parts of a key are lost during compaction.
|
|
int hint_index = -1;
|
|
size_t old_size;
|
|
do {
|
|
old_size = inputs->size();
|
|
GetRange(*inputs, &smallest, &largest);
|
|
inputs->clear();
|
|
vstorage->GetOverlappingInputs(level, &smallest, &largest, &inputs->files,
|
|
hint_index, &hint_index);
|
|
} while (inputs->size() > old_size);
|
|
|
|
// we started off with inputs non-empty and the previous loop only grew
|
|
// inputs. thus, inputs should be non-empty here
|
|
assert(!inputs->empty());
|
|
|
|
// If, after the expansion, there are files that are already under
|
|
// compaction, then we must drop/cancel this compaction.
|
|
if (FilesInCompaction(inputs->files)) {
|
|
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
|
|
"[%s] ExpandWhileOverlapping() failure because some of the necessary"
|
|
" compaction input files are currently being compacted.",
|
|
cf_name.c_str());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if any one of specified files are being compacted
|
|
bool CompactionPicker::FilesInCompaction(
|
|
const std::vector<FileMetaData*>& files) {
|
|
for (unsigned int i = 0; i < files.size(); i++) {
|
|
if (files[i]->being_compacted) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Compaction* CompactionPicker::FormCompaction(
|
|
const CompactionOptions& compact_options,
|
|
const std::vector<CompactionInputFiles>& input_files, int output_level,
|
|
VersionStorageInfo* vstorage, const MutableCFOptions& mutable_cf_options,
|
|
uint32_t output_path_id) const {
|
|
uint64_t max_grandparent_overlap_bytes =
|
|
output_level + 1 < vstorage->num_levels() ?
|
|
mutable_cf_options.MaxGrandParentOverlapBytes(output_level + 1) :
|
|
std::numeric_limits<uint64_t>::max();
|
|
assert(input_files.size());
|
|
return new Compaction(
|
|
vstorage, mutable_cf_options, input_files, output_level,
|
|
compact_options.output_file_size_limit, max_grandparent_overlap_bytes,
|
|
output_path_id, compact_options.compression, /* grandparents */ {}, true);
|
|
}
|
|
|
|
Status CompactionPicker::GetCompactionInputsFromFileNumbers(
|
|
std::vector<CompactionInputFiles>* input_files,
|
|
std::unordered_set<uint64_t>* input_set,
|
|
const VersionStorageInfo* vstorage,
|
|
const CompactionOptions& compact_options) const {
|
|
if (input_set->size() == 0U) {
|
|
return Status::InvalidArgument(
|
|
"Compaction must include at least one file.");
|
|
}
|
|
assert(input_files);
|
|
|
|
std::vector<CompactionInputFiles> matched_input_files;
|
|
matched_input_files.resize(vstorage->num_levels());
|
|
int first_non_empty_level = -1;
|
|
int last_non_empty_level = -1;
|
|
// TODO(yhchiang): use a lazy-initialized mapping from
|
|
// file_number to FileMetaData in Version.
|
|
for (int level = 0; level < vstorage->num_levels(); ++level) {
|
|
for (auto file : vstorage->LevelFiles(level)) {
|
|
auto iter = input_set->find(file->fd.GetNumber());
|
|
if (iter != input_set->end()) {
|
|
matched_input_files[level].files.push_back(file);
|
|
input_set->erase(iter);
|
|
last_non_empty_level = level;
|
|
if (first_non_empty_level == -1) {
|
|
first_non_empty_level = level;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!input_set->empty()) {
|
|
std::string message(
|
|
"Cannot find matched SST files for the following file numbers:");
|
|
for (auto fn : *input_set) {
|
|
message += " ";
|
|
message += ToString(fn);
|
|
}
|
|
return Status::InvalidArgument(message);
|
|
}
|
|
|
|
for (int level = first_non_empty_level;
|
|
level <= last_non_empty_level; ++level) {
|
|
matched_input_files[level].level = level;
|
|
input_files->emplace_back(std::move(matched_input_files[level]));
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
|
|
// Returns true if any one of the parent files are being compacted
|
|
bool CompactionPicker::RangeInCompaction(VersionStorageInfo* vstorage,
|
|
const InternalKey* smallest,
|
|
const InternalKey* largest, int level,
|
|
int* level_index) {
|
|
std::vector<FileMetaData*> inputs;
|
|
assert(level < NumberLevels());
|
|
|
|
vstorage->GetOverlappingInputs(level, smallest, largest, &inputs,
|
|
*level_index, level_index);
|
|
return FilesInCompaction(inputs);
|
|
}
|
|
|
|
// Populates the set of inputs of all other levels that overlap with the
|
|
// start level.
|
|
// Now we assume all levels except start level and output level are empty.
|
|
// Will also attempt to expand "start level" if that doesn't expand
|
|
// "output level" or cause "level" to include a file for compaction that has an
|
|
// overlapping user-key with another file.
|
|
// REQUIRES: input_level and output_level are different
|
|
// REQUIRES: inputs->empty() == false
|
|
// Returns false if files on parent level are currently in compaction, which
|
|
// means that we can't compact them
|
|
bool CompactionPicker::SetupOtherInputs(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, CompactionInputFiles* inputs,
|
|
CompactionInputFiles* output_level_inputs, int* parent_index,
|
|
int base_index) {
|
|
assert(!inputs->empty());
|
|
assert(output_level_inputs->empty());
|
|
const int input_level = inputs->level;
|
|
const int output_level = output_level_inputs->level;
|
|
assert(input_level != output_level);
|
|
|
|
// For now, we only support merging two levels, start level and output level.
|
|
// We need to assert other levels are empty.
|
|
for (int l = input_level + 1; l < output_level; l++) {
|
|
assert(vstorage->NumLevelFiles(l) == 0);
|
|
}
|
|
|
|
InternalKey smallest, largest;
|
|
|
|
// Get the range one last time.
|
|
GetRange(*inputs, &smallest, &largest);
|
|
|
|
// Populate the set of next-level files (inputs_GetOutputLevelInputs()) to
|
|
// include in compaction
|
|
vstorage->GetOverlappingInputs(output_level, &smallest, &largest,
|
|
&output_level_inputs->files, *parent_index,
|
|
parent_index);
|
|
|
|
if (FilesInCompaction(output_level_inputs->files)) {
|
|
return false;
|
|
}
|
|
|
|
// See if we can further grow the number of inputs in "level" without
|
|
// changing the number of "level+1" files we pick up. We also choose NOT
|
|
// to expand if this would cause "level" to include some entries for some
|
|
// user key, while excluding other entries for the same user key. This
|
|
// can happen when one user key spans multiple files.
|
|
if (!output_level_inputs->empty()) {
|
|
CompactionInputFiles expanded0;
|
|
expanded0.level = input_level;
|
|
// Get entire range covered by compaction
|
|
InternalKey all_start, all_limit;
|
|
GetRange(*inputs, *output_level_inputs, &all_start, &all_limit);
|
|
|
|
vstorage->GetOverlappingInputs(input_level, &all_start, &all_limit,
|
|
&expanded0.files, base_index, nullptr);
|
|
const uint64_t inputs0_size = TotalCompensatedFileSize(inputs->files);
|
|
const uint64_t inputs1_size =
|
|
TotalCompensatedFileSize(output_level_inputs->files);
|
|
const uint64_t expanded0_size = TotalCompensatedFileSize(expanded0.files);
|
|
uint64_t limit =
|
|
mutable_cf_options.ExpandedCompactionByteSizeLimit(input_level);
|
|
if (expanded0.size() > inputs->size() &&
|
|
inputs1_size + expanded0_size < limit &&
|
|
!FilesInCompaction(expanded0.files) &&
|
|
!vstorage->HasOverlappingUserKey(&expanded0.files, input_level)) {
|
|
InternalKey new_start, new_limit;
|
|
GetRange(expanded0, &new_start, &new_limit);
|
|
std::vector<FileMetaData*> expanded1;
|
|
vstorage->GetOverlappingInputs(output_level, &new_start, &new_limit,
|
|
&expanded1, *parent_index, parent_index);
|
|
if (expanded1.size() == output_level_inputs->size() &&
|
|
!FilesInCompaction(expanded1)) {
|
|
Log(InfoLogLevel::INFO_LEVEL, ioptions_.info_log,
|
|
"[%s] Expanding@%d %" ROCKSDB_PRIszt "+%" ROCKSDB_PRIszt "(%" PRIu64
|
|
"+%" PRIu64 " bytes) to %" ROCKSDB_PRIszt "+%" ROCKSDB_PRIszt
|
|
" (%" PRIu64 "+%" PRIu64 "bytes)\n",
|
|
cf_name.c_str(), input_level, inputs->size(),
|
|
output_level_inputs->size(), inputs0_size, inputs1_size,
|
|
expanded0.size(), expanded1.size(), expanded0_size, inputs1_size);
|
|
smallest = new_start;
|
|
largest = new_limit;
|
|
inputs->files = expanded0.files;
|
|
output_level_inputs->files = expanded1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CompactionPicker::GetGrandparents(
|
|
VersionStorageInfo* vstorage, const CompactionInputFiles& inputs,
|
|
const CompactionInputFiles& output_level_inputs,
|
|
std::vector<FileMetaData*>* grandparents) {
|
|
InternalKey start, limit;
|
|
GetRange(inputs, output_level_inputs, &start, &limit);
|
|
// Compute the set of grandparent files that overlap this compaction
|
|
// (parent == level+1; grandparent == level+2)
|
|
if (output_level_inputs.level + 1 < NumberLevels()) {
|
|
vstorage->GetOverlappingInputs(output_level_inputs.level + 1, &start,
|
|
&limit, grandparents);
|
|
}
|
|
}
|
|
|
|
Compaction* CompactionPicker::CompactRange(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, int input_level, int output_level,
|
|
uint32_t output_path_id, const InternalKey* begin, const InternalKey* end,
|
|
InternalKey** compaction_end) {
|
|
// CompactionPickerFIFO has its own implementation of compact range
|
|
assert(ioptions_.compaction_style != kCompactionStyleFIFO);
|
|
|
|
if (input_level == ColumnFamilyData::kCompactAllLevels) {
|
|
assert(ioptions_.compaction_style == kCompactionStyleUniversal);
|
|
|
|
// Universal compaction with more than one level always compacts all the
|
|
// files together to the last level.
|
|
assert(vstorage->num_levels() > 1);
|
|
// DBImpl::CompactRange() set output level to be the last level
|
|
assert(output_level == vstorage->num_levels() - 1);
|
|
// DBImpl::RunManualCompaction will make full range for universal compaction
|
|
assert(begin == nullptr);
|
|
assert(end == nullptr);
|
|
*compaction_end = nullptr;
|
|
|
|
int start_level = 0;
|
|
for (; start_level < vstorage->num_levels() &&
|
|
vstorage->NumLevelFiles(start_level) == 0;
|
|
start_level++) {
|
|
}
|
|
if (start_level == vstorage->num_levels()) {
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> inputs(vstorage->num_levels() -
|
|
start_level);
|
|
for (int level = start_level; level < vstorage->num_levels(); level++) {
|
|
inputs[level - start_level].level = level;
|
|
auto& files = inputs[level - start_level].files;
|
|
for (FileMetaData* f : vstorage->LevelFiles(level)) {
|
|
files.push_back(f);
|
|
}
|
|
}
|
|
return new Compaction(
|
|
vstorage, mutable_cf_options, std::move(inputs), output_level,
|
|
mutable_cf_options.MaxFileSizeForLevel(output_level),
|
|
/* max_grandparent_overlap_bytes */ LLONG_MAX, output_path_id,
|
|
GetCompressionType(ioptions_, output_level, 1),
|
|
/* grandparents */ {}, /* is manual */ true);
|
|
}
|
|
|
|
CompactionInputFiles inputs;
|
|
inputs.level = input_level;
|
|
bool covering_the_whole_range = true;
|
|
|
|
// All files are 'overlapping' in universal style compaction.
|
|
// We have to compact the entire range in one shot.
|
|
if (ioptions_.compaction_style == kCompactionStyleUniversal) {
|
|
begin = nullptr;
|
|
end = nullptr;
|
|
}
|
|
|
|
vstorage->GetOverlappingInputs(input_level, begin, end, &inputs.files);
|
|
if (inputs.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Avoid compacting too much in one shot in case the range is large.
|
|
// But we cannot do this for level-0 since level-0 files can overlap
|
|
// and we must not pick one file and drop another older file if the
|
|
// two files overlap.
|
|
if (input_level > 0) {
|
|
const uint64_t limit = mutable_cf_options.MaxFileSizeForLevel(input_level) *
|
|
mutable_cf_options.source_compaction_factor;
|
|
uint64_t total = 0;
|
|
for (size_t i = 0; i + 1 < inputs.size(); ++i) {
|
|
uint64_t s = inputs[i]->compensated_file_size;
|
|
total += s;
|
|
if (total >= limit) {
|
|
**compaction_end = inputs[i + 1]->smallest;
|
|
covering_the_whole_range = false;
|
|
inputs.files.resize(i + 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert(output_path_id < static_cast<uint32_t>(ioptions_.db_paths.size()));
|
|
|
|
if (ExpandWhileOverlapping(cf_name, vstorage, &inputs) == false) {
|
|
// manual compaction is currently single-threaded, so it should never
|
|
// happen that ExpandWhileOverlapping fails
|
|
assert(false);
|
|
return nullptr;
|
|
}
|
|
|
|
if (covering_the_whole_range) {
|
|
*compaction_end = nullptr;
|
|
}
|
|
|
|
CompactionInputFiles output_level_inputs;
|
|
if (output_level == ColumnFamilyData::kCompactToBaseLevel) {
|
|
assert(input_level == 0);
|
|
output_level = vstorage->base_level();
|
|
assert(output_level > 0);
|
|
}
|
|
output_level_inputs.level = output_level;
|
|
if (input_level != output_level) {
|
|
int parent_index = -1;
|
|
if (!SetupOtherInputs(cf_name, mutable_cf_options, vstorage, &inputs,
|
|
&output_level_inputs, &parent_index, -1)) {
|
|
// manual compaction is currently single-threaded, so it should never
|
|
// happen that SetupOtherInputs fails
|
|
assert(false);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> compaction_inputs({inputs});
|
|
if (!output_level_inputs.empty()) {
|
|
compaction_inputs.push_back(output_level_inputs);
|
|
}
|
|
|
|
std::vector<FileMetaData*> grandparents;
|
|
GetGrandparents(vstorage, inputs, output_level_inputs, &grandparents);
|
|
Compaction* compaction = new Compaction(
|
|
vstorage, mutable_cf_options, std::move(compaction_inputs), output_level,
|
|
mutable_cf_options.MaxFileSizeForLevel(output_level),
|
|
mutable_cf_options.MaxGrandParentOverlapBytes(input_level),
|
|
output_path_id,
|
|
GetCompressionType(ioptions_, output_level, vstorage->base_level()),
|
|
std::move(grandparents), /* is manual compaction */ true);
|
|
|
|
TEST_SYNC_POINT_CALLBACK("CompactionPicker::CompactRange:Return", compaction);
|
|
return compaction;
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
namespace {
|
|
// Test whether two files have overlapping key-ranges.
|
|
bool HaveOverlappingKeyRanges(
|
|
const Comparator* c,
|
|
const SstFileMetaData& a, const SstFileMetaData& b) {
|
|
if (c->Compare(a.smallestkey, b.smallestkey) >= 0) {
|
|
if (c->Compare(a.smallestkey, b.largestkey) <= 0) {
|
|
// b.smallestkey <= a.smallestkey <= b.largestkey
|
|
return true;
|
|
}
|
|
} else if (c->Compare(a.largestkey, b.smallestkey) >= 0) {
|
|
// a.smallestkey < b.smallestkey <= a.largestkey
|
|
return true;
|
|
}
|
|
if (c->Compare(a.largestkey, b.largestkey) <= 0) {
|
|
if (c->Compare(a.largestkey, b.smallestkey) >= 0) {
|
|
// b.smallestkey <= a.largestkey <= b.largestkey
|
|
return true;
|
|
}
|
|
} else if (c->Compare(a.smallestkey, b.largestkey) <= 0) {
|
|
// a.smallestkey <= b.largestkey < a.largestkey
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
} // namespace
|
|
|
|
Status CompactionPicker::SanitizeCompactionInputFilesForAllLevels(
|
|
std::unordered_set<uint64_t>* input_files,
|
|
const ColumnFamilyMetaData& cf_meta,
|
|
const int output_level) const {
|
|
auto& levels = cf_meta.levels;
|
|
auto comparator = icmp_->user_comparator();
|
|
|
|
// TODO(yhchiang): If there is any input files of L1 or up and there
|
|
// is at least one L0 files. All L0 files older than the L0 file needs
|
|
// to be included. Otherwise, it is a false conditoin
|
|
|
|
// TODO(yhchiang): add is_adjustable to CompactionOptions
|
|
|
|
// the smallest and largest key of the current compaction input
|
|
std::string smallestkey;
|
|
std::string largestkey;
|
|
// a flag for initializing smallest and largest key
|
|
bool is_first = false;
|
|
const int kNotFound = -1;
|
|
|
|
// For each level, it does the following things:
|
|
// 1. Find the first and the last compaction input files
|
|
// in the current level.
|
|
// 2. Include all files between the first and the last
|
|
// compaction input files.
|
|
// 3. Update the compaction key-range.
|
|
// 4. For all remaining levels, include files that have
|
|
// overlapping key-range with the compaction key-range.
|
|
for (int l = 0; l <= output_level; ++l) {
|
|
auto& current_files = levels[l].files;
|
|
int first_included = static_cast<int>(current_files.size());
|
|
int last_included = kNotFound;
|
|
|
|
// identify the first and the last compaction input files
|
|
// in the current level.
|
|
for (size_t f = 0; f < current_files.size(); ++f) {
|
|
if (input_files->find(TableFileNameToNumber(current_files[f].name)) !=
|
|
input_files->end()) {
|
|
first_included = std::min(first_included, static_cast<int>(f));
|
|
last_included = std::max(last_included, static_cast<int>(f));
|
|
if (is_first == false) {
|
|
smallestkey = current_files[f].smallestkey;
|
|
largestkey = current_files[f].largestkey;
|
|
is_first = true;
|
|
}
|
|
}
|
|
}
|
|
if (last_included == kNotFound) {
|
|
continue;
|
|
}
|
|
|
|
if (l != 0) {
|
|
// expend the compaction input of the current level if it
|
|
// has overlapping key-range with other non-compaction input
|
|
// files in the same level.
|
|
while (first_included > 0) {
|
|
if (comparator->Compare(
|
|
current_files[first_included - 1].largestkey,
|
|
current_files[first_included].smallestkey) < 0) {
|
|
break;
|
|
}
|
|
first_included--;
|
|
}
|
|
|
|
while (last_included < static_cast<int>(current_files.size()) - 1) {
|
|
if (comparator->Compare(
|
|
current_files[last_included + 1].smallestkey,
|
|
current_files[last_included].largestkey) > 0) {
|
|
break;
|
|
}
|
|
last_included++;
|
|
}
|
|
}
|
|
|
|
// include all files between the first and the last compaction input files.
|
|
for (int f = first_included; f <= last_included; ++f) {
|
|
if (current_files[f].being_compacted) {
|
|
return Status::Aborted(
|
|
"Necessary compaction input file " + current_files[f].name +
|
|
" is currently being compacted.");
|
|
}
|
|
input_files->insert(
|
|
TableFileNameToNumber(current_files[f].name));
|
|
}
|
|
|
|
// update smallest and largest key
|
|
if (l == 0) {
|
|
for (int f = first_included; f <= last_included; ++f) {
|
|
if (comparator->Compare(
|
|
smallestkey, current_files[f].smallestkey) > 0) {
|
|
smallestkey = current_files[f].smallestkey;
|
|
}
|
|
if (comparator->Compare(
|
|
largestkey, current_files[f].largestkey) < 0) {
|
|
largestkey = current_files[f].largestkey;
|
|
}
|
|
}
|
|
} else {
|
|
if (comparator->Compare(
|
|
smallestkey, current_files[first_included].smallestkey) > 0) {
|
|
smallestkey = current_files[first_included].smallestkey;
|
|
}
|
|
if (comparator->Compare(
|
|
largestkey, current_files[last_included].largestkey) < 0) {
|
|
largestkey = current_files[last_included].largestkey;
|
|
}
|
|
}
|
|
|
|
SstFileMetaData aggregated_file_meta;
|
|
aggregated_file_meta.smallestkey = smallestkey;
|
|
aggregated_file_meta.largestkey = largestkey;
|
|
|
|
// For all lower levels, include all overlapping files.
|
|
// We need to add overlapping files from the current level too because even
|
|
// if there no input_files in level l, we would still need to add files
|
|
// which overlap with the range containing the input_files in levels 0 to l
|
|
// Level 0 doesn't need to be handled this way because files are sorted by
|
|
// time and not by key
|
|
for (int m = std::max(l, 1); m <= output_level; ++m) {
|
|
for (auto& next_lv_file : levels[m].files) {
|
|
if (HaveOverlappingKeyRanges(
|
|
comparator, aggregated_file_meta, next_lv_file)) {
|
|
if (next_lv_file.being_compacted) {
|
|
return Status::Aborted(
|
|
"File " + next_lv_file.name +
|
|
" that has overlapping key range with one of the compaction "
|
|
" input file is currently being compacted.");
|
|
}
|
|
input_files->insert(
|
|
TableFileNameToNumber(next_lv_file.name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
Status CompactionPicker::SanitizeCompactionInputFiles(
|
|
std::unordered_set<uint64_t>* input_files,
|
|
const ColumnFamilyMetaData& cf_meta,
|
|
const int output_level) const {
|
|
assert(static_cast<int>(cf_meta.levels.size()) - 1 ==
|
|
cf_meta.levels[cf_meta.levels.size() - 1].level);
|
|
if (output_level >= static_cast<int>(cf_meta.levels.size())) {
|
|
return Status::InvalidArgument(
|
|
"Output level for column family " + cf_meta.name +
|
|
" must between [0, " +
|
|
ToString(cf_meta.levels[cf_meta.levels.size() - 1].level) +
|
|
"].");
|
|
}
|
|
|
|
if (output_level > MaxOutputLevel()) {
|
|
return Status::InvalidArgument(
|
|
"Exceed the maximum output level defined by "
|
|
"the current compaction algorithm --- " +
|
|
ToString(MaxOutputLevel()));
|
|
}
|
|
|
|
if (output_level < 0) {
|
|
return Status::InvalidArgument(
|
|
"Output level cannot be negative.");
|
|
}
|
|
|
|
if (input_files->size() == 0) {
|
|
return Status::InvalidArgument(
|
|
"A compaction must contain at least one file.");
|
|
}
|
|
|
|
Status s = SanitizeCompactionInputFilesForAllLevels(
|
|
input_files, cf_meta, output_level);
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
// for all input files, check whether the file number matches
|
|
// any currently-existing files.
|
|
for (auto file_num : *input_files) {
|
|
bool found = false;
|
|
for (auto level_meta : cf_meta.levels) {
|
|
for (auto file_meta : level_meta.files) {
|
|
if (file_num == TableFileNameToNumber(file_meta.name)) {
|
|
if (file_meta.being_compacted) {
|
|
return Status::Aborted(
|
|
"Specified compaction input file " +
|
|
MakeTableFileName("", file_num) +
|
|
" is already being compacted.");
|
|
}
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
return Status::InvalidArgument(
|
|
"Specified compaction input file " +
|
|
MakeTableFileName("", file_num) +
|
|
" does not exist in column family " + cf_meta.name + ".");
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
|
|
bool LevelCompactionPicker::NeedsCompaction(const VersionStorageInfo* vstorage)
|
|
const {
|
|
if (!vstorage->FilesMarkedForCompaction().empty()) {
|
|
return true;
|
|
}
|
|
for (int i = 0; i <= vstorage->MaxInputLevel(); i++) {
|
|
if (vstorage->CompactionScore(i) >= 1) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void LevelCompactionPicker::PickFilesMarkedForCompactionExperimental(
|
|
const std::string& cf_name, VersionStorageInfo* vstorage,
|
|
CompactionInputFiles* inputs, int* level, int* output_level) {
|
|
if (vstorage->FilesMarkedForCompaction().empty()) {
|
|
return;
|
|
}
|
|
|
|
auto continuation = [&](std::pair<int, FileMetaData*> level_file) {
|
|
// If it's being compacted it has nothing to do here.
|
|
// If this assert() fails that means that some function marked some
|
|
// files as being_compacted, but didn't call ComputeCompactionScore()
|
|
assert(!level_file.second->being_compacted);
|
|
*level = level_file.first;
|
|
*output_level = (*level == 0) ? vstorage->base_level() : *level + 1;
|
|
|
|
if (*level == 0 && !level0_compactions_in_progress_.empty()) {
|
|
return false;
|
|
}
|
|
|
|
inputs->files = {level_file.second};
|
|
inputs->level = *level;
|
|
return ExpandWhileOverlapping(cf_name, vstorage, inputs);
|
|
};
|
|
|
|
// take a chance on a random file first
|
|
Random64 rnd(/* seed */ reinterpret_cast<uint64_t>(vstorage));
|
|
size_t random_file_index = static_cast<size_t>(rnd.Uniform(
|
|
static_cast<uint64_t>(vstorage->FilesMarkedForCompaction().size())));
|
|
|
|
if (continuation(vstorage->FilesMarkedForCompaction()[random_file_index])) {
|
|
// found the compaction!
|
|
return;
|
|
}
|
|
|
|
for (auto& level_file : vstorage->FilesMarkedForCompaction()) {
|
|
if (continuation(level_file)) {
|
|
// found the compaction!
|
|
return;
|
|
}
|
|
}
|
|
inputs->files.clear();
|
|
}
|
|
|
|
Compaction* LevelCompactionPicker::PickCompaction(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
|
|
int level = -1;
|
|
int output_level = -1;
|
|
int parent_index = -1;
|
|
int base_index = -1;
|
|
CompactionInputFiles inputs;
|
|
double score = 0;
|
|
|
|
// Find the compactions by size on all levels.
|
|
for (int i = 0; i < NumberLevels() - 1; i++) {
|
|
score = vstorage->CompactionScore(i);
|
|
level = vstorage->CompactionScoreLevel(i);
|
|
assert(i == 0 || score <= vstorage->CompactionScore(i - 1));
|
|
if (score >= 1) {
|
|
output_level = (level == 0) ? vstorage->base_level() : level + 1;
|
|
if (PickCompactionBySize(vstorage, level, output_level, &inputs,
|
|
&parent_index, &base_index) &&
|
|
ExpandWhileOverlapping(cf_name, vstorage, &inputs)) {
|
|
// found the compaction!
|
|
break;
|
|
} else {
|
|
// didn't find the compaction, clear the inputs
|
|
inputs.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool is_manual = false;
|
|
// if we didn't find a compaction, check if there are any files marked for
|
|
// compaction
|
|
if (inputs.empty()) {
|
|
is_manual = true;
|
|
parent_index = base_index = -1;
|
|
PickFilesMarkedForCompactionExperimental(cf_name, vstorage, &inputs, &level,
|
|
&output_level);
|
|
}
|
|
if (inputs.empty()) {
|
|
return nullptr;
|
|
}
|
|
assert(level >= 0 && output_level >= 0);
|
|
|
|
// Two level 0 compaction won't run at the same time, so don't need to worry
|
|
// about files on level 0 being compacted.
|
|
if (level == 0) {
|
|
assert(level0_compactions_in_progress_.empty());
|
|
InternalKey smallest, largest;
|
|
GetRange(inputs, &smallest, &largest);
|
|
// Note that the next call will discard the file we placed in
|
|
// c->inputs_[0] earlier and replace it with an overlapping set
|
|
// which will include the picked file.
|
|
inputs.files.clear();
|
|
vstorage->GetOverlappingInputs(0, &smallest, &largest, &inputs.files);
|
|
|
|
// If we include more L0 files in the same compaction run it can
|
|
// cause the 'smallest' and 'largest' key to get extended to a
|
|
// larger range. So, re-invoke GetRange to get the new key range
|
|
GetRange(inputs, &smallest, &largest);
|
|
if (RangeInCompaction(vstorage, &smallest, &largest, output_level,
|
|
&parent_index)) {
|
|
return nullptr;
|
|
}
|
|
assert(!inputs.files.empty());
|
|
}
|
|
|
|
// Setup input files from output level
|
|
CompactionInputFiles output_level_inputs;
|
|
output_level_inputs.level = output_level;
|
|
if (!SetupOtherInputs(cf_name, mutable_cf_options, vstorage, &inputs,
|
|
&output_level_inputs, &parent_index, base_index)) {
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> compaction_inputs({inputs});
|
|
if (!output_level_inputs.empty()) {
|
|
compaction_inputs.push_back(output_level_inputs);
|
|
}
|
|
|
|
std::vector<FileMetaData*> grandparents;
|
|
GetGrandparents(vstorage, inputs, output_level_inputs, &grandparents);
|
|
auto c = new Compaction(
|
|
vstorage, mutable_cf_options, std::move(compaction_inputs), output_level,
|
|
mutable_cf_options.MaxFileSizeForLevel(output_level),
|
|
mutable_cf_options.MaxGrandParentOverlapBytes(level),
|
|
GetPathId(ioptions_, mutable_cf_options, output_level),
|
|
GetCompressionType(ioptions_, output_level, vstorage->base_level()),
|
|
std::move(grandparents), is_manual, score);
|
|
|
|
// If it's level 0 compaction, make sure we don't execute any other level 0
|
|
// compactions in parallel
|
|
if (level == 0) {
|
|
level0_compactions_in_progress_.insert(c);
|
|
}
|
|
|
|
// Creating a compaction influences the compaction score because the score
|
|
// takes running compactions into account (by skipping files that are already
|
|
// being compacted). Since we just changed compaction score, we recalculate it
|
|
// here
|
|
{ // this piece of code recomputes compaction score
|
|
CompactionOptionsFIFO dummy_compaction_options_fifo;
|
|
vstorage->ComputeCompactionScore(mutable_cf_options,
|
|
dummy_compaction_options_fifo);
|
|
}
|
|
|
|
TEST_SYNC_POINT_CALLBACK("LevelCompactionPicker::PickCompaction:Return", c);
|
|
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Find the optimal path to place a file
|
|
* Given a level, finds the path where levels up to it will fit in levels
|
|
* up to and including this path
|
|
*/
|
|
uint32_t LevelCompactionPicker::GetPathId(
|
|
const ImmutableCFOptions& ioptions,
|
|
const MutableCFOptions& mutable_cf_options, int level) {
|
|
uint32_t p = 0;
|
|
assert(!ioptions.db_paths.empty());
|
|
|
|
// size remaining in the most recent path
|
|
uint64_t current_path_size = ioptions.db_paths[0].target_size;
|
|
|
|
uint64_t level_size;
|
|
int cur_level = 0;
|
|
|
|
level_size = mutable_cf_options.max_bytes_for_level_base;
|
|
|
|
// Last path is the fallback
|
|
while (p < ioptions.db_paths.size() - 1) {
|
|
if (level_size <= current_path_size) {
|
|
if (cur_level == level) {
|
|
// Does desired level fit in this path?
|
|
return p;
|
|
} else {
|
|
current_path_size -= level_size;
|
|
level_size *= mutable_cf_options.max_bytes_for_level_multiplier;
|
|
cur_level++;
|
|
continue;
|
|
}
|
|
}
|
|
p++;
|
|
current_path_size = ioptions.db_paths[p].target_size;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
bool LevelCompactionPicker::PickCompactionBySize(VersionStorageInfo* vstorage,
|
|
int level, int output_level,
|
|
CompactionInputFiles* inputs,
|
|
int* parent_index,
|
|
int* base_index) {
|
|
// level 0 files are overlapping. So we cannot pick more
|
|
// than one concurrent compactions at this level. This
|
|
// could be made better by looking at key-ranges that are
|
|
// being compacted at level 0.
|
|
if (level == 0 && !level0_compactions_in_progress_.empty()) {
|
|
return false;
|
|
}
|
|
|
|
inputs->clear();
|
|
|
|
assert(level >= 0);
|
|
|
|
// Pick the largest file in this level that is not already
|
|
// being compacted
|
|
const std::vector<int>& file_size = vstorage->FilesByCompactionPri(level);
|
|
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(level);
|
|
|
|
// record the first file that is not yet compacted
|
|
int nextIndex = -1;
|
|
|
|
for (unsigned int i = vstorage->NextCompactionIndex(level);
|
|
i < file_size.size(); i++) {
|
|
int index = file_size[i];
|
|
auto* f = level_files[index];
|
|
|
|
// do not pick a file to compact if it is being compacted
|
|
// from n-1 level.
|
|
if (f->being_compacted) {
|
|
continue;
|
|
}
|
|
|
|
// remember the startIndex for the next call to PickCompaction
|
|
if (nextIndex == -1) {
|
|
nextIndex = i;
|
|
}
|
|
|
|
// Do not pick this file if its parents at level+1 are being compacted.
|
|
// Maybe we can avoid redoing this work in SetupOtherInputs
|
|
*parent_index = -1;
|
|
if (RangeInCompaction(vstorage, &f->smallest, &f->largest, output_level,
|
|
parent_index)) {
|
|
continue;
|
|
}
|
|
inputs->files.push_back(f);
|
|
inputs->level = level;
|
|
*base_index = index;
|
|
break;
|
|
}
|
|
|
|
// store where to start the iteration in the next call to PickCompaction
|
|
vstorage->SetNextCompactionIndex(level, nextIndex);
|
|
|
|
return inputs->size() > 0;
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
bool UniversalCompactionPicker::NeedsCompaction(
|
|
const VersionStorageInfo* vstorage) const {
|
|
const int kLevel0 = 0;
|
|
return vstorage->CompactionScore(kLevel0) >= 1;
|
|
}
|
|
|
|
void UniversalCompactionPicker::SortedRun::Dump(char* out_buf,
|
|
size_t out_buf_size,
|
|
bool print_path) const {
|
|
if (level == 0) {
|
|
assert(file != nullptr);
|
|
if (file->fd.GetPathId() == 0 || !print_path) {
|
|
snprintf(out_buf, out_buf_size, "file %" PRIu64, file->fd.GetNumber());
|
|
} else {
|
|
snprintf(out_buf, out_buf_size, "file %" PRIu64
|
|
"(path "
|
|
"%" PRIu32 ")",
|
|
file->fd.GetNumber(), file->fd.GetPathId());
|
|
}
|
|
} else {
|
|
snprintf(out_buf, out_buf_size, "level %d", level);
|
|
}
|
|
}
|
|
|
|
void UniversalCompactionPicker::SortedRun::DumpSizeInfo(
|
|
char* out_buf, size_t out_buf_size, int sorted_run_count) const {
|
|
if (level == 0) {
|
|
assert(file != nullptr);
|
|
snprintf(out_buf, out_buf_size,
|
|
"file %" PRIu64
|
|
"[%d] "
|
|
"with size %" PRIu64 " (compensated size %" PRIu64 ")",
|
|
file->fd.GetNumber(), sorted_run_count, file->fd.GetFileSize(),
|
|
file->compensated_file_size);
|
|
} else {
|
|
snprintf(out_buf, out_buf_size,
|
|
"level %d[%d] "
|
|
"with size %" PRIu64 " (compensated size %" PRIu64 ")",
|
|
level, sorted_run_count, size, compensated_file_size);
|
|
}
|
|
}
|
|
|
|
std::vector<UniversalCompactionPicker::SortedRun>
|
|
UniversalCompactionPicker::CalculateSortedRuns(
|
|
const VersionStorageInfo& vstorage, const ImmutableCFOptions& ioptions) {
|
|
std::vector<UniversalCompactionPicker::SortedRun> ret;
|
|
for (FileMetaData* f : vstorage.LevelFiles(0)) {
|
|
ret.emplace_back(0, f, f->fd.GetFileSize(), f->compensated_file_size,
|
|
f->being_compacted);
|
|
}
|
|
for (int level = 1; level < vstorage.num_levels(); level++) {
|
|
uint64_t total_compensated_size = 0U;
|
|
uint64_t total_size = 0U;
|
|
bool being_compacted = false;
|
|
bool is_first = true;
|
|
for (FileMetaData* f : vstorage.LevelFiles(level)) {
|
|
total_compensated_size += f->compensated_file_size;
|
|
total_size += f->fd.GetFileSize();
|
|
if (ioptions.compaction_options_universal.allow_trivial_move == true) {
|
|
if (f->being_compacted) {
|
|
being_compacted = f->being_compacted;
|
|
}
|
|
} else {
|
|
// Compaction always includes all files for a non-zero level, so for a
|
|
// non-zero level, all the files should share the same being_compacted
|
|
// value.
|
|
// This assumption is only valid when
|
|
// ioptions.compaction_options_universal.allow_trivial_move is false
|
|
assert(is_first || f->being_compacted == being_compacted);
|
|
}
|
|
if (is_first) {
|
|
being_compacted = f->being_compacted;
|
|
is_first = false;
|
|
}
|
|
}
|
|
if (total_compensated_size > 0) {
|
|
ret.emplace_back(level, nullptr, total_size, total_compensated_size,
|
|
being_compacted);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
namespace {
|
|
// smallest_seqno and largest_seqno are set iff. `files` is not empty.
|
|
void GetSmallestLargestSeqno(const std::vector<FileMetaData*>& files,
|
|
SequenceNumber* smallest_seqno,
|
|
SequenceNumber* largest_seqno) {
|
|
bool is_first = true;
|
|
for (FileMetaData* f : files) {
|
|
assert(f->smallest_seqno <= f->largest_seqno);
|
|
if (is_first) {
|
|
is_first = false;
|
|
*smallest_seqno = f->smallest_seqno;
|
|
*largest_seqno = f->largest_seqno;
|
|
} else {
|
|
if (f->smallest_seqno < *smallest_seqno) {
|
|
*smallest_seqno = f->smallest_seqno;
|
|
}
|
|
if (f->largest_seqno > *largest_seqno) {
|
|
*largest_seqno = f->largest_seqno;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
#endif
|
|
|
|
// Algorithm that checks to see if there are any overlapping
|
|
// files in the input
|
|
bool CompactionPicker::IsInputNonOverlapping(Compaction* c) {
|
|
auto comparator = icmp_->user_comparator();
|
|
int first_iter = 1;
|
|
|
|
InputFileInfo prev, curr, next;
|
|
|
|
SmallestKeyHeap smallest_key_priority_q =
|
|
create_level_heap(c, icmp_->user_comparator());
|
|
|
|
while (!smallest_key_priority_q.empty()) {
|
|
curr = smallest_key_priority_q.top();
|
|
smallest_key_priority_q.pop();
|
|
|
|
if (first_iter) {
|
|
prev = curr;
|
|
first_iter = 0;
|
|
} else {
|
|
if (comparator->Compare(prev.f->largest.user_key(),
|
|
curr.f->smallest.user_key()) >= 0) {
|
|
// found overlapping files, return false
|
|
return false;
|
|
}
|
|
assert(comparator->Compare(curr.f->largest.user_key(),
|
|
prev.f->largest.user_key()) > 0);
|
|
prev = curr;
|
|
}
|
|
|
|
next.f = nullptr;
|
|
|
|
if (curr.level != 0 && curr.index < c->num_input_files(curr.level) - 1) {
|
|
next.f = c->input(curr.level, curr.index + 1);
|
|
next.level = curr.level;
|
|
next.index = curr.index + 1;
|
|
}
|
|
|
|
if (next.f) {
|
|
smallest_key_priority_q.push(std::move(next));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Universal style of compaction. Pick files that are contiguous in
|
|
// time-range to compact.
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompaction(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
|
|
const int kLevel0 = 0;
|
|
double score = vstorage->CompactionScore(kLevel0);
|
|
std::vector<SortedRun> sorted_runs =
|
|
CalculateSortedRuns(*vstorage, ioptions_);
|
|
|
|
if (sorted_runs.size() <
|
|
(unsigned int)mutable_cf_options.level0_file_num_compaction_trigger) {
|
|
LogToBuffer(log_buffer, "[%s] Universal: nothing to do\n", cf_name.c_str());
|
|
return nullptr;
|
|
}
|
|
VersionStorageInfo::LevelSummaryStorage tmp;
|
|
LogToBuffer(log_buffer, 3072,
|
|
"[%s] Universal: sorted runs files(%" ROCKSDB_PRIszt "): %s\n",
|
|
cf_name.c_str(), sorted_runs.size(),
|
|
vstorage->LevelSummary(&tmp));
|
|
|
|
// Check for size amplification first.
|
|
Compaction* c;
|
|
if ((c = PickCompactionUniversalSizeAmp(cf_name, mutable_cf_options, vstorage,
|
|
score, sorted_runs, log_buffer)) !=
|
|
nullptr) {
|
|
LogToBuffer(log_buffer, "[%s] Universal: compacting for size amp\n",
|
|
cf_name.c_str());
|
|
} else {
|
|
// Size amplification is within limits. Try reducing read
|
|
// amplification while maintaining file size ratios.
|
|
unsigned int ratio = ioptions_.compaction_options_universal.size_ratio;
|
|
|
|
if ((c = PickCompactionUniversalReadAmp(
|
|
cf_name, mutable_cf_options, vstorage, score, ratio, UINT_MAX,
|
|
sorted_runs, log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer, "[%s] Universal: compacting for size ratio\n",
|
|
cf_name.c_str());
|
|
} else {
|
|
// Size amplification and file size ratios are within configured limits.
|
|
// If max read amplification is exceeding configured limits, then force
|
|
// compaction without looking at filesize ratios and try to reduce
|
|
// the number of files to fewer than level0_file_num_compaction_trigger.
|
|
// This is guaranteed by NeedsCompaction()
|
|
assert(sorted_runs.size() >=
|
|
static_cast<size_t>(
|
|
mutable_cf_options.level0_file_num_compaction_trigger));
|
|
unsigned int num_files =
|
|
static_cast<unsigned int>(sorted_runs.size()) -
|
|
mutable_cf_options.level0_file_num_compaction_trigger;
|
|
if ((c = PickCompactionUniversalReadAmp(
|
|
cf_name, mutable_cf_options, vstorage, score, UINT_MAX,
|
|
num_files, sorted_runs, log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer,
|
|
"[%s] Universal: compacting for file num -- %u\n",
|
|
cf_name.c_str(), num_files);
|
|
}
|
|
}
|
|
}
|
|
if (c == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (ioptions_.compaction_options_universal.allow_trivial_move == true) {
|
|
c->set_is_trivial_move(IsInputNonOverlapping(c));
|
|
}
|
|
|
|
// validate that all the chosen files of L0 are non overlapping in time
|
|
#ifndef NDEBUG
|
|
SequenceNumber prev_smallest_seqno = 0U;
|
|
bool is_first = true;
|
|
|
|
size_t level_index = 0U;
|
|
if (c->start_level() == 0) {
|
|
for (auto f : *c->inputs(0)) {
|
|
assert(f->smallest_seqno <= f->largest_seqno);
|
|
if (is_first) {
|
|
is_first = false;
|
|
} else {
|
|
assert(prev_smallest_seqno > f->largest_seqno);
|
|
}
|
|
prev_smallest_seqno = f->smallest_seqno;
|
|
}
|
|
level_index = 1U;
|
|
}
|
|
for (; level_index < c->num_input_levels(); level_index++) {
|
|
if (c->num_input_files(level_index) != 0) {
|
|
SequenceNumber smallest_seqno = 0U;
|
|
SequenceNumber largest_seqno = 0U;
|
|
GetSmallestLargestSeqno(*(c->inputs(level_index)), &smallest_seqno,
|
|
&largest_seqno);
|
|
if (is_first) {
|
|
is_first = false;
|
|
} else if (prev_smallest_seqno > 0) {
|
|
// A level is considered as the bottommost level if there are
|
|
// no files in higher levels or if files in higher levels do
|
|
// not overlap with the files being compacted. Sequence numbers
|
|
// of files in bottommost level can be set to 0 to help
|
|
// compression. As a result, the following assert may not hold
|
|
// if the prev_smallest_seqno is 0.
|
|
assert(prev_smallest_seqno > largest_seqno);
|
|
}
|
|
prev_smallest_seqno = smallest_seqno;
|
|
}
|
|
}
|
|
#endif
|
|
// update statistics
|
|
MeasureTime(ioptions_.statistics, NUM_FILES_IN_SINGLE_COMPACTION,
|
|
c->inputs(0)->size());
|
|
|
|
level0_compactions_in_progress_.insert(c);
|
|
|
|
return c;
|
|
}
|
|
|
|
uint32_t UniversalCompactionPicker::GetPathId(
|
|
const ImmutableCFOptions& ioptions, uint64_t file_size) {
|
|
// Two conditions need to be satisfied:
|
|
// (1) the target path needs to be able to hold the file's size
|
|
// (2) Total size left in this and previous paths need to be not
|
|
// smaller than expected future file size before this new file is
|
|
// compacted, which is estimated based on size_ratio.
|
|
// For example, if now we are compacting files of size (1, 1, 2, 4, 8),
|
|
// we will make sure the target file, probably with size of 16, will be
|
|
// placed in a path so that eventually when new files are generated and
|
|
// compacted to (1, 1, 2, 4, 8, 16), all those files can be stored in or
|
|
// before the path we chose.
|
|
//
|
|
// TODO(sdong): now the case of multiple column families is not
|
|
// considered in this algorithm. So the target size can be violated in
|
|
// that case. We need to improve it.
|
|
uint64_t accumulated_size = 0;
|
|
uint64_t future_size = file_size *
|
|
(100 - ioptions.compaction_options_universal.size_ratio) / 100;
|
|
uint32_t p = 0;
|
|
assert(!ioptions.db_paths.empty());
|
|
for (; p < ioptions.db_paths.size() - 1; p++) {
|
|
uint64_t target_size = ioptions.db_paths[p].target_size;
|
|
if (target_size > file_size &&
|
|
accumulated_size + (target_size - file_size) > future_size) {
|
|
return p;
|
|
}
|
|
accumulated_size += target_size;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
//
|
|
// Consider compaction files based on their size differences with
|
|
// the next file in time order.
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompactionUniversalReadAmp(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, double score, unsigned int ratio,
|
|
unsigned int max_number_of_files_to_compact,
|
|
const std::vector<SortedRun>& sorted_runs, LogBuffer* log_buffer) {
|
|
unsigned int min_merge_width =
|
|
ioptions_.compaction_options_universal.min_merge_width;
|
|
unsigned int max_merge_width =
|
|
ioptions_.compaction_options_universal.max_merge_width;
|
|
|
|
const SortedRun* sr = nullptr;
|
|
bool done = false;
|
|
int start_index = 0;
|
|
unsigned int candidate_count = 0;
|
|
|
|
unsigned int max_files_to_compact = std::min(max_merge_width,
|
|
max_number_of_files_to_compact);
|
|
min_merge_width = std::max(min_merge_width, 2U);
|
|
|
|
// Considers a candidate file only if it is smaller than the
|
|
// total size accumulated so far.
|
|
for (unsigned int loop = 0; loop < sorted_runs.size(); loop++) {
|
|
candidate_count = 0;
|
|
|
|
// Skip files that are already being compacted
|
|
for (sr = nullptr; loop < sorted_runs.size(); loop++) {
|
|
sr = &sorted_runs[loop];
|
|
|
|
if (!sr->being_compacted) {
|
|
candidate_count = 1;
|
|
break;
|
|
}
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
sr->Dump(file_num_buf, sizeof(file_num_buf));
|
|
LogToBuffer(log_buffer,
|
|
"[%s] Universal: %s"
|
|
"[%d] being compacted, skipping",
|
|
cf_name.c_str(), file_num_buf, loop);
|
|
|
|
sr = nullptr;
|
|
}
|
|
|
|
// This file is not being compacted. Consider it as the
|
|
// first candidate to be compacted.
|
|
uint64_t candidate_size = sr != nullptr ? sr->compensated_file_size : 0;
|
|
if (sr != nullptr) {
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
sr->Dump(file_num_buf, sizeof(file_num_buf), true);
|
|
LogToBuffer(log_buffer, "[%s] Universal: Possible candidate %s[%d].",
|
|
cf_name.c_str(), file_num_buf, loop);
|
|
}
|
|
|
|
// Check if the succeeding files need compaction.
|
|
for (unsigned int i = loop + 1;
|
|
candidate_count < max_files_to_compact && i < sorted_runs.size();
|
|
i++) {
|
|
const SortedRun* succeeding_sr = &sorted_runs[i];
|
|
if (succeeding_sr->being_compacted) {
|
|
break;
|
|
}
|
|
// Pick files if the total/last candidate file size (increased by the
|
|
// specified ratio) is still larger than the next candidate file.
|
|
// candidate_size is the total size of files picked so far with the
|
|
// default kCompactionStopStyleTotalSize; with
|
|
// kCompactionStopStyleSimilarSize, it's simply the size of the last
|
|
// picked file.
|
|
double sz = candidate_size * (100.0 + ratio) / 100.0;
|
|
if (sz < static_cast<double>(succeeding_sr->size)) {
|
|
break;
|
|
}
|
|
if (ioptions_.compaction_options_universal.stop_style ==
|
|
kCompactionStopStyleSimilarSize) {
|
|
// Similar-size stopping rule: also check the last picked file isn't
|
|
// far larger than the next candidate file.
|
|
sz = (succeeding_sr->size * (100.0 + ratio)) / 100.0;
|
|
if (sz < static_cast<double>(candidate_size)) {
|
|
// If the small file we've encountered begins a run of similar-size
|
|
// files, we'll pick them up on a future iteration of the outer
|
|
// loop. If it's some lonely straggler, it'll eventually get picked
|
|
// by the last-resort read amp strategy which disregards size ratios.
|
|
break;
|
|
}
|
|
candidate_size = succeeding_sr->compensated_file_size;
|
|
} else { // default kCompactionStopStyleTotalSize
|
|
candidate_size += succeeding_sr->compensated_file_size;
|
|
}
|
|
candidate_count++;
|
|
}
|
|
|
|
// Found a series of consecutive files that need compaction.
|
|
if (candidate_count >= (unsigned int)min_merge_width) {
|
|
start_index = loop;
|
|
done = true;
|
|
break;
|
|
} else {
|
|
for (unsigned int i = loop;
|
|
i < loop + candidate_count && i < sorted_runs.size(); i++) {
|
|
const SortedRun* skipping_sr = &sorted_runs[i];
|
|
char file_num_buf[256];
|
|
skipping_sr->DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop);
|
|
LogToBuffer(log_buffer, "[%s] Universal: Skipping %s", cf_name.c_str(),
|
|
file_num_buf);
|
|
}
|
|
}
|
|
}
|
|
if (!done || candidate_count <= 1) {
|
|
return nullptr;
|
|
}
|
|
unsigned int first_index_after = start_index + candidate_count;
|
|
// Compression is enabled if files compacted earlier already reached
|
|
// size ratio of compression.
|
|
bool enable_compression = true;
|
|
int ratio_to_compress =
|
|
ioptions_.compaction_options_universal.compression_size_percent;
|
|
if (ratio_to_compress >= 0) {
|
|
uint64_t total_size = 0;
|
|
for (auto& sorted_run : sorted_runs) {
|
|
total_size += sorted_run.compensated_file_size;
|
|
}
|
|
|
|
uint64_t older_file_size = 0;
|
|
for (size_t i = sorted_runs.size() - 1; i >= first_index_after; i--) {
|
|
older_file_size += sorted_runs[i].size;
|
|
if (older_file_size * 100L >= total_size * (long) ratio_to_compress) {
|
|
enable_compression = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t estimated_total_size = 0;
|
|
for (unsigned int i = 0; i < first_index_after; i++) {
|
|
estimated_total_size += sorted_runs[i].size;
|
|
}
|
|
uint32_t path_id = GetPathId(ioptions_, estimated_total_size);
|
|
int start_level = sorted_runs[start_index].level;
|
|
int output_level;
|
|
if (first_index_after == sorted_runs.size()) {
|
|
output_level = vstorage->num_levels() - 1;
|
|
} else if (sorted_runs[first_index_after].level == 0) {
|
|
output_level = 0;
|
|
} else {
|
|
output_level = sorted_runs[first_index_after].level - 1;
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> inputs(vstorage->num_levels());
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
inputs[i].level = start_level + static_cast<int>(i);
|
|
}
|
|
for (unsigned int i = start_index; i < first_index_after; i++) {
|
|
auto& picking_sr = sorted_runs[i];
|
|
if (picking_sr.level == 0) {
|
|
FileMetaData* picking_file = picking_sr.file;
|
|
inputs[0].files.push_back(picking_file);
|
|
} else {
|
|
auto& files = inputs[picking_sr.level - start_level].files;
|
|
for (auto* f : vstorage->LevelFiles(picking_sr.level)) {
|
|
files.push_back(f);
|
|
}
|
|
}
|
|
char file_num_buf[256];
|
|
picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), i);
|
|
LogToBuffer(log_buffer, "[%s] Universal: Picking %s", cf_name.c_str(),
|
|
file_num_buf);
|
|
}
|
|
|
|
return new Compaction(
|
|
vstorage, mutable_cf_options, std::move(inputs), output_level,
|
|
mutable_cf_options.MaxFileSizeForLevel(output_level), LLONG_MAX, path_id,
|
|
GetCompressionType(ioptions_, start_level, 1, enable_compression),
|
|
/* grandparents */ {}, /* is manual */ false, score);
|
|
}
|
|
|
|
// Look at overall size amplification. If size amplification
|
|
// exceeeds the configured value, then do a compaction
|
|
// of the candidate files all the way upto the earliest
|
|
// base file (overrides configured values of file-size ratios,
|
|
// min_merge_width and max_merge_width).
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompactionUniversalSizeAmp(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, double score,
|
|
const std::vector<SortedRun>& sorted_runs, LogBuffer* log_buffer) {
|
|
// percentage flexibilty while reducing size amplification
|
|
uint64_t ratio = ioptions_.compaction_options_universal.
|
|
max_size_amplification_percent;
|
|
|
|
unsigned int candidate_count = 0;
|
|
uint64_t candidate_size = 0;
|
|
unsigned int start_index = 0;
|
|
const SortedRun* sr = nullptr;
|
|
|
|
// Skip files that are already being compacted
|
|
for (unsigned int loop = 0; loop < sorted_runs.size() - 1; loop++) {
|
|
sr = &sorted_runs[loop];
|
|
if (!sr->being_compacted) {
|
|
start_index = loop; // Consider this as the first candidate.
|
|
break;
|
|
}
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
sr->Dump(file_num_buf, sizeof(file_num_buf), true);
|
|
LogToBuffer(log_buffer, "[%s] Universal: skipping %s[%d] compacted %s",
|
|
cf_name.c_str(), file_num_buf, loop,
|
|
" cannot be a candidate to reduce size amp.\n");
|
|
sr = nullptr;
|
|
}
|
|
|
|
if (sr == nullptr) {
|
|
return nullptr; // no candidate files
|
|
}
|
|
{
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
sr->Dump(file_num_buf, sizeof(file_num_buf), true);
|
|
LogToBuffer(log_buffer, "[%s] Universal: First candidate %s[%d] %s",
|
|
cf_name.c_str(), file_num_buf, start_index,
|
|
" to reduce size amp.\n");
|
|
}
|
|
|
|
// keep adding up all the remaining files
|
|
for (unsigned int loop = start_index; loop < sorted_runs.size() - 1; loop++) {
|
|
sr = &sorted_runs[loop];
|
|
if (sr->being_compacted) {
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
sr->Dump(file_num_buf, sizeof(file_num_buf), true);
|
|
LogToBuffer(
|
|
log_buffer, "[%s] Universal: Possible candidate %s[%d] %s",
|
|
cf_name.c_str(), file_num_buf, start_index,
|
|
" is already being compacted. No size amp reduction possible.\n");
|
|
return nullptr;
|
|
}
|
|
candidate_size += sr->compensated_file_size;
|
|
candidate_count++;
|
|
}
|
|
if (candidate_count == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
// size of earliest file
|
|
uint64_t earliest_file_size = sorted_runs.back().size;
|
|
|
|
// size amplification = percentage of additional size
|
|
if (candidate_size * 100 < ratio * earliest_file_size) {
|
|
LogToBuffer(
|
|
log_buffer,
|
|
"[%s] Universal: size amp not needed. newer-files-total-size %" PRIu64
|
|
"earliest-file-size %" PRIu64,
|
|
cf_name.c_str(), candidate_size, earliest_file_size);
|
|
return nullptr;
|
|
} else {
|
|
LogToBuffer(
|
|
log_buffer,
|
|
"[%s] Universal: size amp needed. newer-files-total-size %" PRIu64
|
|
"earliest-file-size %" PRIu64,
|
|
cf_name.c_str(), candidate_size, earliest_file_size);
|
|
}
|
|
assert(start_index < sorted_runs.size() - 1);
|
|
|
|
// Estimate total file size
|
|
uint64_t estimated_total_size = 0;
|
|
for (unsigned int loop = start_index; loop < sorted_runs.size(); loop++) {
|
|
estimated_total_size += sorted_runs[loop].size;
|
|
}
|
|
uint32_t path_id = GetPathId(ioptions_, estimated_total_size);
|
|
int start_level = sorted_runs[start_index].level;
|
|
|
|
std::vector<CompactionInputFiles> inputs(vstorage->num_levels());
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
inputs[i].level = start_level + static_cast<int>(i);
|
|
}
|
|
// We always compact all the files, so always compress.
|
|
for (unsigned int loop = start_index; loop < sorted_runs.size(); loop++) {
|
|
auto& picking_sr = sorted_runs[loop];
|
|
if (picking_sr.level == 0) {
|
|
FileMetaData* f = picking_sr.file;
|
|
inputs[0].files.push_back(f);
|
|
} else {
|
|
auto& files = inputs[picking_sr.level - start_level].files;
|
|
for (auto* f : vstorage->LevelFiles(picking_sr.level)) {
|
|
files.push_back(f);
|
|
}
|
|
}
|
|
char file_num_buf[256];
|
|
sr->DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop);
|
|
LogToBuffer(log_buffer, "[%s] Universal: size amp picking %s",
|
|
cf_name.c_str(), file_num_buf);
|
|
}
|
|
|
|
return new Compaction(
|
|
vstorage, mutable_cf_options, std::move(inputs),
|
|
vstorage->num_levels() - 1,
|
|
mutable_cf_options.MaxFileSizeForLevel(vstorage->num_levels() - 1),
|
|
/* max_grandparent_overlap_bytes */ LLONG_MAX, path_id,
|
|
GetCompressionType(ioptions_, vstorage->num_levels() - 1, 1),
|
|
/* grandparents */ {}, /* is manual */ false, score);
|
|
}
|
|
|
|
bool FIFOCompactionPicker::NeedsCompaction(const VersionStorageInfo* vstorage)
|
|
const {
|
|
const int kLevel0 = 0;
|
|
return vstorage->CompactionScore(kLevel0) >= 1;
|
|
}
|
|
|
|
Compaction* FIFOCompactionPicker::PickCompaction(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
|
|
assert(vstorage->num_levels() == 1);
|
|
const int kLevel0 = 0;
|
|
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(kLevel0);
|
|
uint64_t total_size = 0;
|
|
for (const auto& file : level_files) {
|
|
total_size += file->fd.file_size;
|
|
}
|
|
|
|
if (total_size <= ioptions_.compaction_options_fifo.max_table_files_size ||
|
|
level_files.size() == 0) {
|
|
// total size not exceeded
|
|
LogToBuffer(log_buffer,
|
|
"[%s] FIFO compaction: nothing to do. Total size %" PRIu64
|
|
", max size %" PRIu64 "\n",
|
|
cf_name.c_str(), total_size,
|
|
ioptions_.compaction_options_fifo.max_table_files_size);
|
|
return nullptr;
|
|
}
|
|
|
|
if (!level0_compactions_in_progress_.empty()) {
|
|
LogToBuffer(log_buffer,
|
|
"[%s] FIFO compaction: Already executing compaction. No need "
|
|
"to run parallel compactions since compactions are very fast",
|
|
cf_name.c_str());
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> inputs;
|
|
inputs.emplace_back();
|
|
inputs[0].level = 0;
|
|
// delete old files (FIFO)
|
|
for (auto ritr = level_files.rbegin(); ritr != level_files.rend(); ++ritr) {
|
|
auto f = *ritr;
|
|
total_size -= f->compensated_file_size;
|
|
inputs[0].files.push_back(f);
|
|
char tmp_fsize[16];
|
|
AppendHumanBytes(f->fd.GetFileSize(), tmp_fsize, sizeof(tmp_fsize));
|
|
LogToBuffer(log_buffer, "[%s] FIFO compaction: picking file %" PRIu64
|
|
" with size %s for deletion",
|
|
cf_name.c_str(), f->fd.GetNumber(), tmp_fsize);
|
|
if (total_size <= ioptions_.compaction_options_fifo.max_table_files_size) {
|
|
break;
|
|
}
|
|
}
|
|
Compaction* c = new Compaction(
|
|
vstorage, mutable_cf_options, std::move(inputs), 0, 0, 0, 0,
|
|
kNoCompression, {}, /* is manual */ false, vstorage->CompactionScore(0),
|
|
/* is deletion compaction */ true);
|
|
level0_compactions_in_progress_.insert(c);
|
|
return c;
|
|
}
|
|
|
|
Compaction* FIFOCompactionPicker::CompactRange(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, int input_level, int output_level,
|
|
uint32_t output_path_id, const InternalKey* begin, const InternalKey* end,
|
|
InternalKey** compaction_end) {
|
|
assert(input_level == 0);
|
|
assert(output_level == 0);
|
|
*compaction_end = nullptr;
|
|
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, ioptions_.info_log);
|
|
Compaction* c =
|
|
PickCompaction(cf_name, mutable_cf_options, vstorage, &log_buffer);
|
|
log_buffer.FlushBufferToLog();
|
|
return c;
|
|
}
|
|
|
|
#endif // !ROCKSDB_LITE
|
|
|
|
} // namespace rocksdb
|